河北省衡水中学2020届高三下学期一调作文解析(“藏獒可以随便逗,但千万别惹鹦鹉”?)【附名师下水文】

合集下载

_语文丨衡水中学2023届高三下学期一调考试语文试卷及答案

_语文丨衡水中学2023届高三下学期一调考试语文试卷及答案

2022—2023衡水中学下学期高三年级一调考试语文本试卷共8页,总分150分,考试时间150分钟。

一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,17分)阅读下面的文字,完成1~5题。

材料一:中华文化有着上万年的文明发展历史,最深厚的经济基础在于农业。

中国传统节日也大多根源于中国古代的农耕文化。

据史籍记载,春节在唐虞时叫“载”,夏代叫“岁”,周代才叫“年”。

“载”“岁”“年”都是指谷作物生长周期,谷子一年一熟,所以春节一年一次,含有庆丰收的寓意。

清明节本是二十四节气之一,这时,我国大部分地区气候温暖,草木萌茂,农业上开始忙于春耕春种。

江南有农谚这样形容清明:“清明谷雨两相连,浸种耕种莫迟延”,“种树造林,莫过清明”。

另外关于中秋节的起源,有一种说法是秋报的遗俗,因为农历八月十五这一天恰好是稻子成熟的时刻,人们便在这一天饮酒舞蹈,喜气洋洋地庆祝丰收。

还有重阳节在陕北也是正式收割的时刻……故从传统节日的起源看,大多出于农耕目的,虽然在流传过程中,有些节日淡化了农耕印象,但传统节日起源于古代农耕文化这一点是毋庸置疑的。

传统节日文化可以增强人与自然的交融,促进人与人的情感联系。

中国传统节日大都是岁时节日。

岁时节日不仅在节期的选择上根源于自然界的征候,而且大都有为适应季节、气候、物候变化采取相应活动的节俗。

如清明万物复苏之期,人们户外踏青,感受大自然朝气蓬勃的生命力;重阳节时逢秋高气爽,人们登高远望,可在大自然里直抒胸臆。

同时,传统节日有着浓厚的人情味,几千年来已经成为维系中国社会人际关系的重要感情纽带,是人们表达内心情感的时机,有着协调、促进人际关系的功能。

在人情日渐冷漠的今日,传统节日无疑是“和谐人事”、沟通心灵的平台。

传统节日是民族生活中的典礼和仪式,是民族情感的激发器,其中充盈着亲情情结、敬祖意识、寻根情理、报本观念,最容易唤起对亲人、对故乡、对祖国的情感,唤起对民族文化的记忆、对民族精神的认同,唤起同宗同源的民族情、文化同根性的亲和力,从而最大限度地凝聚民心,抵制西方文化的冲击和渗透。

2020届河北省衡水中学高三下学期一调英语试题(教师版)

2020届河北省衡水中学高三下学期一调英语试题(教师版)

2019~2020学年度下学期高三年级一调考试英语试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。

注意事项:1.答题前,考生务必将自己的姓名、考号用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

3.二卷试题用黑色中性笔作答。

第一卷(选择题共90分)第一部分听力(共两节,满分20分)第一节听下面5段对话。

每段对话后有一个小题,从题中所给的的A、B、C三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题每段对话仅读一遍。

1. What does the woman play twice a week?A Tennis. B. Basketball. C. Football.2. What does the man mean?A. The woman is sitting in the seat.B. The woman should move her things.C. The woman shouldn't eat popcorn.3. What will the man do on Saturday?A. Order two movie tickets.B. Study at the library.C. Go to an exhibition.4. Where are the speakers probably?A. At a store.B. In a classroom.C. In an office.5. What is the man trying to do?A. Read the instruction book.B Find some batteries for the controllers. C. Watch something different on TV.第二节听下面5段对话或独白。

衡水中学2020年3月高三语文下册一调考试卷(含答案)

衡水中学2020年3月高三语文下册一调考试卷(含答案)

2019~2020学年度第二学期高三年级一调考试语文试卷一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。

《易经·系辞》称:“形而上者谓之道,形而下者谓之器。

”按照这个说法,诗词曲赋与琴棋书画等艺术门类都可归入无形的“道”的范畴,强调哲理和美学意义;而建筑与车舆、衣服、盆碗类似,属于有形的“器”的性质,注重实用性,兼顾审美,主要由匠人来制作,文人士大夫阶层极少直接参与。

由此导致中国古代建筑界虽然巨匠辈出,巧夺天工,取得极高的成就,却一直缺乏理论总结。

中国古代园林艺术相对得到主流阶层的追捧,出现了《园冶》《长物志》等理论名著,而在更广泛的建筑领域,相关学问备受冷落,虽然有宋代《营造法式》、清代《工程做法》等官书和明代《鲁班经》之类的民间著述传世,但数量远远不及西方,而且主要内容都偏于实际操作层面的记述,没有太多的理论探索,与西方古罗马《建筑十书》以及文艺复兴以来的建筑名著差异很大。

19世纪末叶以来,随着清朝的衰落和灭亡,中国受到西方政治、经济、文化、科技的全面冲击,传统建筑行业走向衰微,源自欧美的现代建筑材料、结构和形式逐渐在中国各地流行,使得拥有千年历史的华夏大地的城市面貌发生翻天覆地的变化。

时至今日,中国的建筑体系与世界其他国家完全趋同,与古代则大相径庭,广大建筑师对于传统的建筑技艺普遍感到生疏,绝大多数设计作品都近于西方建筑的翻版,失去了本土的文化基因。

在此情形之下,从20世纪初开始,一些中外建筑师努力尝试扭转这一趋势,在现代建筑中刻意表现“民族形式”,将传统建筑的造型与文化内涵融入新的建筑项目,如亨利·墨菲设计的燕京大学校园和吕彦直设计的中山陵。

以中国营造学社为代表的先贤致力于用现代的科学方法对中国古代建筑展开研究,梁思成、刘敦桢等学者四处考察测绘,搜集古籍,成果斐然。

经过几代人的艰难跋涉,对于中国现代“民族形式”的探索仍处于迷途之中,尚未找到相对圆满的解决之道。

2020届河北省衡水中学高三下学期一调考试数学理科试题(带答案解析)

2020届河北省衡水中学高三下学期一调考试数学理科试题(带答案解析)

