高功放设计与原理图
各类功放原理图及原理介绍

D类功放的原理在音响领域里人们一直坚守着A类功放的阵地。
认为A类功放声音最为清新透明,具有很高的保真度。
但是,A类功放的低效率和高损耗却是它无法克服的先天顽疾。
B 类功放虽然效率提高很多,但实际效率仅为50%左右,在小型便携式音响设备如汽车功放、笔记本电脑音频系统和专业超大功率功放场合,仍感效率偏低不能令人满意。
所以,效率极高的D类功放,因其符合绿色革命的潮流正受着各方面的重视。
由于集成电路技术的发展,原来用分立元件制作的很复杂的调制电路,现在无论在技术上还是在价格上均已不成问题。
而且近年来数字音响技术的发展,人们发现D类功放与数字音响有很多相通之处,进一步显示出D类功放的发展优势。
D类功放是放大元件处于开关工作状态的一种放大模式。
无信号输入时放大器处于截止状态,不耗电。
工作时,靠输入信号让晶体管进入饱和状态,晶体管相当于一个接通的开关,把电源与负载直接接通。
理想晶体管因为没有饱和压降而不耗电,实际上晶体管总会有很小的饱和压降而消耗部分电能。
这种耗电只与管子的特性有关,而与信号输出的大小无关,所以特别有利于超大功率的场合。
在理想情况下,D类功放的效率为100%,B类功放的效率为78.5%,A类功放的效率才50%或25%(按负载方式而定)。
D类功放实际上只具有开关功能,早期仅用于继电器和电机等执行元件的开关控制电路中。
然而,开关功能(也就是产生数字信号的功能)随着数字音频技术研究的不断深入,用与Hi-Fi音频放大的道路却日益畅通。
20世纪60年代,设计人员开始研究D 类功放用于音频的放大技术,70年代Bose公司就开始生产D类汽车功放。
一方面汽车用蓄电池供电需要更高的效率,另一方面空间小无法放入有大散热板结构的功放,两者都希望有D类这样高效的放大器来放大音频信号。
其中关键的一步就是对音频信号的调制。
图1是D类功放的基本结构,可分为三个部分:图1D类功放基本结构第一部分为调制器,最简单的只需用一只运放构成比较器即可完成。
功率放大器原理图

电路图中的放大电路发布:2011-8-30|作者:——|来源:caihuiliu|查看:482次|用户关注:电路图中的放大电路能够把微弱的信号放大的电路叫做放大电路或放大器。
例如助听器里的关键部件就是一个放大器。
放大电路的用途和组成放大器有交流放大器和直流放大器。
交流放大器又可按频率分为低频、中源和高频;接输出信号强弱分成电压放大、功率放大等。
此外还有用集成运算放大器和特殊晶体管作器件的放大器。
它是电子电路中最复杂多变的电路。
但初学者经常遇到的也只是少数几种较为典型的放大电路。
读放大电路图时也还是按照“电路图中的放大电路能够把微弱的信号放大的电路叫做放大电路或放大器。
例如助听器里的关键部件就是一个放大器。
放大电路的用途和组成放大器有交流放大器和直流放大器。
交流放大器又可按频率分为低频、中源和高频;接输出信号强弱分成电压放大、功率放大等。
此外还有用集成运算放大器和特殊晶体管作器件的放大器。
它是电子电路中最复杂多变的电路。
但初学者经常遇到的也只是少数几种较为典型的放大电路。
读放大电路图时也还是按照“逐级分解、抓住关键、细致分析、全面综合”的原则和步骤进行。
首先把整个放大电路按输入、输出逐级分开,然后逐级抓住关键进行分析弄通原理。
放大电路有它本身的特点:一是有静态和动态两种工作状态,所以有时往往要画出它的直流通路和交流通路才能进行分析;二是电路往往加有负反馈,这种反馈有时在本级内,有时是从后级反馈到前级,所以在分析这一级时还要能“瞻前顾后”。
在弄通每一级的原理之后就可以把整个电路串通起来进行全面综合。
下面我们介绍几种常见的放大电路。
低频电压放大器低频电压放大器是指工作频率在20赫~20千赫之间、输出要求有一定电压值而不要求很强的电流的放大器。
(1)共发射极放大电路图1(a)是共发射极放大电路。
C1是输入电容,C2是输出电容,三极管VT就是起放大作用的器件,RB是基极偏置电阻,RC是集电极负载电阻。
1、3端是输入,2、3端是输出。
第2章 高频功率放大器

