第5节对角矩阵

合集下载

线性代数5-3 方阵相似于对角矩阵的条件

线性代数5-3 方阵相似于对角矩阵的条件

(2) 由于A~B,所以A的特征值为
1 1 ,22,3 2.
由 A E x 0 ,求 A 的 特 征 值 .
当λ1=-1时,由
1 0 0
1 0 0
A
E
2
1
2

0
1
2
3 1 2 0 0 0
0
得基础解系:
P1
2
,
1
当λ2 =2时,
4 0 0 1 0 0
A
2E
2
2
(2 )若 A 与 B 相 ,且 似 A 可 ,则 逆 B 也,可 且 A 1 与 逆
B 1 相 ; 似 (3 )A 与 B 相 ,则 似 k与 A k相 B,k 为 似; 常数
(4)若 A 与 B 相,而 似 f(x)是一,多 则 f(A 项 )与式 f(B )相.似
2.相似变换与相似变换矩阵
0
2
0
.
3 1 1
0 0 y
(1)求x和y的值,
2求可P 逆 ,使 P 1 矩 A P 阵 B .
(同型题:习题课教程P132第11题)
解 (1)因为A~B,所以B的主对角线元素是A的特 征值.因此有
2x112y,
AE AE 0.
整理得xx
y 2, 0,
解得
x 0, y 2.
2

0
1
1
,
3 1 1 0 0 0
得基础解系:
P2
0
1
,
1
当λ3 =-2时,
0 0 0 1 0 1
A
2E
2
2
2

0
1
0
,
3 1 3

矩阵的对角化

矩阵的对角化

摘要矩阵的对角化指的是矩阵与对角矩阵相似,而形式最简单的对角矩阵在矩阵理论中占有重要地位,因此研究矩阵的对角化问题是很有实用价值的.矩阵是否可以对角化,是矩阵的一条很重要的性质。

对相似可对角化的充分必要条件的理解,一直是线性代数学习中的一个困难问题。

目前对于矩阵可对角化的条件,矩阵对角化的方法和矩阵对角化的运用都有了较为全面和深入的研究。

在归纳总结前人的基础之上,先给出了与对角化相关的概念,其次讨论了矩阵对角化的几个等价条件,最后总结了一些有关矩阵对角化的应用。

关键词:方阵;特征值;特征向量;对角化AbstractMatrix diagonalization refers similarity matrix and a diagonal matrix, The simplest form of a diagonal matrix plays an important role in matrix theory, Therefore Matrix diagonalization problem is very practical value.Whether matrix diagonalization matrix is a very important property. To be similar to the necessary and sufficient condition for understanding keratosis, has been one of linear algebra learning difficulties. At present more comprehensive and in-depth study of the matrix can be diagonalized conditions, matrix methods and the use of matrix diagonalization diagonalization of everything. In summarizing the basis of their predecessors, with the first given diagonalization related concepts, followed by discussion of the matrix diagonalization of several equivalent conditions and, finally, the application of some of the matrix diagonalization.Keywords: square; characteristic value; eigenvectors; diagonalization目录引言 (1)一矩阵可对角化的概念 (2)1.1 特征值、特征向量的概念 (2)1.2 矩阵可对角化的概念 (2)二矩阵可对角化的几个等价条件 (4)2.1 矩阵可对角化的充分必要条件及其证明 (4)2.2 可对角化矩阵的相似对角阵的求法及步骤 (8)三矩阵可对角化的应用 (9)3.1具体矩阵对角化的求解过程 (9)3.2矩阵对角化的应用 (13)3.2.1在反求矩阵方面的应用. (13)3.2.2 求方阵的高次幂 (14)3.2.3 求行列式的值 (15)3.2.4求一些具有线性递推关系组的数列的通项和极限 (16)3.2.5 在二次曲面上的一些应用 (17)结论 (19)致谢............................................... 错误!未定义书签。

线性代数应该这样学9:上三角矩阵、对角矩阵

线性代数应该这样学9:上三角矩阵、对角矩阵

线性代数应该这样学9:上三⾓矩阵、对⾓矩阵在本系列中,我的个⼈见解将使⽤斜体标注。

由于时间关系,移除了例题部分,可参考,如有疑问,可在评论区处留⾔。

由于⽂章是我独⾃整理的,缺乏审阅,难免出现错误,如有发现欢迎在评论区中指正。

⽬录Part 1:上三⾓矩阵本节含有许多实⽤性的结果,并且证明⼿段往往不唯⼀,应当认真体会⼀下不同证明⽅法之间的异同。

本征值的存在性有限维⾮零复向量空间上,每个算⼦均有本征值。

注意,这⾥并没有涉及本征值的个数,也不涉及重特征值问题。

设dim V=n>0,T∈L(V)。

取v∈V且v≠0,n+1个向量v,Tv,⋯,T n v线性相关,故存在不全为0的实数a0,a1,⋯,a n,使得0=a0v+a1Tv+⋯+a n T n v.如果a1=⋯=a n=0,则由于v≠0必有a0=0,这与线性相关⽭盾。