○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________○…………内…………○…………装…………○…………订…………○…………线…………○………… 绝密★启用前 2020届河北省衡水中学高三下学期一调考试数学理科试题 试卷副标题 题号 一 二 三 总分 得分 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 评卷人 得分 一、单选题 1.已知全集U R =,集合{}22A y y x x R ==+∈,,集合(){}lg 1B x y x ==-,则阴影部分所示集合为( ) A .[]12, B .()12, C .(12], D .[12), 2.复数3a i z a i +=+-(其中a R ∈,i 为虚数单位),若复数z 的共轭复数的虚部为12-,则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.若2,,a a a a b a c a π-===,则,,a b c 的大小关系为( ) A .c b a >> B . b c a >> C .b a c >> D .a b c >> 4.函数2()1cos 1x f x x e ⎛⎫=- ⎪+⎝⎭图象的大致形状是( ) A . B .…………○………………○……C . D . 5.吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为( )A .15B .815C .35 D .3206.已知△ABC 外接圆的圆心为O ,若AB=3,AC=5,则AO BC u u u r u u u r ⋅的值是( )A .2B .4C .8D .167.给出下列五个命题:①若p q ∨为真命题,则p q ∧为真命题;②命题“0x ∀>,有1x e ≥”的否定为“00x ∃≤,有01x e <”;③“平面向量a v 与b v 的夹角为钝角”的充分不必要条件是“•0a b <v v ”;④在锐角三角形ABC 中,必有sin sin cos cos A B A B +>+;⑤{}n a 为等差数列,若()*,,,m n p q a a a a m n p q N +=+∈,则m n p q +=+其中正确命题的个数为( )A .1B .2C .3D .48.已知定义在()0,∞+上的函数()f x ,恒为正数的()f x 符合()()()'2f x f x f x <<,则()()1:2f f 的取值范围为( )A .(),2e eB .11,2e e ⎛⎫⎪⎝⎭ C .()3,e e D .211,e e ⎛⎫ ⎪⎝⎭9.已知点(0,2)A ,抛物线C :24y x =的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则:FM MN =( )A .2B .1:2C .1:D .1:3○…………装……学校:___________姓名:_○…………装……10.定义12n n p p p +++L 为n 个正数1p 、2p 、…、n p 的“均倒数”,若已知正整数列{}n a 的前n 项的“均倒数”为121n +,又14n n a b +=,则12231011111b b b b b b ++⋅⋅⋅+=( ) A .111 B .112 C .1011 D .1112 11.对于任意的实数[1,e]x ∈,总存在三个不同的实数[1,5]y ∈-,使得21ln 0y y xe ax x ---=成立,则实数a 的取值范围是( ) A .24251(,]e e e - B .4253[,)e e C .425(0,]e D .24253[,)e e e - 12.如图,在正方体1111ABCD A B C D ﹣中,1A H ⊥平面11AB D ,垂足为H ,给出下面结论: ①直线1A H 与该正方体各棱所成角相等; ②直线1A H 与该正方体各面所成角相等; ③过直线1A H 的平面截该正方体所得截面为平行四边形; ④垂直于直线1A H 的平面截该正方体,所得截面可能为五边形, 其中正确结论的序号为( ) A .①③ B .②④ C .①②④ D .①②③ 第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题 13.有一个底面圆的半径为1,高为2的圆柱,点12,O O 分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P ,则点P 到点12,O O 的距离都大于1的概率为___.○…………装……※※请※※不※※要※※在○…………装……14.在数列{a n }中,若函数f (x )=sin 2x cos 2x 的最大值是a 1,且a n =(a n +1﹣a n ﹣2)n ﹣2n 2,则a n =_____. 15.秦九韶是我国南宋著名数学家,在他的著作数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂余半之,自乘于上以小斜幂乘大斜幂减上,余四约之为实一为从隅,开平方得积”如果把以上这段文字写成公式就是S =,共中a 、b 、c 是△ABC 的内角A ,B ,C 的对边.若sin 2sin cos C A B =,且2b ,2,2c 成等差数列,则ABC V 面积S 的最大值为____ 16.过曲线22122:1(0,0)x y C a b a b -=>>的左焦点1F 作曲线2222:C x y a +=的切线,设切点为M ,延长1F M 交曲线23:2(0)C y px p =>于点N ,其中1,C 3C 有一个共同的焦点,若10MF MN +=u u u u r u u u u r r,则曲线1C 的离心率为________.三、解答题17.如图,在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,已知4c =,2b =,2cos c C b =,D ,E 分别为线段BC 上的点,且BD CD =,BAE CAE ∠=∠.(1)求线段AD 的长;(2)求ADE ∆的面积.18.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60,90DAB ADP ∠=︒∠=︒,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.………○………………线…………○……___________班级:____………○………………线…………○……(Ⅰ)在棱AB 上是否存在一点E ,使得AF P 平面PCE ,并说明理由; (Ⅱ)当二面角D FC B --的余弦值为时,求直线PB 与平面ABCD 所成的角. 19.如图,A 为椭圆22142x y +=的左顶点,过A 的直线l 交抛物线()220y px p =>于B 、C 两点,C 是AB 的中点. (1)求证:点C 的横坐标是定值,并求出该定值; (2)若直线m 过C 点,且倾斜角和直线l 的倾斜角互补,交椭圆于M 、N 两点,求p 的值,使得BMN ∆的面积最大. 20.某共享单车经营企业欲向甲市投放单车,为制定适宜的经营策略,该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷、整理分析及开座谈会三个阶段.在随机问卷阶段,A ,B 两个调查小组分赴全市不同区域发放问卷并及时收回;在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15至45岁的人群,按比例随机抽取了300份,进行了数据统计,具体情况如下表:(1)先用分层抽样的方法从上述300人中按“年龄是否达到35岁”抽出一个容量为60人的样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体数分配到“经常使用单车”和“偶尔使用单车”中去. ①求这60人中“年龄达到35岁且偶尔使用单车”的人数;②为听取对发展共享单车的建议,调查组专门组织所抽取的“年龄达到35岁且偶尔使用单车”的人员召开座谈会.会后共有3份礼品赠送给其中3人,每人1份(其余人员仅赠送骑行优惠券).已知参加座谈会的人员中有且只有4人来自A 组,求A 组这4人中得到礼品的人数X 的分布列和数学期望;(2)从统计数据可直观得出“是否经常使用共享单车与年龄(记作m 岁)有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,年龄m 应取25还是35?请通过比较2K 的观测值的大小加以说明.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.21.已知函数2()1x f x e ax bx =---,其中,a b R ∈, 2.71828e =L 为自然对数的底数.(Ⅰ)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]上的最小值;(Ⅱ)若(1)0f =,函数()f x 在区间(0,1)内有零点,求a 的取值范围22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线1l 过原点且倾斜角为02παα⎛⎫< ⎪⎝⎭….以坐标原点O 为极点,x 轴正半轴为极轴建立坐标系,曲线2C 的极坐标方程为2cos ρθ=.在平面直角坐标系xOy 中,曲线2C 与曲线1C 关于直线y x =对称.(Ⅰ)求曲线2C 的极坐标方程;(Ⅱ)若直线2l 过原点且倾斜角为3πα+,设直线1l 与曲线1C 相交于O ,A 两点,直23.已知函数()121f x ax x =++- (1)当1a =时,求不等式()3f x >的解集; (2)若02a <<,且对任意x ∈R ,3()2f x a≥恒成立,求a 的最小值.参考答案1.B【解析】试题分析:由函数222≥+=x y ,得到),2[+∞=A ,由函数)1lg(-=x y ,得到01>-x ,即1>x ,),1(+∞=B ;Θ全集R U =,)2,(-∞=∴B C U 则)2,1(=B C A U I .所以B 选项是正确的.考点:集合的运算.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.2.A【解析】【分析】先化简复数z ,再求得其共轭复数,令其虚部为12-,解得2a =,代入求解即可. 【详解】 由题意得()()()()()331313331010a i i a i a i a z a a i i i ++++-=+=+=+--+, ∴()31311010a i a z +-=-,又复数z 的共轭复数的虚部为12-, ∴31102a +=,解得2a =. ∴5122z i =+,∴复数z 在复平面内对应的点位于第一象限. 故选A. 【点睛】本题考查了复数的乘法运算,考查了复数的基本概念及复数的几何意义,属于基础题. 3.B【解析】分析:首先确定a 的范围,然后结合指数函数的单调性整理计算即可求得最终结果. 详解:由题意可知:()2210,1a ππ-==∈,即1a < 函数()x f x a =单调递减,则1a a a >,即a a a >,由于a a a >,结合函数的单调性可得:aa a a a <,即bc >,由于01a <<,故1a a <,结合函数的单调性可得:1a a a a >,即c a >, 综上可得:,,a b c 的大小关系为b c a >> .本题选择B 选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法. 在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.4.B【解析】【分析】判断函数()f x 的奇偶性,可排除A 、C ,再判断函数()f x 在区间0,2π⎛⎫ ⎪⎝⎭上函数值与0的大小,即可得出答案.【详解】 解:因为21()1cos cos 11x x x e f x x x e e ⎛⎫-⎛⎫=-= ⎪ ⎪++⎝⎭⎝⎭, 所以()()111()cos cos cos 111x x xx x x e e e f x x x x f x e e e --⎛⎫----=-===- ⎪+++⎝⎭, 所以函数()f x 是奇函数,可排除A 、C ; 又当0,2x π⎛⎫∈ ⎪⎝⎭,()0f x <,可排除D ; 故选:B.【点睛】本题考查函数表达式判断函数图像,属于中档题. 5.D 【解析】 【分析】“口香糖吃完时还剩2支香烟”即第四次取到的是口香糖且前三次有两次口香糖一次香烟,根据古典概型计算出其概率即可. 【详解】由题:“口香糖吃完时还剩2支香烟”说明:第四次取到的是口香糖,前三次中恰有两次口香糖一次香烟,记香烟为123,,A A A ,口香糖为123,,B B B ,进行四次取物, 基本事件总数为:6543360⨯⨯⨯=种事件“口香糖吃完时还剩2支香烟”前四次取物顺序分为以下三种情况: 烟、糖、糖、糖:332118⨯⨯⨯=种 糖、烟、糖、糖: 332118⨯⨯⨯=种 糖、糖、烟、糖:323118⨯⨯⨯=种 包含的基本事件个数为:54, 所以,其概率为54336020= 故选:D 【点睛】此题考查古典概型,解题关键在于弄清基本事件总数,和某一事件包含的基本事件个数,其本质在于计数原理的应用. 6.C 【解析】 【分析】可画出图形,并将O 和AC 中点D 相连,O 和AB 的中点E 相连,从而得到,OD AC OE AB ^^,根据数量积的计算公式及条件可得出259·,?22AO AC AO AB ==u u u r u u u r u u u r u u u r ,而()AO BC AO AC AB ⋅=⋅-u u u r u u u r u u u r u u u r u u u r ,即可得出AO BC ⋅u u u r u u u r的值.【详解】如图,取AC 中点D,AB 中点E,并连接OD,OE,则,OD AC OE AB ^^;∴ 2212519·,?2222AO AC AC AO AB AB ====u u u r u u u r u u u r u u u r u u u r u u u r∴ ()259822AO BC AO AC AB AO AC AO AB ⋅=⋅-=⋅-⋅=-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r故选C.【点睛】解题的关键是要熟练的运用数量积的公式cos a b a b θ⋅=r rr r 以及三角形法则.7.A 【解析】 【分析】根据或命题与且命题的性质判断①;根据全称命题否定的定义判断②;根据“ •0a b <vv ,夹角有可能为π判断③;由2A B π+>,利用正弦函数的单调性判断④;根据特例法判断⑤.【详解】对于①,若p q ∨为真命题,则p 与 q 中至少有一个为真命题, p q ∧ 不一定为真命题,故错误.对于②,命题“:0p x ∀>,有1x e ≥”,则p ⌝为00x ∃>,有01x e < ,故错误. 对于③, 若 •0a b <vv 平面向量a v,b v的夹角为可能为π,故错误. 对于④,在锐角三角形ABC 中,必有02A B π<+<,即,22A B B A ππ>->-,所以sin cos sin cos A B B A ,>>,所以sin sin cos cos A B A B +>+,故正确;对于⑤,在等差数列{}n a 中,若,n a t t =为常数,则1234a a a a +=+满足,()*,,,m n p q a a a a m n p q N +=+∈,但是1234+=+不成立,即m n p q +=+ 不成立,故错误,故选A.【点睛】本题通过对多个命题真假的判断,综合考查逻辑联接词的应用、全称命题的否定、向量的数量积、正弦函数的单调性以及等差数列的性质,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题. 8.D 【解析】 令()()()()2,xxf x f xg xh x ee==,则()()()2'2'0xf x f x h x e-=<,()()()''0xf x f xg x e-=>,()()()()12,12g g h h ∴,()()()()()()22421212111,,2f f f f f e e e e e f e∴∴<<,选D .【方法点睛】利用导数研究函数的单调性、构造函数比较大小,属于难题.联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数. 9.C 【解析】 【分析】求出抛物线C 的焦点F 的坐标,从而得到AF 的斜率k =-2.过M 作MP ⊥l 于P ,根据抛物线物定义得|FM |=|PM |.Rt △MPN 中,根据tan ∠NMP =﹣k =2,从而得到|PN |=2|PM |,进而算出|MN |=PM |,由此即可得到|FM |:|MN |的值.【详解】∵抛物线C :y 2=4x 的焦点为F (1,0),点A 坐标为(0,2), ∴抛物线的准线方程为l :x =﹣1,直线AF 的斜率为k =﹣2,过M 作MP ⊥l 于P ,根据抛物线物定义得|FM |=|PM |, ∵Rt △MPN 中,tan ∠NMP =﹣k =2, ∴PN PM=2,可得|PN |=2|PM |,得|MN|==|PM |,因此可得|FM |:|MN |=|PM |:|MN |=1故选C .【点睛】本题给出抛物线方程和射线F A ,求线段的比值,着重考查了直线的斜率、抛物线的定义、标准方程和简单几何性质等知识,属于中档题. 10.C 【解析】 【分析】由已知得()1221n n a a a n n S +++=+=L ,求出n S 后,利用当2n ≥时,1n n n a S S -=- 即可求得通项n a ,最后利用裂项法即可求和. 【详解】 由已知得12121n n a a n a =++++L ,∴()1221n n a a a n n S +++=+=L ,当2n ≥时,141n n n a S S n -=-=-,验证知当1n =时也成立,14n n a b n +∴==, 11111n n b b n n +∴=-⋅+,12231011111111111110122334101111b b b b b b ⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅+=-+-+-+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∴L 故选:C 【点睛】本题是数列中的新定义,考查了n S 与n a 的关系、裂项求和,属于中档题. 11.B 【解析】 【分析】 原方程化为21ln yx y ea x -=+,令()[]ln ,1,x f x a x e x=+∈,令()[]21,1,5yg y y e y -=∈-,可得()1,f x a a e ⎡⎤∈+⎢⎥⎣⎦,利用导数研究函数()g y 的单调性,利用数形结合可得41254,,a a e e e ⎡⎤⎡⎤+⊆⎢⎥⎢⎥⎣⎦⎣⎦,得到关于a 不等式组,解出即可. 【详解】0x ≠Q ,∴原式可化为21ln y xy e a x-=+, 令()[]ln ,1,x f x a x e x =+∈时()()1ln '0,xf x f x x -=≥递增, 故()1,f x a a e ⎡⎤∈+⎢⎥⎣⎦,令()[]21,1,5yg y y e y -=∈-,故()()1211'22yy y g y y ey e y y e ---=⋅-=-,故()g y 在()1,0-上递减,在()0,2上递增,在()2,5上递减, 而()()()()244251,00,2,5g e g g g e e-====, 要使总存在三个不同的实数[]1,5y ∈-,使得21ln 0yy xe ax x ---=成立,即41254,,a a e e e ⎡⎤⎡⎤+⊆⎢⎥⎢⎥⎣⎦⎣⎦,故42514a e a e e ⎧≥⎪⎪⎨⎪+<⎪⎩,故4253a e e ≤<,实数a 的取值范围是4253,e e ⎡⎫⎪⎢⎣⎭,故选B. 【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道综合题. 转化与划归思想解决高中数学问题的一种重要思想方法,运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.解答本题的关键是将问题转化为41254,,a a e e e ⎡⎤⎡⎤+⊆⎢⎥⎢⎥⎣⎦⎣⎦. 12.D 【解析】 【分析】由A 1C ⊥平面AB 1D 1,直线A 1H 与直线A 1C 重合,结合线线角和线面角的定义,可判断①②;由四边形A 1ACC 1为矩形,可判断③;由垂直于直线A 1H 的平面与平面AB 1D 1平行,可判断④. 