山东省招远市第二中学高中数学 两条直线的位置关系―点到直线的距离公式教案 新人教版必修2
点到直线的距离公式教案

点到直线的距离公式教案一、教学目标:1.知识目标:了解点到直线的距离的概念和计算公式。
2.能力目标:学会运用点到直线的距离公式解决实际问题。
3.情感目标:培养学生的数学思维能力和解决问题的能力,增强对数学的兴趣和自信心。
二、教学重难点:1.重点:理解点到直线的距离的概念和计算公式。
2.难点:如何将点到直线的距离公式运用到实际问题中。
三、教学过程:1.导入新知识:教师通过实例引导学生回顾如何计算点到直线的距离。
即,点离直线的距离等于点到直线上任意一点所在的垂直平面的距离。
2.点到直线的距离公式的推导:教师通过几何证明或向量证明的方式,推导出点到直线的距离公式。
3.生命周期函数的说明:教师解释什么是函数,如何用函数表示点到直线的距离。
4.点到直线距离公式的使用:教师给出一些实际题材的例子,如房屋平面图中特定点离直线的距离、飞机在空中的高度等,要求学生运用点到直线的距离公式解决问题。
5.练习与讨论:教师布置一些相关的练习题,让学生独自或小组合作解答,并讨论解题思路和方法。
6.示范与操练:教师随机抽一道题目,为学生演示解题过程,并请学生依次完成该题目的解答。
7.温故知新:教师总结重要知识点和思路,帮助学生复习和巩固所学的知识。
8.拓展应用:教师设计一些能够拓展学生思维的应用题,要求学生分析问题并运用点到直线的距离公式解决。
9.讲评与总结:教师和学生共同讨论和总结此次学习的内容,强化学生对点到直线的距离公式的理解和应用。
四、教学评价:1.学生的课堂表现,包括参与讨论、解答问题的积极性和准确性。
2.学生完成的练习题和应用题答案的准确性和深入性。
3.学生在讲评环节的思维能力和解决问题的方法。
五、教学反思:本节课通过引入实例、推导公式、训练练习和应用题拓展等方式,帮助学生掌握了点到直线的距离的计算公式。
同时,通过讨论和解析问题,提高学生的数学思维能力。
但是,需要对练习和应用题的设计进行修改,增加一些开放性和质量较高的题目,以提高学生的解决问题的能力。
两条直线的位置关系教案

两条直线的位置关系教学目标(1)熟练掌握两条直线平行与垂直的充要条件,能够根据直线的方程判断两条直线的位置关系.(2)理解一条直线到另一条直线的角的概念,掌握两条直线的夹角.(3)能够根据两条直线的方程求出它们的交点坐标.(4)掌握点到直线距离公式的推导和应用.(5)进一步掌握求直线方程的方法.(6)进一步理解直线方程的概念,理解运用直线的方程讨论两条直线位置关系的思想方法.(7)通过点到直线距离公式的多种推导方法的探求,培养学生发散思维能力,理解数形结合的思想方法.教学建议一、教材分析1.知识结构2.重点、难点分析重点是两条直线的平行与垂直的判断;两条直线的夹角;点到直线的距离.难点是两条直线垂直条件的推导;一条直线到另一条直线的角的概念和点到直线距离公式的推导.本节内容与后边内容联系十分紧密,两条直线平行与垂直的条件和点到直线的距离公式在圆锥曲线中都有广泛的应用,因此非常重要.(1)平行与垂直①平行在讨论两条直线平行的问题时,教材先假定了两条直线有斜截式方程,根据倾斜角与斜率的对应关系,将初中学过的两直线平行的充要条件(即判定定理和性质定理)转化为坐标系中的语言,用斜率和截距重新加以刻画,教学中应注意斜率不存在的情况.②垂直教材上将直线的斜率转化成方向向量,然后利用向量垂直的条件推出两条直线垂直的条件.结合斜率不存在的情况,两条直线垂直的充要条件可叙述为:或一个为0,另一个不存在.(2)夹角①应正确区分直线到的角、直线到的角、直线和的夹角这三个概念.到的角是带方向的角,它是指按逆时针方向旋转到与重合时所转的角,它与到的角是不同的,如果设前者是,后者是,则+=.与所夹的不大于的角成为和的夹角,夹角不带方向.当到的角为锐角时,则和的夹角也是;当到的角为钝角时,则和的夹角也是.②在求直线到的角时,应注意分析图形的几何性质,找出与,的倾斜角,关系,得出或,然后由,联想差角的正切公式,便可把图形的几何性质转化为坐标语言来表示,推导出.再由与的夹角与到的角之间的关系,而得出夹角计算公式这种把“形”转化为“数”的方法,是解析几何的基本方法,要认真揣摩.③对于以上两个求角公式,在解决实际问题时,要注意根据具体情况选用.(3)交点①求两条直线的交点问题就是求它们的方程的公共解的问题,这可以由直线的方程与方程的直线的定义来理解.②在同一平面内,两条直线有三种位置关系:相交、平行、重合,相应的由直线方程组成的二元一次方程组的解有三种情况:有惟一解、无解、无数多个解.但在实际判定时,利用直线的斜率和截距更方便.若,,则:与相交;且;与重合且.