t
图2.7 三种状态下的动特性及集电极电流波形
第2章 高频功率放大器
2.2.4
负载特性
负载特性是指当保持EC、EB、Ubm不变而改变Re时,谐 振功率放大器的电流IC0、Ic1m,电压Ucm,输出功率Po,集电 极损耗功率PC,电源功率PE及集电极效率ηC随之变化的曲 线。
iC iC iC iC
10
30
50
70
9 0 1 10 1 30 1 50 1 70
/°
图2.5 余弦脉冲分解系数与θ的关系曲线
波形系数:
a1 sin cos g1 a0 sin cos
第2章 高频功率放大器
2.2.2 动特性曲线--图解分析法 小信号电压放大器仅仅在放大区工作,负载是纯电阻, 因此可近似等效为一个线性元件。小信号电压放大器瞬时 工作点的轨迹就是负载线,是一条直线。 谐振功率放大器不是仅工作在线性区,各个区的特性曲 线方程不同,因此各个区域工作点的移动规律也不同,工 作点的轨迹就不是一条直线,所以瞬时工作点的轨迹称为
Uc=22.5V,试求:直流输入功率PE;集电极效率ηc;谐振电
阻Re;基波电流IC1m。 解:直流输入功率PE=Ico×Ec=6(w) 集电极效率ηc=Po/PE≈83% 谐振电阻Re=Uc2/2Po=50.6(Ω) 基波电流IC1m=Uc/Re ≈ 445(mA)
第2章 高频功率放大器
2.2 丙类谐振放大器的工作状态分析
1) 减小导通角; 2)减小导通角内的uCE。
第2章 高频功率放大器
在高频功率放大器中,提高集电极效率的同时,还应尽量 提高输出功率。因为
PC Po 1 1
(2.1―13)
C
用tda 7294 自己diy 功放设计 +原理图+pcb

近段时间比较闲没事做,就像自己捣鼓的功放玩玩,在学校时剩下有几块TDA7294 的功放块,我就想把它利用起来,,废话不多说现在就动手开始做吧,,从原理图到pcb 到实物焊接完成,,全手工制作,,希望大家能制作成功,,,,(原理图+和pcb是在网上找的,,pcb我自己与改动),,,音质不是一般的好,,,,当然这跟用料有关,,,开始吧,,上图
1.原理图(在网上找的这只是一半,另一半完全一样)
主功放部分
2.电源部分
3原理图用AD09 画的
4.AD09 PCB
5,用AD09 负面打印图(不能直接打印)
接下来开始做饭子,,把电路图打印在菲林纸上,,用感光法做pcb,,,有点基础都会做,,
上图实显影后的图,
上图是腐蚀铜箔后的图
上图为焊接后的实物图,,
这是带40w 8欧喇叭的侧试图
由于没有外壳用了个赛睿鼠标的盒子勉强放下呵呵,,到此就制作完成了
声音很纯美的,,,由于中间有些照片没拍到大家制作中遇到困难可以加我qq 免费指导,,,1094662454 呵呵呵再见吧。
高频功率放大器电路原理图

下面是[高频功率放大器电路原理图]的电路图高频功率放大器电路原理图为了在较宽的通带内使功率放大器增益相对稳定,电路由甲类、丙类两级功率放大器组成。
甲类功率放大器的输出信号作为丙类功率放大器的输入信号,丙类功率放大器作为发射机末级功率放大器以获得较大的输出功率和较高的效率。
电路原理如图1所示。
根据设计要求和晶体管实际参数,采用Philip s公司的NPN型高压晶体管2N5551作为放大管,三极管Q1、电感L1、电容C2组成甲类功率放大器,工作在线性放大状态。
三极管Q2和由电感L3、电容C7、C6构成的负载回路组成丙类功率放大器。
R1、R2、R3、R4 组成第1 级静态偏置电阻,调节R2、R3可改变放大器的增益。
L1、C2组成一级调谐回路,L2、R5、C4组成的部分在丙类功率放大器基极处产生负偏压馈电, R7为射级反馈电阻,调整R7 可改变丙类功率放大器的增益。
C6、C7、L3组成末级调谐回路, C6 用来微调谐振频率以获得最佳工作状态。
C8、C9和L4 组成滤波回路,起到改善波形的作用。
R9和C10、R11和C11以及R8和C12均为负载回路外接电阻。
集电极可选择连接不同的负载。
当基极输入的正弦信号频率取值在L1、C2 谐振频率附近时,集电极输出正弦信号电压增益最大。
C5为射级旁路电容,有效地控制了可能由于射级电阻R3、R4过大而引起电压增益下降的问题。
当甲类功率放大器输出信号大于丙类功率放大器三极管Q2的be间负偏压时, Q2才导通工作。
当L3、C7处谐振频率与从甲类功率放大器集电极获得的放大输出正弦信号的频率一致时,丙类功率放大器工作于谐振状态,集电极将获得最大的电压增益,达到功率放大的目的。
(责任编辑:电路图)。
第7讲_高频 功率放大器实际电路(完整版)