【详解】如图,在正方体ABCD ﹣A 1B 1C 1D 1中,A 1H ⊥平面AB 1D 1,垂足为H ,连接A 1C ,可得A 1C ⊥AB 1,A 1C ⊥AD 1,即有A 1C ⊥平面AB 1D 1, 直线A 1H 与直线A 1C 重合,直线A 1H 与该正方体各棱所成角相等,均为直线A 1H 与该正方体各面所成角相等,均为,故②正确; 过直线A 1H 的平面截该正方体所得截面为A 1ACC 1为平行四边形,故③正确; 垂直于直线A 1H 的平面与平面AB 1D 1平行,截该正方体, 所得截面为三角形或六边形,不可能为五边形.故④错误. 故选:D . 【点睛】本题考查线线角和线面角的求法,以及正方体的截面的形状,考查数形结合思想和空间想象能力,属于中档题. 13.13【解析】 【详解】到点12,O O 距离为1的点是半径为1的球面,所以所求概率为431=1-23=1V P V ππ=-球柱14.a n =2n 2+n 【解析】 【分析】()sin 223sin(2)f x x x x ϕ=+=+,可得13a =.由已知条件推出121n na a n n+-=+,然后求解数列的通项公式. 【详解】解:()sin 223sin(2)f x x x x ϕ=+=+, 当222x k πϕπ+=+,k Z ∈,()f x 取得最大值3,13a ∴=.21(2)2n n n a a a n n +=---,21(1)22n n na n a n n +∴=+++,121n na a n n+-=+, n a n ⎧⎫∴⎨⎬⎩⎭是以131a =为首项,2为公差的等差数列,()321na n n∴=+- 2[32(1)]2n a n n n n ∴=+-=+, 故答案为:22n n +. 【点睛】本题考查了数列递推关系、三角函数求值、法则求积,考查了推理能力与计算能力,属于中档题.15 【解析】 【分析】运用正弦定理和余弦定理可得a b =,再由等差数列中项性质可得2224a b c ==-,代入三角形的面积公式,配方,结合二次函数的最值求法,可得所求最大值. 【详解】sin 2sin cos C A B =,∴2cos c a B =,因此2222,2a c b c a a b ac+-=⨯=∵2b ,2,2c 成等差数列,∴224b c +=,因此S ===当285c =,即c =时,S 取得最大值12=,即ABC V 面积S . 【点睛】本题考查三角形的正弦定理、余弦定理和面积公式,以及等差数列中项性质,转化为求二次函数的最值是解题的关键,属于中档题.16 【解析】 【分析】设双曲线的右焦点为2F ,根据曲线1C 与3C 有一个共同的焦点,得到抛物线方程, 再根据O 为12F F 的中点,M 为1F N 的中点,利用中位线定理,可得,2//OM NF ,22NF a =,21NF NF ⊥, 12NF b =.设(),N x y ,根据抛物线的定义可得2,2x c a x a c +=∴=-,过1F 点作x 轴的垂线,点(),N x y 到该垂线的距离为2a ,然后在1ANF ∆中,利用勾股定理求解. 【详解】 如图所示:设双曲线的右焦点为2F ,则2F 的坐标为(),0c , 因为曲线1C 与3C 有一个共同的焦点, 所以24y cx =,因为O 为12F F 的中点,M 为1F N 的中点, 所以OM 为12NF F ∆的中位线, 所以2//OM NF ,因为OM a =,所以22NF a = 又21NF NF ⊥,22,FF c = 所以12NF b =.设(),N x y ,则由抛物线的定义可得2,2x c a x a c +=∴=-,过1F 点作x 轴的垂线,点(),N x y 到该垂线的距离为2NA a =, 在1ANF ∆中,由勾股定理即得22244y a b +=, 即()()2224244c a c a c a-+=-,即210e e --=,解得e =.故答案为:12【点睛】本题主要考查双曲线和抛物线的几何性质,还考查了数形结合的思想和运算求解的能力,属于中档题. 17.(1)AD =2【解析】试题分析:(I )在△ABC 中,利用余弦定理计算BC ,再在△ACD 中利用余弦定理计算AD ;(II )根据角平分线的性质得到2ABE ACE S AB S AC ∆∆==,又ABE ACE S BE S EC ∆∆=,所以2BE EC=,所以1433CE BC ==,42233DE =-=,再利用正弦形式的面积公式即可得到结果. 试题解析:(1)因为4c =,2b =,所以1cos 24b Cc ==. 由余弦定理得22224161cos 244a b c a C ab a +-+-===,所以4a =,即4BC =,在ACD ∆中,2CD =,2AC =,所以2222cos 6AD AC CD AC CD ACD =+-⋅⋅∠=,所以AD =(2)因为AE 是BAC ∠的平分线,所以1sin 221sin 2ABE ACEAB AE BAES AB S AC AC AE CAE ∆∆⋅⋅∠===⋅⋅∠,又ABE ACE S BE S EC ∆∆=,所以2BE EC=, 所以1433CE BC ==,42233DE =-=, 又因为1cos 4C =,所以sin C ==,所以1sin 2ADE S DE AC C ∆=⨯⨯⨯=18.(1)见解析(2)60︒ 【解析】 【分析】(Ⅰ)取PC 的中点Q ,连结EQ 、FQ ,得到故//AE FQ 且AE FQ =,进而得到//AF EQ ,利用线面平行的判定定理,即可证得//AF 平面PEC .(Ⅱ)以D 为坐标原点建立如图空间直角坐标系,设FD a =,求得平面FBC 的法向量为m v,和平面DFC 的法向量n v,利用向量的夹角公式,求得a =进而得到PBD ∠为直线PB 与平面ABCD 所成的角,即可求解. 【详解】(Ⅰ)在棱AB 上存在点E ,使得//AF 平面PCE ,点E 为棱AB 的中点. 理由如下:取PC 的中点Q ,连结EQ 、FQ ,由题意,//FQ DC 且12FQ CD =, //AE CD 且12AE CD =,故//AE FQ 且AE FQ =.所以,四边形AEQF 为平行四边形.所以,//AF EQ ,又EQ ⊥平面PEC ,AF ⊥平面PEC ,所以,//AF 平面PEC . (Ⅱ)由题意知ABD ∆为正三角形,所以ED AB ⊥,亦即ED CD ⊥,又90ADP ∠=︒,所以PD AD ⊥,且平面ADP ⊥平面ABCD ,平面ADP ⋂平面ABCD AD =,所以PD ⊥平面ABCD ,故以D 为坐标原点建立如图空间直角坐标系,设FD a =,则由题意知()0,0,0D ,()0,0,F a ,()0,2,0C,)B,()0,2,FC a =-u u u v,)1,0CB =-u u u v ,设平面FBC 的法向量为(),,m x y z =v,则由00m FC m CB ⎧⋅=⎨⋅=⎩u u u v v u u u v v得200y az y -=⎧⎪-=,令1x =,则y =z a =,所以取m ⎛= ⎝⎭v,显然可取平面DFC 的法向量()1,0,0n =v,由题意:cos ,4m n ==v v,所以a =由于PD ⊥平面ABCD ,所以PB 在平面ABCD 内的射影为BD , 所以PBD ∠为直线PB 与平面ABCD 所成的角, 易知在Rt PBD ∆中,tan PDPBD a BD∠===,从而60PBD ∠=︒, 所以直线PB 与平面ABCD 所成的角为60︒. 【点睛】本题考查了立体几何中的面面垂直的判定和直线与平面所成角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成,着重考查了分析问题和解答问题的能力.19.(1)证明见解析,定值1. (2) 928p = 【解析】 【分析】(1)由题意可求()2,0A -,设()11,B x y 、()22,C x y ,l :2x my =-,联立直线与抛物线,利用C 是AB 的中点得122y y =,计算可得点C 的横坐标是定值; (2)由题意设直线m 的方程为213pm x m y ⎛⎫=--+ ⎪⎝⎭,联立方程,利用C 是AB 的中点,可得BMN AMN S S ∆∆=,根据三角形的面积公式以及基本不等式可求BMN ∆的面积最大值,由取等条件解得p 的值. 【详解】(1)()2,0A -,过A 的直线l 和抛物线交于两点,所以l 的斜率存在且不为0,设l :2x my =-,其中m 是斜率的倒数,设()11,B x y 、()22,C x y ,满足222x my y px =-⎧⎨=⎩,即2240y pmy p -+=,>0∆且121224y y pmy y p+=⎧⎨=⎩,因为C 是AB 中点,所以122y y =,所以223pm y =,292m p =,所以222222133pm p x m m =⋅-=-=,即C 点的横坐标为定值1. (2)直线m 的倾斜角和直线l 的倾斜角互补,所以m 的斜率和l 的斜率互为相反数.设直线m 为213pm x m y ⎛⎫=--+ ⎪⎝⎭,即4x my =-+,联列方程224240x my x y =-+⎧⎨+-=⎩得()2228120m y my +-+=, ()()222848216960m m m ∆=-+=->,所以26m >;且12212282122m y y m y y m ⎧+=⎪⎪+⎨⎪=⎪+⎩,∵点C 是AB 中点,∴BMN AMN S S ∆∆=, 设()2,0A -到MN的距离d =,12MN y =-,12132AMNS MN d y y ∆=⋅⋅=-=26t m =-,AMN S ∆==≤=8t =,214m =时取到, 所以9142p =,928p =. 法二:因为B 点在抛物线()220y px p =>上,不妨设2,2t B t p ⎛⎫⎪⎝⎭,又C 是AB 中点,则24,42t p t C p ⎛⎫- ⎪⎝⎭,代入抛物线方程得:224224t t p p p -⎛⎫=⋅ ⎪⎝⎭,得:28t p =,∴8414C p px p-==为定值. (2)∵直线l 的斜率()02126t t k -==--,直线m 斜率'6t k =-, ∴直线m 的方程:()126t t y x -=--,即64x y t =-+,令6m t=代入椭圆方程整理得: ()2228120my my +-+=,设()11,B x y 、()22,C x y ,下同法一.【点睛】本题考查直线的方程和抛物线方程联立,注意运用椭圆的顶点坐标,运用韦达定理以及点到直线的距离公式,考查三角形的面积的最值求法,化简整理的运算能力,属于中档题. 20.(1) ①9人 ②见解析;(2) 25m = 【解析】 【分析】(1)①根据分层抽样要求,先求从300人中抽取60人,其中“年龄达到35岁”的人数60100300⋅,再求“年龄达到35岁” 中偶尔使用单车的人数4520100⋅; ②确定随机变量X 的取值,计算X 各个取值的概率,得分布列及数学期望.(2)对年龄m 是否达到35,m 是否达到25对数据重新整理(2⨯2联表),根据公式计算相应的2K ,比较大小确定.【详解】(1)①从300人中抽取60人,其中“年龄达到35岁”的有6010020300⨯=人,再将这20人用分层抽样法按“是否经常使用单车”进行名额划分,其中“年龄达到35岁且偶尔使用单车”的人数为45209100⨯=. ②A 组这4人中得到礼品的人数X 的可能取值为0,1,2,3,相应概率为:()35395042C P X C ===,()12453910121C C P X C ===, ()2145395214C C P X C ===,()34391321C P X C ===.故其分布列为∴()5105140123422114213E X =⨯+⨯+⨯+⨯=. (2)按“年龄是否达到35岁”对数据进行整理,得到如下列联表:35m =时,由(1)中的列联表,可求得2K 的观测值 ()22130012545755530015002520010018012020010018012016k ⨯⨯-⨯⨯===⨯⨯⨯⨯⨯⨯.25m =时,按“年龄是否达到25岁”对数据进行整理,得到如下列联表:可求得2K 的观测值()22230067871133330021004920010018012020010018012016k ⨯⨯-⨯⨯===⨯⨯⨯⨯⨯⨯. ∴21k k >,欲使犯错误的概率尽可能小,需取25m =. 【点睛】本题考查分层抽样和独立性检验,随机变量的分布列及数学期望,考查统计知识理解掌握水平、对数据的处理能力及分析推理解决实际问题的能力. 21.(Ⅰ)当12a ≤时,()(0)1g x g b ≥=-;当122ea <≤时,()22ln(2)g x a a ab ≥--; 当2ea >时,()2g x e a b ≥--.(Ⅱ)a 的范围为(0,1). 【解析】试题分析:(Ⅰ)易得()2,()2xxg x e ax b g x e a -='=--,再对分a 情况确定()g x 的单调区间,根据()g x 在[0,1]上的单调性即可得()g x 在[0,1]上的最小值.(Ⅱ)设0x 为()f x 在区间(0,1)内的一个零点,注意到(0)0,(1)0f f ==.联系到函数的图象可知,导函数()g x 在区间0(0,)x 内存在零点1x ,()g x 在区间0(),1x 内存在零点2x ,即()g x 在区间(0,1)内至少有两个零点. 由(Ⅰ)可知,当12a ≤及2ea ≥时,()g x 在(0,1)内都不可能有两个零点.所以122ea <<.此时,()g x 在[0,ln 2]a 上单调递减,在[ln 2,1]a 上单调递增,因此12(0,ln(2)],(ln(2),1)x a x a ∈∈,且必有(0)10,(1)20gb g e a b =->=-->.由(1)10f e a b =---=得:1b e a =--,代入这两个不等式即可得a 的取值范围.试题解答:(Ⅰ)()2,()2x xg x e ax b g x e a -='=-- ①当0a ≤时,()20x g x e a -'=>,所以()(0)1g x g b ≥=-. ②当0a >时,由()20x g x e a -'=>得2,ln(2)x e a x a >>.若12a >,则ln(2)0a >;若2ea >,则ln(2)1a >. 所以当102a <≤时,()g x 在[0,1]上单调递增,所以()(0)1g x gb ≥=-.当122ea <≤时,()g x 在[0,ln 2]a 上单调递减,在[ln 2,1]a 上单调递增,所以()(ln 2)22ln 2g x g a a a ab ≥=--.当2ea >时,()g x 在[0,1]上单调递减,所以()(1)2g x g e a b ≥=--. (Ⅱ)设0x 为()f x 在区间(0,1)内的一个零点,则由0(0)()0f f x ==可知, ()f x 在区间0(0,)x 上不可能单调递增,也不可能单调递减.则()g x 不可能恒为正,也不可能恒为负. 故()g x 在区间0(0,)x 内存在零点1x . 同理()g x 在区间0(),1x 内存在零点2x . 所以()g x 在区间(0,1)内至少有两个零点. 由(Ⅰ)知,当12a ≤时,()g x 在[0,1]上单调递增,故()g x 在(0,1)内至多有一个零点. 当2ea ≥时,()g x 在[0,1]上单调递减,故()g x 在(0,1)内至多有一个零点. 所以122e a <<.此时,()g x 在[0,ln 2]a 上单调递减,在[ln 2,1]a 上单调递增, 因此12(0,ln(2)],(ln(2),1)x a x a ∈∈,必有(0)10,(1)20g b g e a b =->=-->.由(1)10f e a b =---=得:12a b e +=-<,有(0)120,(1)210g b a e g e a b a =-=-+>=--=->.解得21e a -<<.当21e a -<<时,()g x 在区间[0,1]内有最小值(ln(2))g a . 若(ln(2))0g a ≥,则()0([0,1])g x x ≥∈,从而()f x 在区间[0,1]上单调递增,这与(0)(1)0f f ==矛盾,所以(ln(2))0g a <. 又(0)20,(1)10g a e g a =-+>=->,故此时()g x 在(0,ln(2))a 和(ln(2),1)a 内各只有一个零点1x 和2x .由此可知()f x 在1[0,]x 上单调递增,在1(,x 2)x 上单调递减,在2[,1]x 上单调递增. 所以1()(0)0f x f >=,2()(1)0f x f <=, 故()f x 在1(,x 2)x 内有零点.综上可知,a 的取值范围是(2,1)e -. 【考点定位】导数的应用及函数的零点.22.(Ⅰ) 2sin ρθ= (Ⅱ) +324【解析】 【分析】(Ⅰ)法一:将1C 化为直角坐标方程,根据对称关系用2C 上的点表示出1C 上点的坐标,代入1C 方程得到2C 的直角坐标方程,再化为极坐标方程;法二:将y x =化为极坐标方程,根据对称关系将1C 上的点用2C 上的点坐标表示出来,代入1C 极坐标方程即可得到结果;(Ⅱ)利用1l 和2l 的极坐标方程与12,C C 的极坐标方程经,A B 坐标用α表示,将所求面积表示为与α有关的三角函数解析式,通过三角函数值域求解方法求出所求最值. 【详解】(Ⅰ)法一:由题可知,1C 的直角坐标方程为:2220x y x +-=, 设曲线2C 上任意一点(),x y 关于直线y x =对称点为()00,x y ,所以00x y y x =⎧⎨=⎩又因为2200020x y x +-=,即2220x y y +-=,所以曲线2C 的极坐标方程为:2sin ρθ= 法二:由题可知,y x =的极坐标方程为:4πθ= ()R ρ∈,设曲线2C 上一点(),ρθ关于4πθ=()R ρ∈的对称点为()00,ρθ,所以0024ρρθθπ=⎧⎪⎨+=⎪⎩又因为002cos ρθ=,即2cos 2sin 2πρθθ⎛⎫=-=⎪⎝⎭, 所以曲线2C 的极坐标方程为:2sin ρθ=(Ⅱ)直线1l 的极坐标方程为:θα=,直线2l 的极坐标方程为:3πθα=+设()11,A ρθ,(),B ρθ22所以2cos θαρθ=⎧⎨=⎩解得12cos ρα=,32sin πθαρθ⎧=+⎪⎨⎪=⎩解得22sin 3πρα⎛⎫=+ ⎪⎝⎭1211sin sin sin cos 23322AOB S ππρρααααα∆⎛⎫⎛⎫∴=⋅=⋅+=⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭23πααα⎛⎫=+=++ ⎪⎝⎭因为:02πα≤<,所以42333πππα≤+<当232ππα+=即12πα=时,sin 213πα⎛⎫+= ⎪⎝⎭,AOB S ∆34【点睛】本题考查轨迹方程的求解、三角形面积最值问题的求解,涉及到三角函数的化简、求值问题.求解面积的关键是能够明确极坐标中ρ的几何意义,从而将问题转化为三角函数最值的求解.23.(1)(,1)(1,)-∞-+∞U ;(2)1. 【解析】 【分析】(1) 当1a =时,求出分段函数()3,112,1213,2x x f x x x x x ⎧⎪-<-⎪⎪=-+-≤≤⎨⎪⎪>⎪⎩,然后可以选择数形结合求解或选择解不等式组;(2)当02a <<时,化简分段函数得()()()()12,,11 12122,,212,2a x x a f x ax x a x x a a x x ⎧-+<-⎪⎪⎪=++-=-+-≤≤⎨⎪⎪+>⎪⎩可以得到函数()f x 在1,a ⎛⎫-∞-⎪⎝⎭上单调递减,在11,2a ⎡⎤-⎢⎥⎣⎦上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,然后利用最值分析法,即可求出参数a 的最小值. 【详解】(1)当1a =时,()121f x x x =++-,即()3,112,1213,2x x f x x x x x ⎧⎪-<-⎪⎪=-+-≤≤⎨⎪⎪>⎪⎩,解法一:作函数()121f x x x =++-的图象,它与直线3y =的交点为()()1,3,1,3A B -,所以,()3f x >的解集的解集为()(),11,-∞-⋃+∞.解法2:原不等式()3f x >等价于133x x <-⎧⎨->⎩ 或11223x x ⎧-≤≤⎪⎨⎪-+>⎩ 或1233x x ⎧>⎪⎨⎪>⎩, 解得:1x <-或无解或1x >,所以,()3f x >的解集为()(),11,-∞-⋃+∞.(2)1102,,20,202a a a a <<∴-+-<Q . 则()()()()12,,1112122,,212,2a x x a f x ax x a x x a a x x ⎧-+<-⎪⎪⎪=++-=-+-≤≤⎨⎪⎪+>⎪⎩所以函数()f x 在1,a ⎛⎫-∞- ⎪⎝⎭上单调递减,在11,2a ⎡⎤-⎢⎥⎣⎦上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增. 所以当12x =时,()f x 取得最小值,()min 1122a f x f ⎛⎫==+ ⎪⎝⎭. 因为对x R ∀∈,()32f x a ≥恒成立, 所以()min 3122a f x a=+≥. 又因为0a >,所以2230a a +-≥, 解得1a ≥ (3a ≤-不合题意).。