令p(z)=a0+a1z+⋯+a n z n,由上⾯的分析,它不是⼀个常值多项式,故存在λ1,⋯,λm∈C,使得p(z)=a0+a1z+⋯+a n z n=c(z−λ1)⋯(z−λm)所以0=p(T)v=c(T−λ1I)⋯(T−λm I)v⾄少存在⼀个j,使得T−λj I不可逆(否则容易得出v=0),故找到了T的⼀个本征值λj。

习题16、17分别利⽤线性映射证明本征值的存在性,下⾯给出证明。

对于T∈L(V),构造线性映射f∈L(P n(C),V),其中∀p∈P n(C),有f(p)=p(T)v∈V.由于dimP n(C)=n+1>n=dim V,所以f不是单射,存在p≠0使得p(T)v=0.显然p(z)不能是⾮零常数,由代数基本定理,可以分解为c(T−λ1I)⋯(T−λm I)=0,所以存在⼀个λj是T的特征值。

对于T∈L(V),构造线性映射g∈L(P n2(C),L(V)),其中∀p∈P n2(C),有g(p)=p(T),由于dimP n2(C)=n2+1>n2=dimL(V),所以g不是单射,存在p≠0使得p(T)=0显然p(z)不能使⾮零常数,故依旧有如上的分解。

常用的矩阵

常用的矩阵

常用的矩阵
矩阵是线性代数中一个非常重要的概念,广泛应用于计算机、数学、物理等领域。

在实际应用中,常用的矩阵有以下几种。

1. 多项式矩阵
多项式矩阵是由多项式构成的矩阵。

它的每个元素都是一个多项式,可以理解为是在向量空间中的一组基。

多项式矩阵在控制系统、信号处理等领域有着广泛的应用。

2. 对角矩阵
对角矩阵是一个主对角线元素以外的元素都为零的矩阵。

它的特点是简单、易于计算。

一些特殊的对角矩阵如单位矩阵、零矩阵等在计算中也有着很重要的作用。

3. 单位矩阵
单位矩阵是一个主对角线元素全为1,其余元素全为0的矩阵。

在矩阵乘法中,它相当于一个数乘1一样的作用,所以在一些特定场合下很有用。

4. 三角矩阵
三角矩阵是一个主对角线以下或以上的元素都为零的矩阵。

它的特点是易于计算和求逆。

而且由于其简单性,暴力枚举法可转化为线性时间复杂度算法,因此,它在计算机科学中有很广泛的应用。

5. 带状矩阵
带状矩阵的非零元素只分布在主对角线和若干个对角线上。

它的存储和计算相对于一般矩阵要节省很多的空间和时间。

所以,它在计算机图形学、信号处理、地理信息系统等领域得到广泛的应用。

总之,矩阵在现代科学技术中应用极为广泛,而以上常用的矩阵只是其中的一小部分。

我们需要掌握它们的定义、性质和基本操作,在实际运用中灵活运用。

线性代数第5章 矩阵的特征值与矩阵的对角化

线性代数第5章 矩阵的特征值与矩阵的对角化

特征向量为 kp1 (k 0)

x1 x2
x3 0
0

x1 x2
x3 0
对 2 3 2 ,解 方程组
取 x3 为自由未知量,并令 x3 =c
x1 则 x2
x3
c 0 即 c
x1 x2 x3
1
c
10

p1
1 0 1

(A 2E)x 0
4
A
2E
0
1 0
1 0
P的列向量组 p1, p2 ,..., pn 就是与特征值 1,2 ,...,n 相对应
的A的线性无关特征向量。
推论. 若n阶矩阵A有n个互不相等的特征值,则A相 似于对角阵。
若A可对角化,求对角阵及相似变换矩阵P的方法,如下:
(1)求出A的全部特征值 1,2 ,...,n ,得到对角阵的 主对角线上的元素。
1 0
同解方程组为 x1 x2 0 ,取基础解系为 p2 (1,1)T , 取
则有
1
P
(
p1 ,
p2
)
2
1
1 1
1 2 A 4 3
P1 AP
5 0
0 1
23
第三节 实对称矩阵的对角化
实对称矩阵的对角化 相关示例
一. 实对称矩阵的对角化 实对称矩阵总是可以对角化的,且相似变换矩阵 可取为正交矩阵。
特征向量在中的位置要相对应,即对角阵中第i行j列的特 征值i ,相应的特征向量 pi 应位于P中的第i列。
二. 相关示例
例.