(4)点到直线的距离①点到直线的距离公式是研究点与直线位置关系的重要工具.教科书借助于直角三角形的面积公式,推导出点到直线的距离公式.在推导过程中,把与两条坐标轴都不平行的线段的长度的计算,转化为与坐标轴平等或垂直的线段长度的计算,从而简化了运算过程.②利用点到直线的距离公式可推出两平行线,间的距离公式:.③点到直线距离公式的推导,有多种方法,应鼓励同学们思考,下面介绍一种较简便的方法.如右图,设,过点作直线的垂线,垂足为,则有即得,即,.当时,上述公式也成立.(5)当直线中有一条没有斜率时,讨论平行、垂直、角、距离的问题,不必套用以上结论,这时可结合图形几何性质;直接求解.二、教法建议1.本节知识与初中所学的平面几何知识和三角知识联系非常紧密,教学时应加强启发和引导.如学生对两条直线的平行同位角相等的条件已经非常熟悉,因此在研究两直线平行时,应引导学生迅速建立联系:同位角—倾斜角—斜率(直线方程).又如,在求到的角时,根据图形中角的关系,建立与倾斜角和的联系(有且只有或两种情况),进而借助三角建立与斜率的关系,得出公式. 2.本节内容中在研究两直线的垂直条件时,由于采用向量这一更高级的工具来处理,显得既简单又深刻.所以教学中应注意向量工具的运用,可让学生尝试用向量推导两直线平行的条件和点到直线距离公式的推导.3.本节内容新概念不多,但要求推导的内容不少,教学时要坚持启发式的教学思想,重点放在思路的探求和结论或公式的运用上.本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能熟练地掌握公式,增强学生动手计算的能力.本节还要加强根据已知条件求直线方程的教学.4.不仅要使学生熟悉用斜率求两直线夹角的公式,也要掌握根据直线方程系数求夹角的方法(即教材中例6的方法),同时会根据所给条件选用.5.已知两直线的方程会求其交点即可,不必研究两直线方程系数与位置关系之间的关系.6.在学习点到直线距离公式时,可利用课余时间发动学生寻找更多的推导公式的方法,并通过寻找多种推导公式的方法,锻炼思维,培养能力.7.本节学完以后学生可以解决很多较复杂、较综合的问题,如对称问题、直线系过定点问题、光路最短与足球射门角度最大等最值问题.教学中应适当安排一些这样的内容,以训练学生思维和培养学生分析问题、解决问题的能力.教学设计方案课题:点到直线的距离教学目标:(1)理解点到直线距离公式的推导过程.(2)会求点到直线的距离.(3)在探索点到直线距离公式推导思路的过程中,培养学生发散思维、积极探索的精神.教学用具:计算机教学方法:启发引导法,讨论法教学过程(一、引入点到直线的距离是指过点作的垂线,与垂足之间的长度【问题1】已知点(-1,2)和直线:,求点到直线的距离.(由学生分析、解答)分析:先求出过点和垂直的直线::,再求出和的交点∴如果把问题1一般化就有如下问题:【问题2】已知:和直线:(不在直线上,且,),试求点到直线的距离.二、点到直线距离分析1:要求的长度可以象问题1的解法一样,利用两点的距离公式可以求的长度.∵点坐标已知,∴只要求出点坐标就可以了.又∵点是直线和直线的交点又∵直线的方程已知∴只要求出直线的方程就可以了.即:←点坐标←直线与直线的交点←直线的方程←直线的斜率←直线的斜率(这一解法在课前由学生自学完成,课上进行评价总结)问:这种解法好不好,为什么?根据学生讨论,教师适时启发、引导,得出分析2:如果垂直坐标轴,则交点和距离都容易求出,那么不妨做出与坐标轴垂直的线段和,如图1所示,显然相对而言,和好求一些,事实上,设到直线的距离为,坐标为,坐标为,则易求:,所以:,所以:根据三角形面积公式:所以:(至此问题2已经解决)公式的完善.容易验证(由学生完成):当,即轴时,公式成立;当,即轴时,公式成立;当点在上时,公式成立.公式结构特点师生一起总结:(1)分子是点坐标代入直线方程;(2)分母是直线未知数、系数平方和的算术根.类似于勾股定理求斜边的长三、检测与巩固练习1(1)到直线的距离是________.(2)到直线的距离是_______.(3)用公式解到直线的距离是______.(4)到直线的距离是_________.订正答案:(1)5;(2)0;(3);(4).练习21.求平行直线和的距离.解:在直线上任取一点,如,则两平行线的距离就是点到直线的距离.因此,==【问题3】两条平行直线的距离是否有公式可以推出呢?求两条平行直线与0的距离.解:在直线上任取一点,如则两平行线的距离就是点到直线的距离,(如图2).因此,==注意:用公式时,注意一次项系数是否一致.四、小结作业1、点到直线的距离公式及其推导;师生一起总结点到直线距离公式的推导过程:2、利用公式求点到直线的距离.3、探索两平行直线的距离4、探索“已知点到直线的距离及一条直线求另一条直线距离.作业:P5413、14、16思考研究:运用多种方法推导点到直线的距离公式.。