2020届河北省衡水中学高三下学期一调语文试题

2020届河北省衡水中学高三下学期一调语文试题

河北省衡水中学2020届高三下学期一调语文试题一、选择题阅读下面的文字,完成下面小题。

我们为什么要考虑探索其他宜居星球?一个原因是,对我们来说,地球变得太小了。

在过去两百年中,地球人口呈____增长的态势,每四十年世界人口就会翻一番。

到2600年,世界将拥挤得“”,电力消耗将让地球变成炽热的火球,形势岌岌可危。

然而我是个乐观主义者,我相信我们可以避免这样的世界末日,而最好的方法就是移民到太空,探索人类在其他星球上生活的可能。

但是理由足够充分吗?留在地球上不是更好?在某种程度上,今天的情况就如同1492年前的欧洲。

当时的人们很可能坚信,哥伦布的探险注定是徒劳无功。

然而,新世界的发现,给旧世界带来了深远的影响。

所以,人类向太空的拓展,将会注定人类是否还有未来,甚至彻底改变人类的未来。

它不会解决地球上任何迫在眉睫的问题,但它将提供解决这些问题的全新视角,让我们着眼于更广的空间,而不是拘泥于眼下。

希望这能够让我们团结起来,面对共同的挑战。

当我们进入太空时,会有怎样的发现呢?是会找到外星生命,还是发现我们终将在宇宙中踽踽独行?我们相信,生命在地球上是自然而生的,是在漫长的后,实现了与地球资源的高度。