A
1 4
2 3
求P,使 P1AP为对角矩阵。
解:(1)求A的特征值及相应的线性无关特征向量。

矩阵的对角化及其应用

矩阵的对角化及其应用

矩阵的对角化及其应用13届分类号:单位代码:10452临沂大学理学院毕业论文(设计)矩阵的对角化及其应用2013年3月20日临沂大学理学院2013届本科毕业论文(设计)摘要矩阵可对角化问题是矩阵理论中的一个重要问题,可对角化矩阵作为一类特殊的矩阵,在理论上和应用上有着十分重要的意义.本文对可对角化矩阵做出了较全面的概括和分析,并利用高等代数和线性代数的有关理论总结出了矩阵可对角化的若干条件,同时也讨论了化矩阵为对角形的方法,最后总结出可对角化矩阵在求方阵的高次幂)利用特征值求行列式的值)由特征值和特征向量反求矩阵)判断矩阵是否相似)向量空间)线性变换等方面的应用.关键词:对角化;特征值;特征向量;相似;线性变换临沂大学理学院2013届本科毕业论文(设计)ABSTRACTMatrix diagonolization problem is an important problem in matrix theory diagonolization matrix, as a kind of special matrix, in theory and application has the extremely vital significance. This paper has made diagonolization matrix analysis and generalization, and using higher algebra and linear algebra are given the relevant theory ofmatrix several conditions diagonolization, also discussed the matrix of the diagonal shape of method, and finally summarized; diagonolization matrix in high power, the policy of using eigenvalue beg determinant by characteristic value and value, feature vector reverse matrix, judgment matrix is similar, vector Spaces, the application of linear transformation, etc.Key words:The diagonalization; Eigenvalue; Feature vector; Similar; Linear transformation临沂大学理学院2013届本科毕业论文(设计)目录1 引言 (1)2矩阵对角化 (1)2.1可对角化的几个条件 (1)2.2可对角化的矩阵的性质 (3)2.3 矩阵的对角化 (5)2.3.1 用矩阵初等变换将矩阵对角化的方法 (5)2.3.2 利用内积构造齐次线性方程组的方法 (7)3 矩阵对角化的应用 (10)3.1 求具有线性递推关系( 组) 的数列的通项式与极限 (10)3.2 求解行列式的值 (14)3.3对角矩阵的其他方面的应用.................................... 15 4 结论 .......................................................... 19 参考文献 ..................................................... 19 致谢 (21)临沂大学理学院2013届本科毕业论文(设计)1 引言对角化矩阵在求解一类具有递推关系式的数列的通项与极限及一类三对角线行列式、求方阵的高次幂、利用特征值求行列式的值、由特征值和特征向量反求矩阵、判断矩阵是否相似、在向量空间、线性变换等方面的应用.对角矩阵贯穿于高等代数之中,有着十分重要的作用.定义1.1 对角矩阵是一个主对角线之外的元素皆为 0 的矩阵.对角线上的a元素可以为 0 或其他值.因此行列的矩阵= 若符合以下的性质: nnAa,,ij,ij,10,, ij,1,2,,…,nij,=0,,.形如. ,,,,01,,V定义1.2 矩阵可对角化:设是维线性空间的一个线性变换,如果存在n,V的一组基,使在这组基下的矩阵为对角矩阵,则称线性变换可对角化. ,, 定义1.3 矩阵是数域上的一个维方阵,如果存在数域上的级可逆APPnn,1TAT矩阵,使为对角矩阵,则称矩阵可对角化. AT2矩阵对角化通俗地说就是经过矩阵的一系列行、列变换(初等变换)后,能得到一个只有主对角线上元素不全为零,而其他位置全为零的另一个矩阵(这个矩阵称为对角阵),这个过程就叫做矩阵的对角化,并不是所有矩阵都能对角化. 2.1可对角化的几个条件矩阵可对角化在求矩阵的高次幂中有重要应用, 矩阵的对角化有多种判别方法.