L1 C1 ' R1 ' C2 ' R2 '
2. 高频功放的耦合回路
高频功放都要采用一定的耦合回路,以使输出功率能有效地传 输到负载(下级输入回路或天线回路) 一般说来,放大器与负载 , 之间的耦合可采用下图所示的四端网络来表示。这个四端网络应完 成的任务是:
RS uS 输入 匹配 网络 功率 放大器 输出 匹配 网络 RL
这 种 电 路 能 自 动 维 持 C 大 器 的 工 作 稳 定 。B 放 E E
B B
CB 以上基极自给偏压电路中,前两个为并馈线路,后一种为串馈 线路。
U 在 实 际 应 用 中 ,由 于 基 极 馈 电 电 路 中 采 用 单 独 电 源 BB
通常采用自给偏压的方式提供基极偏置。
VT VT VT
在大功率输出级,T型、Π 型等滤波型的匹配网络就得到了广泛的应用。
L1
C2
R1
C1
C2
R2
R1
C1
L1
R2
(a)
两种Π型匹配网络
(b)
图中的R2一般代表终端(负载)电阻,R1则代表由R2折合到左端的等效 电阻,现以 (a)为例进行计算公式的推导 L1 将并联回路R1C1 与R2C2 变换为串联形式,由 C1 ' C2 ' 串、并联阻抗转换公式可得 2
R1
R2
R1 1 Q
X
2
2 1 2 c2
X
2
X c1
2 c1
2
R
2 1
R1
X C1 X C2
R1
R 1 X C1
2 2
X C1
R2
2
2 2
功率放大器的基本结构和工作原理

功率放大器的基本结构和工作原理功率放大器的基本结构和工作原理功率放大器的基本结构和工作原理扩音机是一种对声音信号进行放大的电子设备,其基本结构如图5-1所示,常分为前置放大器(简称前级)和功率放大器(简称后级)两大部分。
前置放大器通常由输人选择与均衡放大电路、等响音量控制电路、音调控制电路等组成,而功率放大器常由功率放大电路和扬声器保护电路组成。
扩音机工作时,输人选择电路主要对收音调谐器、录音座、CD唱机和Av辅助输入等信号源的信号进行选择切换控制,得出所需的信号输入,输入后的信号经均衡放大电路进行频率特性的校正和放大,使输入信号的频率特性变得较为平坦,同时使各种信号源输入的信号电平基本趋于一致,避免在转换不同的信号源时,声音响度出现较大的变化,影响使用效果。
均衡放大后的信号则由等响音量控制电路控制信号的强弱,从而调节音量的大小。
等响控制的目的主要是在音量较小时提升高、低频信号成分,以补偿人耳听觉的不足,在低响度时得到较丰满的声音信号。
而音调控制电路则主要是根据个人的喜好调节电路的频率特性,适当提升或衰减声音中的高、低频成分,以满足听音者的需求。
经前置放大器放大处理后的信号被送人功率放大器进行功率放大,以推动扬声器重放出声音。
扩音机中为了保护扬声器免受电路冲击电流的干扰,或在电路出现故障时烧毁扬声器,常在功率放大器中加入扬声器保护电路。
在高保真的音响设备中,扩音机常有两种组合结构形式,一种是把前置放大器和功率放大器组合在一起,称作合并式扩音机,这种形式把“前置”和“功放”合并在一起,这时由于小信号电压放大的前置级和大信号电流放大的功率放大在电性能上不能互相兼顾,因而不能使扩音机达到最佳的工作状态,特别是前、后级的电源馈电,电源变压器的电磁干扰,印制电路板的走线排列,共用地线的走向等方面总会存在一定的相互干扰,影响整机性能的提高。
另一形式是在设计制造上把前置放大器和功率放大器彻底分开,分别使用独立电源,单独的机壳,使前、后级之间互不干扰,形成前、后级分体式的结构,在使用时再把它们用信号传输线连接起来,这种分体式结构的扩音机可获得极高的性能指标。
功率放大器原理及电路图