因此,在其他条件适宜的星球上,生命的存在也是可能的。

( )。

1.依次填入文中横线上的词语,全都恰当的一项是A.现象级摩肩接踵衍化融合B.指数级摩肩接踵进化契合C.指数级重足而立进化融合D.现象级重足而立衍化契合2.文中画横线的句子有语病,下列修改最恰当的一项是A.人类向太空的拓展,将彻底改变人类的未来,甚至会注定人类是否还有未来。

B.人类向太空的拓展,将彻底改变人类的未来,甚至会决定人类是否还有未来。

C.人类向太空的拓展,将会决定人类是否还有未来,甚至彻底改变人类的未来。

D.人类向太空的拓展,甚至决定人类是否还有未来,这将彻底改变人类的未来。

3.下面填入文中括号内的语句,衔接最恰当的一项是A.我们还是可以假设,生命会在某处存在,虽然这种可能性极小,但是宇宙是无限的B.由于宇宙是无限的,我们还是可以假设,生命会在某处存在,虽然这种可能性极小C.虽然这种可能性极小,但宇宙是无限的,我们还是可以假设,生命会在某处存在D.因为宇宙是无限的,所以尽管生命在某处存在的可能性极小,但我们还是可以假设第II卷(非选择题)请点击修改第II卷的文字说明二、现代文阅读阅读下面的文字,完成小题。

(审核版)河北省衡水中学2020届高三下学期二调考试语文试题(含答案解析).doc

(审核版)河北省衡水中学2020届高三下学期二调考试语文试题(含答案解析).doc

河北省衡水中学2020届高三下学期二调考试语文试题本试题卷全卷满分150分。

考试用时150分钟。

★祝考试顺利★本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分,第Ⅰ卷第1页至第7页,第Ⅱ卷第7页至第9页。

考试结束后,请将本试卷和答题卡一并交回。

满分150分,考试用时150分钟。

注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效。

第Ⅰ卷阅读题一、论述类文本阅读(9分,每小题3分)阅读下面的文字,完成1-3题。

秦汉、唐宋、明清中国建筑艺术基本保持和延续着相当一致的美学风格,即实践理性精神。

世界各民族的主要建筑多半是供养神的庙堂,如希腊神殿、哥特式教堂等。

而中国的大都是宫殿建筑,供世上活着的君主们居住。

中国祭拜神灵在与现实生活紧紧相联系的世间居住的中心,而不在脱离世俗生活的特别场所。

中国建筑不重在给人强烈的刺激或认识,而重在生活情调的感染熏陶,它不是—礼拜才去一次的灵魂洗涤之处,而是能够居住或经常瞻仰的生活场所。

在这里,平面铺开的建筑的有机群体,实体已把空间意识转化为时间进程,就是说,不是像哥特式教堂那样,人们一下子被扔进一个巨大幽闭的空间中,感到渺小恐惧而祈求上帝的保护。

相反,中国建筑的平面纵深空间,使人慢慢游历在复杂多样的亭台楼阁间,在这个不断的进程中,感受到生活的安适与环境的和谐。

这种实践理性精神还表现在建筑物严格对称的结构上,严肃、方正,井井有条。

它不是以单个建筑物的形状体貌,而是以整体建筑群的结构布局、制约配合取胜,结构方正,逶迤交错,气势雄浑。

非常简单的基本单位却组成了复杂的群体结构,形成在严格对称中仍有变化,在多样变化中又保持统一的风貌。

由于主要是世间生活的场所,供游乐享受而不只供崇拜顶礼之用,从先秦起,中国建筑便充满了各种供人自由玩赏的精细的美术作品(绘画、雕塑)。

2020届河北省衡水中学高三下学期一调考试数学文科试题(解析版)

2020届河北省衡水中学高三下学期一调考试数学文科试题(解析版)