《点到直线的距离公式》教案、导学案、同步练习

《2.3.3 点到直线的距离公式》教案【教材分析】本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习点到直线的距离公式。
在前面已经研究了两点间的距离公式、直线方程、两直线的位置关系,同时也介绍了“以数论形,以形辅数”的数学思想方法.“点到直线的距离”是从初中平面几何的定性作图,过渡到了解析几何的定量计算;《点到直线的距离》的研究,又为以后直线与圆的位置关系和圆锥曲线的进一步学习奠定了基础,具有承前启后的重要作用.【教学目标与核心素养】课程目标学科素养A. 会用向量工具推导点到直线的距离公式.B.掌握点到直线的距离公式,能应用点到直线距离公式解决有关距离问题.C. 通过点到直线的距离公式的探索和推导过程,培养学生运用等价转化、数形结合等数学思想方法解决问题的能力1.数学抽象:点到直线的距离公式2.逻辑推理:点到直线的距离公式的推导3.数学运算:点到直线的距离公式的运用4.直观想象:几何中的距离问题【教学重点】:点到直线的距离公式的推导思路分析;点到直线的距离公式的应用.【教学难点】:点到直线的距离公式的推导不同方法的思路分析.【教学过程】教学过程教学设计意图一、情境导学在公路附近有一家乡村饭馆,现在需要铺设一条连接饭馆和公路的道路.请同学们帮助设计一下:在理论上怎样铺路可以使这条连接道路的长度最短?通过生活中点到直线距离的问题情境,二、探究新知思考:最容易想到的方法是什么?思路①. 定义法,其步骤为:①求l 的垂线l PQ的方程;② 解方程组;③得交点Q 的坐标;④求|P Q|的长反思:这种解法的优缺点是什么?我们知道,向量是解决距离、角度问题的有力工具。
能否用向量方法求点到直线的距离?如图,点P 到直线l 的距离,就是向量PQ⃗⃗⃗⃗⃗ 的模,设M(x,y)是直线l 上的任意一点, n 是与直线l 的方向向量垂直的单位向量,则PQ ⃗⃗⃗⃗⃗ 是PM⃗⃗⃗⃗⃗⃗ 在上n 的投影向量, |PQ ⃗⃗⃗⃗⃗ |=|PM ⃗⃗⃗⃗⃗⃗ ∙n|。
2019-2020年高中数学点到直线的距离教案新人教A版必修2

2019-2020年高中数学点到直线的距离教案新人教A版必修2一、教材分析1.教学内容《点到直线的距离》是全日制普通高级中学教科书(必修·人民教育出版社)第二册(上),“§7.3两条直线的位置关系”的第四节课,主要内容是点到直线的距离公式的推导过程和公式应用.2.地位与作用本节对“点到直线的距离”的认识,是从初中平面几何的定性作图,过渡到了高中解析几何的定量计算,其学习平台是学生已掌握了直线倾斜角、斜率、直线方程和两条直线的位置关系等相关知识.对本节的研究,为以后直线与圆的位置关系和圆锥曲线的进一步学习,奠定了基础,具有承上启下的重要作用.二、目标分析1.学情分析我校高二年级学生已掌握了三角函数、平面向量等有关知识,具备了一定的利用代数方法研究几何问题的能力.我班学生基础知识比较扎实、思维较活跃,但处理抽象问题的能力还有待进一步提高.2.教学目标根据新课程标准的理念以及前面对教材、学情的分析,我制定了如下教学目标.【知识技能】⑴理解点到直线的距离公式的推导过程;⑵掌握点到直线的距离公式;⑶掌握点到直线的距离公式的应用.【数学思考】⑴通过探索点到直线的距离公式的推导过程,渗透算法的思想;⑵通过自学教材上利用直角三角形的面积公式的推导过程,培养学生的数学阅读能力;⑶通过灵活运用公式的过程,提高学生类比化归、数形结合的能力.【解决问题】由探索点到直线的距离,推广到探索点到直线的距离的过程中,使学生体会由特殊到一般、从具体到抽象的数学研究方法,并使学生在经历反馈练习的过程中,进一步提高灵活运用公式,解决问题的能力.【情感态度】结合现实模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣.3.教学重点、难点为更好地完成教学目标,本课教学重点设置为:【重点】⑴点到直线的距离公式的推导思路分析;⑵点到直线的距离公式的应用.【难点】点到直线的距离公式的推导思路和算法分析.【难点突破】本课在设计上采用了由特殊到一般、从具体到抽象的教学策略.利用类比归纳的思想,由浅入深,让学生自主探究,分析、整理出推导公式的不同算法思路.同时,借助于多媒体的直观演示,帮助学生理解,并通过逐步深入的课堂练习,师生互动、讲练结合,从而突出重点、突破教学难点.三、教学方法根据教学内容和学生的学习状况、认知特点,本课采用类比发现式教学模式.