s i n c
)
Icmax n
c
式中:(1) 0 c ,1c ,…,nc 称为尖顶余弦脉冲的分解系数。
一般可以根据 c 的数值查表求出各分解系数的值。
(2) Ico , I cm1 ,I cm2 ,…,Icmn 为直流及基波和各次谐波的振幅。
3. 高频功放的功率关系
(注意RP 为回路谐振阻抗)
ic 0
c
cos1
UBB UBZ Ubm
\ ic gc Ubm cost (U BB U BZ ) gc Ubm cost Ubm cosc gcUbm cost cosc
又 Q当 t 0 时, Icmax gcUbm1cosc
\
gcUbm
I c max 1 cosc
ub三 e动ma线x态所相特对交性的于曲静一线态点与特u征be曲max线所的对交的点静位态于特放征大曲区线。的交点位于饱
和区u此特c。em时 点in: :Uuucceecesmm晶iinn体 UU管cce的 ess ,工,作i晶范 c 体围为管在尖的放顶动大态 余区范和 弦围截脉延止冲伸 区。到 。饱和区。
AB(甲乙)类:导通角为 90 o B(乙)类:导通角为 90o C(丙)类:导通角为 90 o
近年来双出现了 D 类、E 类及 S 类等开关功率放大器
转移特性曲线
ic f uBE uCE 常 量
ic
饱和区
输出特性曲线
ic f uCE
iC
uBE 常 量
•Q
截止区
U BB
•
•
UBZ
uLui正半周时VT1管饱和导ω通t , VT2管截止,电源EC对电容C充 电,电容上的电压很快充至 ωt (EC-UCES1)值,A点对地的电 压uA=(EC-UCES1) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、高频谐振功率放大器电路设计与制作
1.设计要求
电路的主要技术指标:输出功率Po ≥125mW ,工作中心频率fo=6MHz ,η>65%, 已知:电源供电为12V ,负载电阻,R L =51Ω,晶体管用3DA1,其主要参数:P cm =1W,I cm =750mA,V CES =1.5V,f T =70MHz,hfe ≥10,功率增益Ap ≥13dB (20倍)。
(1)确定功放的工作状态
对高频功率放大器的基本要求是,尽可能输出大功率、高效率,为兼顾两者,通常选丙类且要求在临界工作状态,其电流流通角c θ在600—900范围。
现设c θ=700。
查表3-1得:集电极电流余弦脉冲直流I CO 分解系数00(70)0.25α=,集电极电流余弦脉冲基波I CM1分解系数,01(70)0.44α=。
设功放的输出功率为0.5W 。
功率放大器集电极的等效电阻为:
2
2()(12 1.5)11022(0.5)CES p o Vcc V R P W --===Ω
集电极基波电流振幅为:
195cm I mA ==
集电极电流脉冲的最大振幅为:
max 11/()95/0.44216c cm c I I mA mA αθ===
集电极电流脉冲的直流分量为:
max ()2160.2554co c o c I I mA αθ=⨯=⨯=
电源提供的直流功率为:12
540.65D CC CO P V I V mA w ==⨯= 集电极的耗散功率为:0.650.50.15C D o P P P w =-=-=
集电极的效率为:/0.5/0.6577%o D P P η=== (满足设计要求)
已知:13p A dB = 即20p A =
则:输入功率:/0.5/2025Pi Po Ap mV ===
基极余弦脉冲电流的最大值(设3DA1的β=10)
21.6Bm Icm I mA β==
基极基波电流的振幅为:011(70)9.5B m Bm I I mA α==
得基极输入的电压振幅为:12/ 5.3
Bm i B m V P I V == (2)基极偏置电路计算
因 cos E Z c Bm
V V V θ+= 则有 :0cos 5.3cos70 1.1E bm c Z V V V V θ=-== 因 E CO E V I R = 则有 :3/ 1.1/(5410)20E E co R V I -==⨯=Ω 取高频旁路电容pf C E 01.02=
(3)计算谐振回路与耦合线圈的参数
输出采用L 型匹配网路,110,51p L R R =Ω=Ω
2(1)p L L R Q R =+
1.076L Q === 20S
L L L Q R ω= 260 1.07651 1.462610
L L S Q R L H H μωπ⨯===⨯⨯ 22
11(1)(1) 1.46 2.72H 1.076p S L L L Q μ=+=+⨯= 则222261125944 3.146 2.7210
P C pF pF f L π-===⨯⨯⨯⨯ 匹配网路的电感L 为1.46H μ,电容C 为259pF 。
(4)电源去耦滤波元件选择
高频电路的电源去耦滤波网络通常采用π型LC 低通滤波器,滤波电感0可按经验取50~100μH ,滤波电感一般取0.01μF 。
综合上述设计,得参考电路如图3-10所示。