2019—2020学年度第二学期一调考试高三年级数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题意,请将正确答案的序号填涂到答题卡上)1.已知复数3a iz a i+=+-(其中a R ∈,i 为虚数单位),若复数z 的共轭复数的虚部为12-,则复数z 在复平面内对应的点位于( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】A 【解析】【详解】分析:先化简复数z ,根据z 的共轭复数的虚部为12-求出复数z ,再根据复数的几何意义确定复数在复平面内对应的点的位置. 详解:由题意得()(3)131(3)3(3)(3)1010a i a i i a a iz a a i i i +++-+=+=+=+--+, ∴ 131(3)1010a a i z -+=-, 又复数z 的共轭复数的虚部为12-, ∴31102a +-=-,解得2a =. ∴5122z i =+,∴复数z 在复平面内对应的点位于第一象限. 故选A .点睛:本题以复数的运算为基础,考查复数的基本概念和复数的几何意义,解题的关键是根据复数z 的共轭复数的虚部为12-求得实数2a =,由此得到复数z ,然后再根据复数对应的点的坐标确定其所在的象限. 2.已知全集{}2,340,{|22}U R A x x x B x x ==--=-≤≤ ,则如图所示的阴影部分所表示的集合为( )A. 4{|}2x x -≤<B. {|2x x ≤或4}x ≥C. {|21}x x -≤≤-D. {|12}x x -≤≤【答案】D 【解析】{}2|340U C A x x x =--≤=[1,4]- ,所以阴影部分所表示的集合为()[1,4][2,2][1,2]U C A B ⋂=-⋂-=- ,选D.3.已知 a b c R ∈、、,则“240b ac -<”是“函数2()f x ax bx c =++的图象恒在x 轴上方”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分又不必要条件【答案】D 【解析】 【分析】分别研究由“240b ac -<”推出“函数2()f x ax bx c =++的图象恒在x 轴上方”和由“函数2()f x ax bx c =++的图象恒在x 轴上方”推出“240b ac -<”,得到答案.【详解】当240b ac -<时,函数2()f x ax bx c =++图象与x 轴没有交点,当0a <时,()f x 图像恒在x 轴下方,所以是不充分条件; 当函数2()f x ax bx c =++的图象恒在x 轴上方,取0,0a b c ==>,满足要求,此时240b ac -=, 因此不一定能得到240b ac -<,所以是不必要条件; 故选D 项.【点睛】本题考查充分条件和必要条件的判断,二次函数的图像问题,属于简单题.4.明朝数学家程大位将“孙子定理”(也称“中国剩余定理”)编成易于上口的《孙子歌诀》:三人同行七十稀,五树梅花廿一支,七子团圆正半月,除百零五便得知.已知正整数n 被3除余2,被5除余3,被7除余4,求n 的最小值.按此歌诀得算法如图,则输出n 的结果为( )A. 53B. 54C. 158D. 263【答案】A 【解析】按程序框图知n 的初值为263,代入循环结构,第一次循环158n =,第二次循环53,53105n =<,推出循环,n 的输出值为53 ,故选A.5.斗拱是中国古典建筑最富装饰性的构件之一,并为中国所特有,图一图二是斗拱实物图,图三是斗拱构件之一的“斗”的几何体,本图中的斗是由棱台与长方体形凹槽(长方体去掉一个小长方体)组成.若棱台两底面面积分别是2400cm ,2900cm ,高为9cm ,长方体形凹槽的体积为34300cm ,斗的密度是30.70/g cm .那么这个斗的质量是( )注:台体体积公式是()13V S S S S h ''=++.A. 3990gB. 3010gC. 7000gD. 6300g【答案】C【解析】 【分析】根据台体的体积公式求得台体体积,再加上长方体形凹槽的体积得这个斗的体积,然后乘以这个斗的密度可得这个斗的质量.【详解】根据棱台的体积公式可得棱台的体积为1(400900)957003⨯=3cm , 所以这个斗的质量为5700430010000+=3cm , 所以这个斗的质量为100000.707000⨯=g . 故选:C.【点睛】本题考查了棱台的体积公式,属于基础题.6.在ABC ∆中,222sin a b c C ++=,则ABC ∆的形状是 ( ) A. 锐角三角形 B. 直角三角形C. 钝角三角形D. 等边三角形【答案】D 【解析】 【分析】由余弦定理可知2222cos a b c ab C +-=,与已知条件相加,得到cos 3C π⎛⎫-⎪⎝⎭的表达式,利用基本不等式得到范围,结合其本身范围,得到cos 13C π⎛⎫-= ⎪⎝⎭,从而得到C 的大小,判断出ABC ∆的形状,得到答案. 【详解】由余弦定理可知2222cos a b c ab C +-=,222sin a b c C ++=两式相加,得到()22cos 2cos 3a b ab C C ab C π⎛⎫+=+=-⎪⎝⎭所以222cos 1322a b ab C ab ab π+⎛⎫-== ⎪⎝⎭≥,当且仅当a b =时,等号成立, 而[]cos 1,13C π⎛⎫-∈- ⎪⎝⎭所以cos 13C π⎛⎫-= ⎪⎝⎭,因为()0,C π∈,所以2,333C πππ⎛⎫-∈- ⎪⎝⎭所以03C π-=,即3C π=,又a b =,所以ABC ∆是等边三角形, 故选D 项.【点睛】本题考查余弦定理解三角形,基本不等式,余弦型函数的性质,判断三角形的形状,属于中档题.7.已知双曲线22221(0,0)x y a b a b-=>>的左、右顶点分别为A ,B ,P 为双曲线左支上一点,ABP ∆为等腰,则该双曲线的离心率为( )A.B.C.D.【答案】C 【解析】【详解】由题意知等腰ABP ∆中,||2AB AP a ==,设ABP APB θ∠=∠=,则12F AP θ∠=,其中θ必为锐角.∵ABP ∆,∴2sin aθ=,∴sin θ=,cos θ=∴243sin 22,cos 22(155555θθ=⨯==⨯-=. 设点P 的坐标为(,)x y ,则118(cos 2),sin 255a ax a AP y AP θθ=-+=-==, 故点P 的坐标为118(,)55a a-. 由点P 在双曲线上得2222118()()551a a a b -=,整理得2223b a =,∴c e a ===.选C . 点睛:本题将解三角形和双曲线的性质结合在一起考查,综合性较强,解题时要抓住问题的关键和要点,从所要求的离心率出发,寻找双曲线中,a c 之间的数量关系,其中通过解三角形得到点P 的坐标是解题的突破口.在得到点P 的坐标后根据点在椭圆上可得,a b 间的关系,最后根据离心率的定义可得所求. 8.已知1a >,设函数()2x f x a x =+-的零点为m ,()log 2a g x x x =+-的零点为n ,则11m n+的取值范围是( ) A. (2,)+∞ B. 7,2⎛⎫+∞⎪⎝⎭C. (4,)+∞D. 9,2⎛⎫+∞⎪⎝⎭【答案】A 【解析】 【分析】把函数零点转化为两个函数交点的横坐标,根据指数函数与对数函数互为反函数,得到两个函数之间的关系求出m ,n 之间的关系,根据两者之和是定值,利用均值不等式即得解.【详解】函数()2x f x a x =+-的零点为函数xy a =与2y x =-图像的交点A 的横坐标,函数()log 2a g x x x =+-的零点为函数log a y x =与2y x =-图像的交点B 的横坐标10,0a m n >∴>>Q由于指数函数与对数函数互为反函数, 其图像关于y x =对称, 直线2y x =-与y x =垂直故两直线的交点(1,1)即是A ,B 的中点,2,0,0m n m n ∴+=>>111111()()(2)(22222m n n m m n m n m n +∴+=+=++≥+= 当且仅当:1m n ==时等号成立 而m n ≠,故112m n+> 故选:A【点睛】本题考查了函数零点与均值不等式综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题.9.已知函数()31sin f x x x x =+++,若()()2122f a f a-+≤,则实数a 的取值范围是( )A. 3[1,]2- B. 3[,1]2-C. 1[1]2-,D. 1[,1]2-【答案】C 【解析】 【分析】构造函数()()1g x f x =-,证明()g x 是奇函数,单调递增,再将所求的不等式转化成关于函数()g x 相关形式,利用()g x 的性质,解出不等式,得到答案. 【详解】因为()31sin f x x x x =+++设()()31sin g x f x x x x =-=++,定义域x ∈R()()3sin g x x x x g x -=---=-,所以()g x 为奇函数, ()231cos 0g x x x '=++≥,所以()g x 单调递增, 不等式()()2122f a f a-+≤()()21121f a f a ⎡⎤--≤--⎣⎦()()212g g a a ≤-- ()()212g g a a ≤--2a 12a -≤-解得112x ≤≤- 故选C 项.【点睛】本题考查构造函数解不等式,函数的性质的应用,属于中档题.10.在ABC V 中,AD AB ⊥,3,BC BD =u u u r u u u r ||1AD =u u u r ,则AC AD ⋅u u u r u u u r的值为( ) A. 1 B. 2C. 3D. 4【答案】C 【解析】 【分析】由题意转化(3)AC AD AB BD AD ⋅=+⋅u u u r u u u r u u u r u u u r u u u r,利用数量积的分配律即得解.【详解】AD AB ⊥Q ,3,BC BD =u u u r u u u r ||1AD =u u u r,()(3)AC AD AB BC AD AB BD AD ∴⋅=+⋅=+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2333AB AD BD AD AD =⋅+⋅==u u u r u u u r u u u r u u u r u u u r故选:C【点睛】本题考查了平面向量基本定理和向量数量积综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题.11.在三棱锥P ABC -中,P A 、PB 、PC 两两垂直,112PA PB ==,Q 是棱BC 上一个动点,若直线AQ 与平面PBC ,则该三棱锥外接球的表面积为( ) A. 6π B. 7πC. 8πD. 9π【答案】A 【解析】 【分析】由已知得PA ⊥平面PBC ,因此当PQ BC ⊥时,直线AQ 与平面PBC 所成角最大,此时可求得PQ ,从而求得PC ,又以,,PA PB PC 为棱的长方体的对角线就是三棱锥P ABC -外接球直径,从而可求得其表面积.【详解】∵P A 与PB 、PC 垂直,∴PA ⊥平面PBC ,∴PQ 是AQ 在平面PBC 内的射影,AQP ∠就是直线PA 与平面PBC 所成的角, 由PA ⊥平面PBC 得PA PQ ⊥,tan PAAQP PQ∠=,要使tan AQP ∠最大,则PQ 最小,显然当PQ BC ⊥时,PQ 最小,此时tan AQP ∠=又1PA =,∴PQ =,而2PB =,∴BQ =,由PB PC ⊥,得2PB BC BQ==1PC =,如图,以,,PA PB PC 为棱作出长方体,此长方体的外接球就是三棱锥P ABC -的外接球,外接球直径等2222221216PA PB PC ++++= ∴球表面积为22644(62S R πππ==⨯=. 故选:A .【点睛】本题考查求球表面积,解题关键是要求出球的半径.由于,,PA PB PC 两两垂直,因此以它们为棱作出长方体,此长方体的外接球就是三棱锥P ABC -的外接球,长方体的对角线就是球的直径.由此可得解.12.已知关于x 的方程2[()]()10f x kf x -+=恰有四个不同的实数根,则当函数2()x f x x e =时,实数k 的取值范围是( ) A. (,2)(2,)-∞-+∞UB. 224,4e e ⎛⎫++∞ ⎪⎝⎭C. 28,2e ⎛⎫⎪⎝⎭D. 2242,4e e⎛⎫+ ⎪⎝⎭【答案】B 【解析】 【分析】利用导数判断()f x 的单调性和极值,得出方程()f x t =的根分布情况,从而得出方程()()2f x kf x 1=0-+恰有四个不同的实数根等价于关于t 的方程210t kt -+=在240,e ⎛⎫⎪⎝⎭上有一个解,在{}24,0e ⎛⎫+∞ ⎪⎝⎭U 上有一个解,利用二次函数的性质列不等式可求出k 的范围.【详解】()()2'22x x x f x xe x e x x e =+=+,令()'0f x =,解得0x =或2x =-,∴当2x <-或0x >时,()'0f x >;当20x -<<时,()'0f x <,()f x ∴在(),2-∞-上单调递增,在()2,0-上单调递减,在()0,∞+上单调递增,∴当2x =-时,函数()f x 取得极大值()242f e-=, 当0x =时,函数()f x 取得极小值()00f =, 作出()f x 的大致函数图象如图所示, 令()f x t =,则当0t =或24t e>时,关于x 的方程()f x t =只有一个解; 当24t e=时,关于x 的方程()f x t =有两个解; 当240t e<<时,关于x 的方程()f x t =有三个解,()()()21g x f x kf x =-+Q 恰有四个零点,∴关于t 的方程()210h t t kt =-+=在240,e⎛⎫⎪⎝⎭上有一个解, 在{}24,0e ⎛⎫+∞⎪⎝⎭U 上有一个解, 显然0t =不是方程210t kt -+=的解,∴关于t 的方程210t kt -+=在240,e ⎛⎫ ⎪⎝⎭和24,e ⎛⎫+∞ ⎪⎝⎭上各有一个解, 242416410k h e ee ⎛⎫∴=-+< ⎪⎝⎭,解得2244e k e >+,即实数k 的取值范围是224e e 4⎛⎫++∞ ⎪⎝⎭,,故选B.【点睛】已知函数零点(方程根)的个数,求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题 .二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置.)13.()f x 是定义域为R 的偶函数,对x R ∀∈,都有()()4f x f x +=-,当02x ≤≤时,()221,01,log 1,12x x f x x x ⎧-≤<=⎨+≤≤⎩,则()9212f f ⎛⎫-+= ⎪⎝⎭________.【解析】 【分析】先由已知等式和偶函数推出周期为4,再根据偶函数性质和周期可求得答案.【详解】因为()f x 是定义域为R 的偶函数,所以()()4f x f x +=-()f x = ,所以周期4T=,所以129911()()(4)()2112222f f f f -==+==-=,2(21)(451)(1)log 111f f f =⨯+==+=, 所以()9212f f ⎛⎫-+= ⎪⎝⎭11+=故答案为.【点睛】本题考查了函数的奇偶性,周期性,利用周期将自变量转化为已知范围后,利用分段函数解析式求值是解题关键,本题属于中档题.14.若正实数a ,b 满足1a b +=,则下列说法正确的是( ) A. ab 有最小值14B.C.11a b+有最小值4 D. 22a b +有最小值2【答案】C 【解析】【分析】可结合基本不等式性质对四个选项一一证明;对A 应是积有最大值;对B 变形为2a b =++再结合基本不等式求解;对C ,先通分,再结合基本不等式求值;对D ,可变形为222()2a b a b ab +=+-,再结合基本不等式求值【详解】0a >Q ,0b >,且1a b +=;1a b ∴=+≥14ab ∴≤; ab ∴有最大值14,∴选项A 错误;2112a b =++=++=,≤,,∴B 项错误1114a b a b ab ab ++==≥,11a b∴+有最小值4,∴C 正确;22211()2121242a b a b ab ab +=+-=-≥-⨯=,22a b ∴+ 的最小值是12,不是2,∴D 错误.故选C【点睛】本题考查基本不等式的应用,熟练掌握基本不等式及其相关变形式,以及等式成立的条件,是正确解题的关键,属于中档题15.在ABC ∆中,D 为AB 的中点,ACD ∠与CBD ∠互为余角,2AD =,3AC =,则sin A 的值为__________.4【解析】 设ACD ∠=,BCD αβ∠=,则由ACD∠+90CBD ∠=︒可知, 90,B A αβ=︒-+=()18090,90,B A αβ︒-+=︒∴=︒- D为AB的中点,11,?sin ?sin ,sin sin 22ACD BCD S S AC CD BC CD AC BC αβαβ∆∆∴=∴=∴=,即cos cos AC B BC A =,由正弦定理得sin cos sin cos ,sin 2sin 2,B B A A A B A B =∴=∴=或90A B +=︒,当A=B 时,AC=BC,,sin CD CD AB A AC ∴⊥∴===,当90A B +=︒时, 90,2C AD BD DC =︒∴===,在△ACD中, 222397cos ,sin 12?4164AC AD CD A A AC AD +-==∴=-=,综上可得, sin A 的值为53或74. 16.