从学生熟知的实际生活背景出发,通过由特殊到一般、从具体到抽象的课堂教学方式,引导学生探索点到直线的距离的求法.让学生在合作交流、共同探讨的氛围中,认识公式的推导过程及知识的运用,进一步提高学生几何问题代数化的数学能力.四、过程设计结合教材知识内容和教学目标,本课分为以下四个教学环节.环节1创设情境在教学环节1中,以学生熟知的地质勘探、铁轨宽度、人离高压电线的安全距离等生活图片的欣赏,以及一个具体实例:当火车在高速行驶时,如果旅客离铁轨中心的距离小于的安全距离时,就可能被吸入车轮下而发生危险.创设情景,让学生直观感受几何要素——“点到直线的距离”,从而有效调动学生的学习兴趣.(设计意图:以学生熟悉的实际生活为教学背景,引入新课,有效调动学生的学习兴趣.)那么“应该如何求点到直线的距离呢?”带着这个问题,教学进入环节2.环节2点到直线的距离公式的推导过程首先,由学生回答,初中有关“点到直线的距离”的定义:过点作直线的垂线,垂足为点,线段的长度叫做点到直线的距离.(设计意图:引导学生复习旧知,为新课的学习打下基础.)接着,师生共同探讨如何求点到直线的距离.由于点和直线处在一般位置,所以公式的推导过程含有字母运算,比较抽象.为帮助学生更好地理解,可以补充两个由浅入深的具体问题,为后面推广到一般情况作好铺垫.问题1 如何求点到直线的距离?补充的问题1,由于点和直线的位置非常特殊,所以学生容易回答,应该鼓励学生利用多种解法解决本问.方法①利用定义由于本课之前,学生已掌握了两条直线交点的求法等知识,所以容易通过定义,将点到直线的距离,转化为点、垂足两点之间距离来解决.解:过点作的垂线,设垂足为方法②利用直角三角形的面积公式结合图形,学生也能利用面积构造法来解决,这一方法的难点是如何添作辅助线.教学时给予提示:由垂直条件,可以联想到三角形的高或直角三角形等相关知识.解:过点作的垂线,交点为点在Rt方法③利用三角函数根据定义作出图象后,由于涉及到Rt和直线倾斜角,学生容易联想利用三角函数知识解决问题.解:过点作的垂线,垂足为方法④利用函数的思想在初中,学生已初步认识了点到直线的距离的几何特征:连接直线外一点与直线上任意点,所得线段中垂线段最短.以此为背景,学生可能通过函数的思想来解决.解:设直线上的点,则当时,取得等号,即此时点对于问题1,学生可能提供的解法不完全,我要引导学生补充完整.改变点和直线的位置,引出补充问题2.问题2如何求点到直线的距离?组织学生类比问题1,独立思考本问的解决方法.在课堂上只要求学生说明解法思路,而不要求解题过程.(设计意图:为了推导点到直线的距离公式,学生会面临比较抽象的字母运算.通过补充两个由浅入深的具体问题,使学生能够类比思考,解决当点和直线处在一般位置时,点到直线的距离的求法.)在解决问题1、2的基础上,将点和直线的位置推广到一般情况,进一步提出问题3.问题3 如何求点到直线()的距离?方法①利用定义的推导方法通过前面两个补充问题,学生已经积累了一些求点到直线距离的经验和方法,学生可能会类比考虑利用定义,将点到直线的距离转化为点与垂足,两点之间距离来处理.这种方法虽然思路自然,但运算较繁琐,所以只要求学生结合教材,说明算法步骤、明确算法框图,而不要求推导过程.尽管在前面的学习中,学生已掌握了两条直线垂直的充要条件,但学生仍然可能忽略,这一前提条件,而直接得到与垂直直线的斜率为.我要加以纠正,并强调对于的特殊情况,可以结合图象直接得出结论,所以在算法中暂不考虑.方法②利用直角三角形的面积公式的的推导方法学生也可能类比补充问题1、2中,添作辅助线的方式,构造直角三角形,通过面积构造法解决问题.对于这种方法,由于教材已经给出了推导过程,所以学生代表可以只说明算法步骤.与传统教材相比,新教材更关注学生思维能力的培养,淡化形式、注重实质.由于新教材删减了一些同角三角函数的基本关系式,所以旧教材利用三角函数的方法推导公式就显得繁杂,教科书选择的借助直角三角形的面积公式推导公式的方法,简洁、明了.所以,可以让学生根据算法框图,自学教材的推导过程,培养学生的数学阅读能力.在此过程中,应该提醒学生注意Rt三边边长的求法.方法③利用平面向量的推导方法由于在前面直线方程的学习中,教材引入了直线方向向量的概念,并运用了向量的有关知识讨论直线的一些问题.所以我班部分思维能力较强的学生,可能会提出利用向量知识推导公式,我要给予肯定.尽管这种方法具有一定难度,但根据我班学生思维能力较强的特点,可以先引导学生复习向量有关知识,使学生明确向量数量积的两种表示方式及其几何意义,再结合图象,师生互动,共同讨论得出,利用向量数量积推导公式的算法步骤、算法框图.在这一过程中,学生可能会遇到,无法表示与直线垂直的向量的坐标的困难,我给予提示:可以借助于,向量与直线的方向向量互相垂直的充要条件来解决.