如图,曲线2(0)y x y =≥上的点1P 与x 轴的正半轴上的点i Q 及原点O 构成一系列正三角形,11OPQ △,122Q P Q △,1n n n Q P Q -L L ,△设正三角形1n n n Q P Q -的边长为,*n a n N ∈(记0Q 为O ),(),0n n Q S .数列{}n a 的通项公式n a =______.【答案】23n 【解析】 【分析】先得出直线1OP 的方程为3y x =,与曲线的方程联立得出1P 的坐标,可得出11a OP =,并设(),0n n Q S ,根据题中条件找出数列{}n a 的递推关系式,结合递推关系式选择作差法求出数列{}n a 的通项公式,即利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列{}n a 的通项公式.【详解】设数列{}n a 的前n 项和为n S ,则点n Q 的坐标为(),0n S ,易知直线1OP 的方程为3y x =, 与曲线的方程联立()230y x y x y ⎧=⎪⎨=≥⎪⎩,解得1333x y ⎧=⎪⎪⎨⎪=⎪⎩,221132333a ⎛⎫⎛⎫∴=+= ⎪ ⎪ ⎪⎝⎭⎝⎭; 当n *∈N 时,点(),0n n Q S 、()11,0n n Q S ++,所以,点1122n n n n n S S S S P ++⎛++ ⎝, 直线n n P Q 3111122322n n n n n n n n nS S S S S ++++++==-1132nn n S S a +++=等式两边平方并整理得211322n n n a S S ++=+,可得21322n n n a S S -=+,以上两式相减得()2211332n n n n a a a a ++-=+,即()()()11132n n n n n n a a a a a a ++++-=+,易知0n a >,所以()132n n a a +-=,即123n n a a +-=, 所以,数列{}n a 是等差数列,且首项为23,公差也为23,因此,()2221333n na n =+-=. 故答案为23n.【点睛】本题考查数列通项的求解,根据已知条件找出数列的递推关系是解题的关键,在求通项公式时需结合递推公式的结构选择合适的方法求解数列的通项公式,考查分析问题的能力,属于难题.三、解答题:(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤.) (一)必考题17.设}{n a 是等差数列,公差为d ,前n 项和为n S . (1)设140a =,638a =,求n S 的最大值.(2)设11a =,*2()na nb n N =∈,数列}{n b 的前n 项和为n T ,且对任意的*n N ∈,都有20n T ≤,求d 的取值范围.【答案】(1)2020(2)29-,log 10⎛⎤∞ ⎥⎝⎦【解析】 【分析】(1)运用等差数列的通项公式可得公差d ,再由等差数列的求和公式,结合配方法和二次函数的最值求法,可得最大值;(2)由题意可得数列{b n }为首项为2,公比为2d 的等比数列,讨论d =0,d >0,d <0,判断数列{b n }的单调性和求和公式,及范围,结合不等式恒成立问题解法,解不等式可得所求范围. 【详解】(1)a 1=40,a 6=38,可得d 61255a a -==-, 可得S n =40n 12-n (n ﹣1)2155=-(n 2012-)2220120+,由n 为正整数,可得n =100或101时,S n 取得最大值2020;(2)设()*112na n ab n N ==∈,,数列{b n}的前n 项和为T n,可得a n =1+(n ﹣1)d ,数列{b n }为首项为2,公比为2d 的等比数列, 若d =0,可得b n =2;d >0,可得{b n }为递增数列,无最大值;当d <0时,T n ()21221212dn dd-=--<, 对任意的n ∈N *,都有T n ≤20,可得20212d≥-,且d <0, 解得d ≤29log 10. 【点睛】本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列不等式恒成立问题解法,注意运用转化思想,考查化简运算能力,属于中档题.18.如图,三棱柱111ABC A B C -的所有棱长都是2,1AA ⊥面ABC ,D ,E 分别是AC ,1CC 的中点.(1)求证:AE ⊥平面1A BD ; (2)求三棱锥1B ABE -的体积. 【答案】(1)详见解析;(2)33. 【解析】 【分析】(1)推导出BD AC ⊥,从而平面11AA C C ⊥平面ABC ,进而BD ⊥平面11AAC C ,BD AE ⊥,再求出1A D AE ⊥,由此能证明AE ⊥平面1A BD .(2)本问方法较多,可用割补法,转换顶点法,构造法等,其中割补法较为方便,将1B ABE V -转化为111111ABC A B C B ACE B AEC A V V V -----,即可求解.【详解】解:(1)∵AB BC CA ==,D 是AC 的中点, ∴BD AC ⊥,∵三棱柱111ABC A B C -中1AA ⊥平面ABC ,∴平面11AA C C ⊥平面ABC ,且平面11AAC C I 平面ABC AC =, ∴BD ⊥平面11AAC C ,∵AE ⊂平面11AAC C , ∴BD AE ⊥.又∵在正方形11AAC C 中,D ,E 分别是AC ,1CC 的中点, ∴1A D AE ⊥,又1A D BD D ⋂=, ∴AE ⊥平面1A BD .(2)解法一(割补法):1111111B ABE ABC A B C B ACE B AEC A V V V V ----=--11113ABC ACC A SAA S BD ∆=⨯-⨯⨯正方形1123232223233=⨯⨯⨯-⨯⨯⨯=.解法二(利用平行顶点轮换): ∵11//BB CC , ∴11BB E BB C S S ∆∆=,∴1111B ABE A BB E A BB C B ABC V V V V ----===113ABC S BB ∆=⨯⨯1123232323=⨯⨯⨯⨯=. 解法三(利用对称顶点轮换): 连结1AB ,交1A B 于点O , ∵O 为1A B 的中点,∴点B 到平面1AB E 的距离等于点1A 到平面1AB E 的距离. ∴1111111B ABE B AB E A AB E B AA E B AA E V V V V V -----====111123223332AA E S BD ∆=⨯⨯=⨯⨯⨯⨯=. 解法四(构造法):连结1AB ,交1A B 于点O ,则O 为1AB 的中点,再连结EO .由题意知在1AB E ∆中,15AE B E ==,122AB =,所以1EO AB ⊥,且3EO =,又2BO =,5BE =,所以222BE BO EO =+,所以EO BO ⊥,又1AB BO O =I , ∴EO ⊥面1ABB , ∴11113B ABE E ABB ABB V V S EO --∆==⨯⨯112322332=⨯⨯⨯⨯=. 【点睛】本题考查线面垂直的证明,考查三棱锥的体积,考查空间中线线、线面、面面间的位置关系,考查运算求解能力,是中档题.19.已知某地区某种昆虫产卵数和温度有关.现收集了一只该品种昆虫的产卵数y (个)和温度x (C o )的7组观测数据,其散点图如所示:根据散点图,结合函数知识,可以发现产卵数y 和温度x 可用方程bx ay e+=来拟合,令ln z y =,结合样本数据可知z 与温度x 可用线性回归方程来拟合.根据收集到的数据,计算得到如下值:表中ln i i z y =,7117i i z z ==∑.(1)求z 和温度x 的回归方程(回归系数结果精确到0.001);(2)求产卵数y 关于温度x 的回归方程;若该地区一段时间内的气温在26~36C C o o 之间(包括26C o 与36C o ),估计该品种一只昆虫的产卵数的范围.(参考数据: 3.28227e ≈, 3.79244e ≈, 5.832341e ≈,6.087440e ≈, 6.342568e ≈.) 附:对于一组数据()11,v ω,()22,v ω,…,(),n n v ω,其回归直线ˆˆˆvαβω=+的斜率和截距的最小二乘估计分别为()()()121ˆniii nii v v ωωβωω==--=-∑∑.【答案】(1)ˆ0.255 3.348z x =-;(2)0.255 3.348x y e -=,[]27.341.【解析】 【分析】(1)根据公式计算出ˆb 和ˆa ,可得ˆ0.255 3.348z x =-;(2)根据ln z y =可得ln 0.255 3.348y x =-,再根据函数0.255 3.348x y e -=为增函数可得答案.【详解】(1)因为z 与温度x 可以用线性回归方程来拟合,设ˆˆˆz abx =+. ()()()7172146.418ˆ0.255182iii ii x x zz bx x ==--===-∑∑, 所以ˆˆ 3.5370.25527 3.348a z bx=-=-⨯=-, 故z 关于x 的线性回归方程为ˆ0.255 3.348zx =-.(2)由(1)可得ln 0.255 3.348y x =-,于是产卵数y 关于温度x 的回归方程为0.255 3.348x y e -=, 当26x =时,0.25526 3.348 3.28227y e e ⨯-==≈; 当36x =时,0.25536 3.348 5.832341y e e ⨯-==≈; 因为函数0.255 3.348x y e -=为增函数,所以,气温在26~36C C o o 之间时,一只该品种昆虫的产卵数的估计范围是[]27.341内的正整数. 【点睛】本题考查了求线性回归方程,考查了利用线性回归方程对变量进行分析,属于中档题.20.设椭圆22:182x y C +=,过点()21A ,的直线,AP AQ 分别交C 于相异的两点,P Q ,直线PQ 恒过点()4,0B .(1)证明:直线,AP AQ 的斜率之和为1-;(2)设直线,AP AQ 分别与x 轴交于,M N 两点,点()3,0G ,求GM GN ⋅. 【答案】(1)证明见解析;(2)1 【解析】 【分析】(1)设直线PQ 为()4y k x =-,与椭圆方程联立可得()222214326480k xk x k +-+-=,利用韦达定理得到12,x x 的关系,由斜率公式可得()()12121212124141112222k x k x y y k k x x x x ------+=+=+----()()()1212121226116424kx x k x x k x x x x -++++=-++,将21223214k x x k +=+,212264814k x x k -=+代入,进而即可得证; (2)设直线AP 为()112y k x -=-,令0y =,可求得112,0M k ⎛⎫-⎪⎝⎭,同理212,0N k ⎛⎫- ⎪⎝⎭,进而求解即可 【详解】(1)证明:设直线PQ 为()4y k x =-,联立()224182y k x x y ⎧=-⎪⎨+=⎪⎩,得()222214326480k x k x k +-+-=,且>0∆,可得;214k <, 设()()1122,,,P x y Q x y ,由韦达定理可得21223214k x x k +=+,212264814k x x k-=+, 设直线AP 、AQ 的斜率分别为12,k k ,所以()()12121212124141112222k x k x y y k k x x x x ------+=+=+----()()()1212121226116424kx x k x x k x x x x -++++=-++()2222222222648322611641641414164832164241414k k k k k k k k k k k k k -⋅-+⋅++-+++===----⋅+++, 所以直线,AP AQ 的斜率之和为1- (2)设()()34,0,,0M x N x ,因为直线AP 为()112y k x -=-,令0y =,得3112x k =-,即112,0M k ⎛⎫- ⎪⎝⎭, 同理4212x k =-,即212,0N k ⎛⎫- ⎪⎝⎭, 因为()3,0G ,所以1212121111132321GM GN k k k k k k ⎛⎫⎛⎫⋅=--⋅--=+++ ⎪ ⎪⎝⎭⎝⎭ 12121211k k k k k k +=++12121111k k k k -==++= 【点睛】本题考查直线与椭圆的位置关系的应用,考查斜率公式的应用,考查椭圆中的定值问题 21.已知函数()()()211e ,2xf x x ag x x ax =+-=+,其中a 为常数. (1)若2a =时,求函数()f x 在点()()0,0f 处的切线方程;(2)若对任意[)0,x ∈+∞,不等式()()f x g x ≥恒成立,求实数a 的取值范围. 【答案】(1)2x-y+1=0;(2)1a ≥.【解析】【详解】试题分析:(1)求导得斜率,进而由点斜式得直线方程;(2)令()()()h x f x g x =-,由题得()min 0h x ≥在[)0,x ∈+∞恒成立,求导根据导数判断单调性求最值即可. 试题解析:(1)()()2,1x a f x x e ==+则,()()2xf x x e ∴=+',()02f ∴'=,又因为切点(0,1) 所以切线为2x-y+1=0(2) 令()()()h x f x g x =-,由题得()min 0h x ≥在[)0,x ∈+∞恒成立, ()()2112x h x x a e x ax =+---,所以()()()1x h x x a e =+-' ①若0a ≥,则[)0,x ∈+∞时()0h x '≥,所以函数()h x 在[)0,+∞上递增,所以()()min 01h x h a ==- 则10a -≥,得1a ≥②若0a <,则当[]0,x a ∈-时()0h x '≤,当[,+x a ∈-∞)时()0h x '≥,所以函数()h x 在[]0,a -上递减,在[,+a -∞)上递增,所以()()min h x h a =-,又因为()()010h a h a -=-<<,所以不合题意. 综合得1a ≥.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为min ()0f x > ,若()0f x <恒成立max ()0f x ⇔<; (3)若()()f xg x > 恒成立,可转化为min max()()f x g x > . (二)选考题:请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.选修4-4:坐标系与参数方程已知曲线C 的参数方程为()2cos 3x y θθθ=⎧⎪⎨=⎪⎩为参数,在同一平面直角坐标系中,将曲线C 上的点按坐标变换12x x y y ⎧=⎪⎪⎨=''⎪⎪⎩得到曲线C ',以原点为极点,x 轴的正半轴为极轴,建立极坐标系. (Ⅰ)求曲线C '的极坐标方程;(Ⅱ)若过点3(,)2A π(极坐标)且倾斜角为6π的直线l 与曲线C '交于,M N 两点,弦MN 的中点为P ,求||||||AP AM AN ⋅的值. 【答案】(1)曲线C '的极坐标方程为:1C ρ'=(2)AP AM AN =⋅【解析】 【详解】试题分析:(I )曲线C的参数方程为()2x cos y θθθ=⎧⎪⎨=⎪⎩为参数,利用平方关系即可化为普通方程.利用变换公式代入即可得出曲线C'的直角坐标方程,利用互化公式可得极坐标方程.(II )点A 的直角坐标是3,02A ⎛⎫- ⎪⎝⎭,将l 的参数方程3266x tcos y tsin ππ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数)代入曲线C'的直角坐标方程可得2450t -+=,利用根与系数的关系即可得出.试题解析:(Ⅰ)222::143x cos x y C C y θθ=⎧⎪⇒+=⎨=⎪⎩,将122x x x x y y y ⎧=⎪=⎧⎪⎪⇒⎨⎨=⎪⎩⎪''⎪'=⎩',代入C 的普通方程可得221x y ''+=,即22:1C x y +=',所以曲线C '的极坐标方程为:1C ρ'=(Ⅱ)点A 的直角坐标是3,02A ⎛⎫- ⎪⎝⎭,将l 的参数方程3266x tcos y tsin ππ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数)代入221x y +=,可得246350t t -+=, ∴t 1+t 233=,t 1•t 254=, 所以1212332t t AP AM AN t t +==⋅. 23.设函数()2 1.f x k x x =--(1)当1k =时,求不等式()0f x >的解集;(2)当(0,)x ∈+∞时,()0f x b +>恒成立,求k b +的最小值.【答案】(1)1(,1)3(2)最小值为3 【解析】【分析】(1)利用零点分段讨论法即可解出绝对值不等式得解集;(2)当(0,)x ∈+∞时,()0,f x b +>恒成立,即21k x b x +>-恒成立,数形结合求解.【详解】解(1)当1k =时,不等式化为210,x x -->0210x x x ≤⎧⎨-+->⎩,或102210x x x ⎧<<⎪⎨⎪+->⎩,或12210x x x ⎧≥⎪⎨⎪--+>⎩ 综上,原不等式的解集为1{1}3x x << (2)(0,)x ∈+∞时,()0,21f x b k x b x +>+>-作21y x =-与y k x b =+的图像,可知2,1,y k b =≥≥==)3,k b∴+≥+的最小值为3(这时2,1k b k b【点睛】零点分段法求解绝对值不等式,注意分段求解;求解集,注意书写形式;不等式恒成立转化成两个函数比较大小,数形结合可以事半功倍.。