对于这种方法的具体推导过程,要求学生课后,在自学教材阅读材料“向量与直线”的基础上,作为思考作业完成.这种利用向量的算法,为今后在立体几何中,利用这种方法得到点到平面的距离公式奠定了基础.(设计意图:在点到直线的距离公式的推导过程中,通过问题获得知识,让学生经历“发现问题——提出问题——解决问题”的过程,使学生感受到用坐标的方法研究几何问题是一种重要的数学方法.由于点和直线处在一般位置,所以公式的推导中会涉及字母运算,比较抽象.为帮助学生理清思路,在教学中强调了算法的思想,让学生在明确算法步骤和算法框图的前提下,再进行有效的公式证明和自学阅读.)点到直线的距离公式点到直线(其中)的距离在学生通过多种方法推导得出公式后,引导学生根据公式的形式特点,记忆公式.同时强调:当时,公式仍然适用,也可以结合图象直接求出结论.在此基础上,要求学生利用公式计算补充问题1、2,并与前面的计算结果进行比较,前后呼应,使学生体会运用公式计算的简便性.点到直线的距离公式的应用是本课的一个重点,为了强化学生对公式的记忆和运用,教学进入环节3.环节3点到直线的距离公式的应用在本环节,我安排了三个典型例题.其中例1是引用教材,由于例题中所给直线的方程已经是一般式,所以学生容易忽略运用公式的前提:首先应将直线方程化为一般式,在确定了系数的值之后,再代入公式进行计算.这一点对于直线方程中含参数的问题尤为重要.为了强调运用公式的这一前提条件,我在例1中补充设置了⑶、⑷两个小问.例1 求点到下列直线的距离:⑴⑵⑶⑷(设计意图:通过例题练习,强化学生对公式的记忆和应用.同时,“代入公式计算前,首先应将直线方程化为一般式,以便确定系数的值”是学生在应用公式中,容易忽略的环节.将这一薄弱环节设置在补充例题中,使学生在“错误体验”加深记忆,以期达到强化训练的目的.)在解决了例1的基础上,由浅入深,补充了直线方程含有参数的例2,进一步提高学生灵活运用公式的能力.例2 ⑴ 已知点到直线的距离为,求的值;⑵ 已知点到直线的距离为,求的值.由于例2的两个问题中,直线方程所含参数都具有明显的几何意义:一个表示直线的斜率,另一个表示直线在轴上的截距.所以解出参数的值后,在“几何画板”中,以数学实验的形式,通过度量进行操作确认.其中⑴随直线的不断变化,学生可观察点到直线距离的度量值、直线斜率的度量值的变化趋势.当时,可发现此时两条直线的斜率的度量值,与计算结果吻合.同时,度量出,说明点落在两条直线所成角的角平分线上(如图1);在⑵中,学生可观察点到直线距离的度量值、直线在轴上截距的变化趋势.当时,直线在轴上的截距的度量值,也与计算结果吻合(如图2).本例既考察了学生对公式的掌握情况,又为下节课对称问题和直线系的研究设下伏笔,并由问题⑵中两平行线间距离为,引出教材的例题.图 图2 (设计意图:点到直线距离公式的应用,是本课的一个重点内容.在例1的基础上,增补直线方程含有参数的例2,进一步提高学生灵活运用公式的能力.在几何画板的软件平台中,通过数学实验,让学生感受在利用代数方法研究几何问题后,再回归几何本身的重要性.)例3 求平行线和的距离.教材上采用了类比化归的思想,将两平行直线之间的距离,转化为点到直线的距离来解决问题.由于两平行线间的距离处处相等,所以教材选择了一条直线上的特殊点,便于简化计算.学生可能会提出如果在直线上任选一点能否得到这两条平行线之间的距离的问题,由此引出了教材的习题15.根据课堂剩余时间,此题作为机动练习.此时,本课教学任务已基本完成,为进一步巩固知识,教学进入环节4.(设计意图:紧扣教材,让学生体会类比化归的思想方法,同时,为课后作业中推导两平行线之间的距离公式,设下伏笔.)环节4课堂总结由学生自主归纳、总结本节课所学习的主要内容,教师加以补充说明.⑴点到直线的距离公式的推导中不同的算法思路;⑵点到直线的距离公式;⑶点到直线的距离公式的应用前提条件.(设计意图:通过小结,使学生本节所学的知识系统化、条理化,进一步巩固知识,明确方法.)课后作业①在自学教材阅读材料“向量与直线”后,利用向量的方法证明点到直线的距离公式;②教材13、14、16板书设计五、教学反思根据教学经历和学生的反馈信息,我对本课有如下五点反思:1.对于这一节内容,有两种不同的处理方式:一种是让学生理解、记忆公式,直接应用而不讲公式的探寻过程,这样的处理不利于我校学生数学思维的培养;二是本课方式,通过强调对公式的探索过程,提高学生利用代数方法处理几何问题的能力;2.点到直线的距离的推导过程,含有比较抽象的字母运算.如果没有整体算法步骤的分析,学生的思路会缺乏连贯性,所以本课重点分析了三种算法思想:利用定义的算法、利用直角三角形面积的算法、利用平面向量的算法.让学生在明了算法步骤的前提下,再进行有效的公式推导和自学阅读;3.向量是一种重要的运算工具,根据我班学生的实际,本课涉及了利用向量的数量积推导点到直线的距离公式的方法.实际上,在以后立体几何的学习中,还将利用这种算法思路得到点到平面的距离公式.又由于这种方法在思维上有一定的难度,所以,我根据学生的实际情况,提出了分层要求:基本要求是能够理解教材所给的推导方法,并能够应用公式,较高要求是能够利用向量的方法推导点到直线的距离公式;4.现代数学认为“几何是可视逻辑”,所以我重视在补充的例题中,突出几何直观和数形结合的思想方法;5.学生在练习中的“错误体验”将会有助于加深记忆,所以我重视在学生应用公式中容易忽略的环节,并在补充的例题中给予了设置,以期达到强化训练的目的.2019-2020年高中数学知识精要 25.高考数学应试技巧教案新人教A版经过紧张有序的高中数学总复习,高校招生考试即将来临,不少同学认为高考数学的成败已成定局。
山东省招远市第二中学高中数学 直线与圆的位置关系教案 新人教版必修2

4.2.1 直线与圆的位置关系
一、教学目标 1、知识与技能
(1)理解直线与圆的位置的种类;
(2)利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离; (3)会用点到直线的距离来判断直线与圆的位置关系. 2、过程与方法
设直线l :0=++c by ax ,圆C :02
2
=++++F Ey Dx y x ,圆的半径为r ,圆心)2
,2(E D --
到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点: (1)当r d >时,直线l 与圆C 相离; (2)当r d =时,直线l 与圆C 相切; (3)当r d <时,直线l 与圆C 相交;
3、情态与价值观
让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想. 二、教学重点、难点:
重点:直线与圆的位置关系的几何图形及其判断方法. 难点:用坐标法判直线与圆的位置关系. 三、教学设想。
高中数学直线距离公式教案

高中数学直线距离公式教案
一、教学目标
1. 理解直线方程的一般形式;
2. 掌握计算点到直线的距离的公式;
3. 能够应用直线距离公式解决实际问题。
二、教学重点
1. 直线方程的一般形式和距离公式的推导;
2. 通过例题演练,掌握直线距离公式的应用。
三、教学难点
1. 点到直线的距离公式的推导过程;
2. 能够灵活运用直线距离公式解决问题。
四、教学准备
1. 板书:直线距离公式的定义和推导过程;
2. 教材:提供相关例题和习题;
3. 计算工具:提供计算器。
五、教学过程
1. 引入直线距离概念:通过实际生活中的例子引入直线距离的概念,引导学生思考什么是点到直线的距离。
2. 推导直线距离公式:通过几何推导,说明点(x1, y1)到直线Ax + By + C = 0的距离公式为
d = |Ax1 + By1 + C| / √(A^2 + B^2)。
3. 例题演练:讲解几个简单的例题,让学生掌握直线距离公式的应用方法。
4. 练习和讨论:让学生自行解决一些练习题,并对解题过程和结果进行讨论,加深对直线距离公式的理解和掌握。
5. 拓展应用:提供一些挑战性问题,让学生在实际场景中应用直线距离公式解决问题,拓展应用能力。
六、课堂小结
通过本节课的学习,学生应该理解并掌握了点到直线的距禋公式,能够应用这一公式解决实际问题。
同时,学生应当了解直线距离公式的推导过程,为以后的学习打下基础。
点到直线的距离公式教案

教案《点到直线的距离公式》一、教学目标1.知识教学点点到直线距离公式的推导思想方法及公式的简单应用.2.能力训练点培养学生数形结合能力,综合应用知识解决问题的能力、类比思维能力,训练学生由特殊到一般的思想方法.3.知识渗透点由特殊到一般、由感性认识上升到理性认识是人们认识世界的基本规律.二、教材分析1.重点:展示点到直线的距离公式的探求思维过程.2.难点:推导点到直线距离公式的方法很多,怎样引导学生数形结合,利用平面几何知识得到课本上给出的证法是本课的难点,可构造典型的、具有启发性的图形启发学生逐层深入地思考问题.3.疑点:点到直线的距离公式是在A ≠0、B ≠0的条件下推得的.事实上,这个公式在A=0或B=0时,也是成立的.三、活动设计启发、思考,由特殊特殊推导一般,逐步推进,讲练结合.四、教学过程(一)提出问题已知点P(x 0,y 0)和直线L :Ax+By+C=0,点的坐标和直线的方程确定后,它们的位置也就确定了,点到直线的距离也是确定的,怎样求点P 到直L 的距离呢?(二)构造特殊的点到直线的距离学生解决:思考题1:求点P(2,1)到直线L :x-y+1=0的距离.学生可能寻求到这几种解法:方法1:由定义求出垂足,转化为两点间距离求解。