河北省衡水中学2020届高三下九调研考试语文试题含解析

河北省衡水中学2020届高三下九调研考试语文试题含解析
在毁灭一切的战争中,只有白流苏取得了胜利,这正印证了张爱玲的人生:安稳的现世生活是苍凉人生中唯一可把握住的东西。可见,即实寓虚,遗貌取神,以少胜多,会使读者掩卷莞尔,有会于心。
除了借鉴前人,她的作品与古典文学中服饰描写的最大区别是充分调动了各种感宫体验,使铺排式、平面化的服饰描写具有了动感。《红玫瑰与白玫瑰》中“红玫瑰穿着的一件曳地的长袍,是最鲜辣的潮湿的绿色,沾着什么就染绿了。她略略移动一步,仿佛她刚才所占有的空气上便留着个绿迹子”。与古代小说服饰描写相比,虽然同样注重细节的真实细腻,但张爱玲笔下的服饰却更具有现代因素并富隐喻色彩,作者以对生命和生活的独特体验,借助语言反映人物的内心变化,通过人物主观感受上情感的波动引起的服饰变化,幻化出内涵丰富的意象,完成动态性的服饰描写。
D.杨义认为《更衣记》能用色彩、服饰等架构起来奇妙的文艺世界,就因为作者对服饰心存爱意。
2.根据材料内容,下列说法不正确的一项是
A.服饰描写在张爱玲小说中显现出来的独特效果,成为其小说风格的重要成分,是她对服饰文化的个性体验。
B.张爱玲所有小说作品都通过对人物服饰及其配饰的精雕细琢来营造艺术氛围,表现人物性格,推动情节发展。
服饰,原本是个人意识最为直接的表现,是可见的自我。古代社会这样的例子不乏其数,比如屈原以高冠奇服表达自己的高远志向,以香草表现自己高洁的人格。魏晋文人以不拘一格的服饰来表现自己不拘礼法的洒脱个性。他们借助服饰曲折地表现自己的思想感情和人格特征。而在消费社会中的服饰,人们看重的是其品牌效应,是品牌暗示的意义和生活方式,是借助服饰的符号意义来显示自己的经济实力。
北斗一号总设计师、中国工程院院士范本尧回忆,国产化从北斗一号的太阳帆板做起,“当时很多卫星都不敢上,北斗是第一个‘吃螃蟹’的,硬着头皮上。”之后的国产化攻关更为艰苦,凭借自力更生的创业精神,以总指挥李祖洪、总设计师范本尧等为代表的老一辈北斗人逐一攻克,于2003年建成了北斗一号系统,使我国成为继美、俄之后第三个拥有自主卫星导航系统的国家。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、写作(60分)
22.【河北省衡水中学2020届高三下学期一调】阅读下面的材料,根据要求写作。

(60分)
暑假里,爸妈准备出国游学,可是对家中的儿子总是不太放心。

临行前,爸爸特别交代儿子:“家里的藏獒可以随便逗,但千万别惹鹦鹉。

”爸妈走后,儿子没事就逗藏獒玩,藏獒从不咬人。

于是他想:凶猛的藏獒也不过如此,鹦鹉不过就是一只破鸟,又能把我怎么样?于是,他就大胆地逗鹦鹉。

不料,鹦鹉开口大叫:“咬他!咬他!”藏獒闪电般地扑上去,儿子措手不及,被咬得血肉模糊。

要求:综合材料内容及含意,选好角度,确定立意,明确文体,自拟标题;不要套作,不得抄袭;不少于800字。

【解析】
这是一道一般材料作文题。

跟任务驱动型材料作文不同的是,一般材料作文选用的材料很少是新闻时事、社会热点,或者是有争议性的社会话题,而是选用有哲思性的故事、名言类材料。

这篇作文的材料便是一个很好的例子。

准备出国的父母对家里孩子千叮咛万嘱咐——家里的藏獒可以随便逗,但千万别惹鹦鹉。

父母说这句话肯定是有原因,也许是宠物专家如的经验,父母一直记得,抑或是有什么血的教训,让父母铭记于心。

总之,父母是“过来人”,无论是听别人的经历过,还是自己经历过。

可孩子呢,没有经历过,对外面的世界抱有一颗好奇心,哪怕是父母作为“过来人”的经验,孩子也想通过自己的实践来看看是不是真的。

这是天性使然,未可厚非,但有时也不可避免要付出代价。

一般材料作文审题立意有一定难度,有一种常用方法是“由果溯因”。

世间万物都是互相联系的,写一般材料作文,审题时如果能由材料中列举的现象或结果推究出造成所列现象或结果的本质原因,往往能找到准确的立意。

这则材料的结果是儿子被獒犬咬了,为什么呢?我们都能想到的原因是没有听取父母的忠告。

于是我们就能得到一个常规立意,这是一个老生常谈的道理——不听长辈言,吃亏在眼前。

可孩子呢,没有经历过,对外面的世界抱有一颗好奇心,哪怕是父母作为“过来人”的经验,孩子也想通过自己的实践来看看是不是真的。

这是天性使然,未可厚非,但有时也不可避免要付出代价。

除此之外,别忘了孩子在决定逗鹦鹉之前有一心理过程——“凶猛的藏獒也不过如此,鹦鹉不过就是一只破鸟,又能把我怎么样?”所以我们还能得到酿成惨剧的另一个原因——儿子因为轻视看似“弱不禁风”的鹦鹉,才决定逗它的。

由物及人,我们能得到一个立意就是:不要以貌取人。

当然,说到“由物及人”,这则材料如果从鹦鹉角度入手,你看,看似弱小的鹦鹉却能
调动獒犬的力量为自身加持,所以在当今社会,自身能力固然重要,如何调动其他资源,如何借助他人的力量也同样重要。

毕竟,人是社会关系的总和。

【参考立意】
1.善于听取他人建议
2.不要以貌取人
3.要善于调动资源
【名师下水文】
听取建议,不仅仅是一种气度
塞万提斯笔下耽于幻想的主人公堂吉诃德,时常幻想自己是个中世纪骑士,没想到却是处处碰壁。

而材料中的儿子更是因为招惹鹦鹉,最终被藏獒咬得血肉模糊。

在我看来,他们看似可笑,实则可悲。

试问,是因为什么造成了这一切?
堂吉诃德的碰壁,是因为不听仆人桑丘的劝阻,而儿子的被咬,更是因为不听父亲的劝告。

不接受,看起来只是某个瞬间做出的姿态,但就是这样一种简单的反应,造成了一系列悲剧。

然而有人说,“不接受意见”其实源于自身的一种内心的“自信”或者一种强烈的“自尊”。

而我看来,这种从“不听建议”身上体现出来的“自信”或者“自尊”,一定是盲目的。

就像蔡桓公,不就是由于这种所谓的“自信”,拒绝接受扁鹊的意见,因讳疾忌医,最终致死的吗?而假如项羽“四面楚歌”时放下了这种所谓的“自尊”,选择“下一个台阶”,不也就可能是另一个结局了吗?
“不听建议”这种不理性的“自尊”“自信”,不仅是一种“顽固”,更是一种“自私”。

就像“四面楚歌”,他难道能只把这作为他一个人的结局吗?或者说,这又岂是一段简单的“骓不逝兮可奈何,虞兮虞兮奈若何”的悲剧?
何止如此,马谡不顾王平劝告,终失街亭;苻坚不听王猛阻谏,兵败淝水。

而与之相反,唐太宗正是因为能够听取魏征之言,才实现了贞观之治。

梅兰芳因在演出结束的喝彩中听到一声“不好”,便未及卸装更衣,就用专车把这位老人接到家中虚心求教;作协主席铁凝和作家莫言更是为《咬文嚼字》替他们“挑错”表示谢意。

难道这都只是一种“气度”吗?为什么有人一定要“吃一堑”才能“长一智”?我想,这个本无对错的“自尊”和“自信”,背后还关联着一个人所受过的教育,自身成长的背景,以及所有的经历。

但我想,这并不是决定性的,最终能够起到导向作用的,还是一个人是否有一个愿意改变自己,让自己不断变得更好的信念。

孔子说:“忠告而善道之,不可则止,毋自辱焉。

”但我并不这么认为。

如果结果能够是好的,为何不在“不可”的时候选择继续呢?这并不是一种“自辱”,在我看来,这是一
种让别人变好,也让自己变得更好的方式。

不妨也让我们放下一些不理性的“自尊”“自信”,学会听取建议,让我们和周围的人都变得更好。

相关文档
最新文档