方法2:利用最值结论,求两点距离最小值。
设M(x ,y)是l :x-y+1=0上任意一点,则d 2=22)1(2442)2()1()2(222222≥+-=+-=+-=-+-x x x x x y x当x=1时|PM|有最小值,这个值就是点P 到直线l 的距离.方法3:利用倾斜角解三角形。
直线x-y+1=0的倾角为45°。
在Rt △OPQ 中,|PQ|=|OP|也可过P 作y 轴的平行线交l 于S ,在Rt △PAS 中,|PO|=|PS|方法4:在上面图形基础上,也可利用三角形面积公式:过P 作x 轴的垂线交L 于S ,∵|OP|·|PS|=|OS|·|PQ|,(三)思考:若对一般情形,P(x 0,y 0)和直线L :Ax+By+C=0,你能否推导点到直线的距离公式?有以上的基本思路为基础,我们很快得到设A ≠0,B ≠0,直线L 的倾斜角为α,过点P 作PR ∥Ox , PR 与L 交于R(x 1,y 1)∵PR∥Ox ,∴y 1=y .代入直线L 的方程可得:当α<90°时(如图1-37甲),α1=α.当α>90°时(如图1-37乙),α1=π-α.∵α<90°,221||sin BA A +=α∴|PQ|=|PR|si n α1这样,我们就得到平面内一点P(x0,y0)到一条直线Ax+By+C=0的距离公式:如果A=0或B=0,上面的距离公式仍然成立,但这时不需要利用公式就可以求出距离.(四)例题例1 求点P 0(-1,2)到直线:(1)2x+y-10=0,(2)3x=2的距离.解:(1)根据点到直线的距离公式,得(2)因为直线3x=2平行于y 轴,所以例2.己知点A (1,3),B (3,1),C (-1,0)求△ABC 的面积。
点到直线的距离(教案)

点到直线的距离(教案)一、教学目标1. 了解点到直线的距离的概念。
2. 学习通过公式计算点到直线的距离。
二、教学重点1. 点到直线的距离的概念。
2. 学习公式计算点到直线的距离。
三、教学难点1. 点到直线的距离的公式推导及应用。
2. 学生如何转化题目,将点到直线的距离求出。
四、教学过程1. 导入新知小学二年级时,我们学习了点和直线的概念,但是你们是否知道点到直线的距离呢?现在我们就一起来看看点到直线的距离是什么,怎么计算它。
2. 提出问题如果有一条直线,上面标着两个点A和B,现在在这条直线下方,有一个点P,那么我们该怎么求出点P到直线AB的距离呢?3. 讲解点到直线的距离的概念点到直线的距离,是指点到直线的垂直距离。
下面我们来画一个图来帮助理解。
(画图)在图中,有一条直线上面标有两个点A和B,线下方有一个点P,它与直线的垂足为H,垂足线段PH就是点P 到直线AB的距离。
4. 引入公式我们可以设直线AB的斜率为k,那么垂线的斜率就是k的相反数(即-1/k)。
另外,已知点P(x1,y1),则直线PH的斜率为-1/k,过P的直线PH的方程为y-y1=-1/k(x-x1)。
由于垂线PH上任取一点M(x,y),则有PH垂直于AB,即:k·(-1/k) = -1-y1 + y = -1/k (x1-x)-y + kx + [y1 - kx1] = 0由此,我们得到了斜率为k,经过P点的垂线的方程。
下面再根据垂足H的坐标来求出PH的长度。
由于H在直线AB上,因此其坐标可由直线AB的方程求出。
直线AB的方程为y= kx + b,设垂点H的坐标为(xh,yh),则有:yh = kxh + b由于PH是垂线,所以PH的斜率为0, 因此PH的方程为y=y1,而由上文可知,PH的斜率为-1/k,因此直线PH和直线AB的交点C(即点H)的坐标为:xh = (x1 + ky1 - kx1/k)/(1+k^2)yh = (kx1 + k^2y1 - k^3x1/k^2 + y1)/ (1+k^2)由于线段AC与直线AB垂直,可以得到:PA = |y1 - kx1 - b| / sqrt(1+ k^2)其中,|y1 - kx1 - b|表示 y1 - kx1 - b的绝对值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3.3两条直线的位置关系―点到直线的距离公式
三维目标:
知识与技能:1.
理解点到直线距离公式的推导,熟练掌握点到直线的距离公式; 能力和方法: 会用点到直线距离公式求解两平行线距离
情感和价值:1。
认识事物之间在一定条件下的转化。
用联系的观点看问题
教学重点:点到直线的距离公式
教学难点:点到直线距离公式的理解与应用.
教学方法:学导式
教 具:多媒体、实物投影仪
教学过程 一、情境设置,导入新课:
前面几节课,我们一起研究学习了两直线的平行或垂直的充要条件,两直线的夹角公式,两直线的交点问题,两点间的距离公式。
逐步熟悉了利用代数方法研究几何问题的思想方法.这一节,我们将研究怎样由点的坐标和直线的方程直接求点P 到直线l 的距离。
用POWERPOINT 打出平面直角坐标系中两直线,进行移动,使学生回顾两直线的位置关系,且在直线上取两点,让学生指出两点间的距离公式,复习前面所学。
要求学生思考一直线上的计算?能否用两点间距离公式进行推导?
两条直线方程如下:
⎩⎨⎧=++=++00222111C y B x A C y B x A
.
二、讲解新课:
1.点到直线距离公式:
点
),(00y x P 到直线0:=++C By Ax l 的距离为:2200B A C By Ax d +++= (1)提出问题
在平面直角坐标系中,如果已知某点P 的坐标为),(00y x ,直线=0或B =0时,以上公式0:=++C By Ax l ,怎样用点的坐标和直线的方程直接求点P 到直线l 的距离呢? 学生可自由讨论。
(2)数行结合,分析问题,提出解决方案
学生已有了点到直线的距离的概念,即由点P 到直线l 的距离d 是点P 到直线l 的垂线段的长. 这里体现了“画归”思想方法,把一个新问题转化为 一个曾今解决过的问题,一个自己熟悉的问题。
画出图形,分析任务,理清思路,解决问题。
方案一:
设点P 到直线l 的垂线段为PQ ,垂足为Q ,由PQ ⊥l 可知,直线PQ 的斜率为A B (A ≠0),根据点斜式写出
直线PQ 的方程,并由l 与PQ 的方程求出点Q 的坐标;
由此根据两点距离公式求出|PQ |,得到点P 到直线l 的距离为d
此方法虽思路自然,但运算较繁.下面我们探讨别一种方法
方案二:设A ≠0,B ≠0,这时l 与x 轴、y 轴都相交,过点P 作x 轴的平行线,交l 于点
),(01y x R ;作y 轴的平行线,交l 于点),(20y x S ,
由⎩⎨⎧=++=++0020011C By Ax C By x A 得B C Ax y A C By x --=--=0201,.
所以,|P R|=|10x x -|=A C
By Ax ++00
|PS |=|20y y -|=B C
By Ax ++00
|RS |=
AB B A PS PR 2222+=
+×|C By Ax ++00|由三角形面积公式可知:d ·|
RS |=|P R|·|PS | 所以2200B A C By Ax d +++=
可证明,当A=0时仍适用
这个过程比较繁琐,但同时也使学生在知识,能力。
意志品质等方面得到了提高。
3.例题应用,解决问题。
例1 求点P=(-1,2)到直线 3x=2的距离。
解:
53=
例2已知点A (1,3),B (3,1),C (-1,0),求三角形ABC 的面积。
解:设AB 边上的高为h ,则
S ABC =12AB h ∙
AB ==
AB 边上的高h 就是点C 到AB 的距离。
AB 边所在直线方程为
311331y X --=--
即x+y-4=0。
点C 到X+Y-4=0的距离为h
h=2104
11-+-=+,
因此,S ABC
=152⨯=
通过这两道简单的例题,使学生能够进一步对点到直线的距离理解应用,能逐步体会用代数运算解决几何问题的优越性。
同步练习:114页第1,2题。
4.拓展延伸,评价反思。
(1) 应用推导两平行线间的距离公式
已知两条平行线直线1l 和2l 的一般式方程为1l :01=++C By Ax ,
2l :02=++C By Ax ,则1l 与2l 的距离为
2221B A C C d +-= 证明:设),(000y x P 是直线02=++C By Ax 上任一点,则点P0到直线01=++C By Ax 的距离为
221
00B A C By Ax d +++= 又 0200=++C By Ax
即200C By Ax -=+,∴d =222
1B A C C +-
01032=-+y x 的距离.
解法一:在直线1l 上取一点P(4,0),因为1l ∥2l
例 3 求两平行线1l :0832=-+y x ,2l :,所以点P 到2l 的距离等于1l 与2l 的距离.于是131321323210
034222==++⨯-⨯=d
解法二:1l ∥2l 又10,821-=-=C C .
由两平行线间的距离公式得133232)10(822=+---=
d
四、课堂练习:
已知一直线被两平行线3x+4y-7=0与3x+4y+8=0所截线段长为3。
且该直线过点(2,3),求该直线方程。
五、小结 :点到直线距离公式的推导过程,点到直线的距离公式,能把求两平行线的距离转化为点到直线的距离公式
六、课后作业:
13.求点P (2,-1)到直线2x +3y -3=0的距离.
14.已知点A (a ,6)到直线3x -4
y =2的距离d=4,求a 的值: 15.已知两条平行线直线1l 和2l 的一般式方程为1l :01=++C By Ax ,
2l :02=++C By Ax ,则1l 与2l 的距离为
2221B A C C d +-= 七.板书设计:略。