本节对矩阵对角化作一点讨论,nn,22,PABB, 引理2.1 设,,且=,,.则存在可逆矩阵,ABAABBA,P使,可同时对角化. ABnn,,Pdiag,,,,,…,引理2.2 如果=有个互不相同的对角元,对某Pn,,12nnn,,P个,则当切仅当本身是对角阵. BPBBP,BE0,,r2AA,由于任意一个幂等矩阵A必相似于对角矩阵.而且每个与对角,,,,00,,n矩阵都可以进行谱分解,即=,A,其中是的特征值,为幂等阵.那么AA,A,iiiii,1任意有限个幂等阵的线性组合是否对角化,有如下结论:1临沂大学理学院2013届本科毕业论文(设计)定理1.1 以=,为个数,Akkk,,,,,,…kkk,,…,n1122nn12nij,为个幂等阵,且两两可换,即=,,则可对,,,,,…,,,,,An,,12nijji 角化.证明为个幂等阵,且两两可换.由引理1可知,存在可逆阵,,,,,…,n12n ,1,1,使可同时对角化.即,…,,,,,,,…,,,,PPP,,,PP12n1nnnn1111 ,1,1,,,…,是对角阵PkP,PkP,.==++…Akkk,,,,,,…,,,,,,1n11221122nn,1,1PkP,PkkP,,,,,…+k++.由知,,,…,是对角阵,,,,nnnn11221n 也为对角阵,故可对角化. Akk,,,,,…+k1122nn如果矩阵只有两个不同的特征值,可有如下结论:nn,,P定理2.2 设,,为其两个不同的特征值,则可对角化存在AA,,,12 ,,,,幂等矩阵,使得=+,其中为幂等阵. ,AE,,,,211,E,,11-1证明必要性:若可对角化,存在可逆矩阵,使=相似APPAP,,11E,,,22,1PP,于对角阵,则= A,,0,,,1 = ,PEP,,,,,1,,,E,,,,21,,,,0,,,1,1,, =+, PPPEP,,,,,2111E2,,0,,,1,, =+, PP,E,,,,2111E2,,000,,,,,,,1,,112,PPPP且相似于== ,PP,,,,,,EEE222,,,,,,,,,,故为幂等阵,即存在幂等阵使得=+. ,,AE,,,211,,,,充分性:若存在使=+.因为为幂等阵,故存在可逆阵,使,AE,T,,,211 00,,,,,1,1,,,得=,则=+TT ,TTAE,,,,,,,211EE22,,,,2临沂大学理学院2013届本科毕业论文(设计),,0,,,1= ,TET,,,,,,,,E,,,,21,,,,,E,,11,1= TT,,E,22,,,E,,11,1,1TAT故= TT,,E,22,,即可对角化. AAB,如果满足条件的情况,有如下结论: ABBA=nn,nn,,P,P定理2.3 假设个互不相同的特征值,对某个个ABn有,则有AB,当且仅当同时对角化. ABBA=,1TPAP,证明必要性.由有个互不相同的特征值,则可对角化.设,AAndiag,,,,…,其中=.则T,,12,n,,11,,11,1,1,1,1PAPPBPPABPPBAPPBPPAPTPBPPBPT=====.即与T,,,,,1,1PBPPBP可交换,由引理2知是对角阵,从而是可对角化矩阵. B ,1AB,充分性.可同时对角化,故存在可逆阵,使得,PAPP,,1,1其中,为对角阵,,,1. BPP,,,,22,,11,1,1,,11=====. ABBAPPPP,,PP,,PP,,PPPP,,21121221对定理,我们可得到矩阵只有两个不同的特征值时可对角化的判别方法: A22,,=,,,,AE,,,/若,则可对角化,否则不可对角化.其中. AA,,,,122.2可对角化的矩阵的性质是数域上的一个可对角化的阶矩阵,是定理2.2.1 设APA,,,,,…,n12t 阶矩阵,使AA,,…,An的互不相同的特征根,则存在12t1+AAAA,,,,,,…; ,1122tt2+=E,EAAA,,…为单位矩阵; ,12t23AA,; ,ii,140,AAij,,,0为零矩阵,其中. ATBT,,ijii1证明由上一个阶可逆矩阵,使得 APTn,可对角化,则存在3临沂大学理学院2013届本科毕业论文(设计),0,,1,,,2,1,,TATB,, ,,…,,0,t,,其中的重数为,由于 s,ii10,,,,,,,,……,,,,,,,,10 B,,,,…+,,,,1t01,,,,,,,,……,,,,,,,,01,,,,记,所以 ,,,BBB,,…+1122tt,,11ATBTTBBBT,,,,,,,…+ ,,tt1122,,,111= TBTTBTTBT,,,,,…+t t1122,,11,,TBTTBT,…+= ,,,,tt11,1记,其中 ,,,AAA,,…+ATBT,1122tti故. AAAA,,,,,,…+1122tt 2由每个为对角形幂等阵,则, BBBE,,,…+B,12ti,1,1,,,111TET=ETBBBT,,…+===AAA,,…+TBTTBTTBT,,…+,,,t12t12t12故 AAA,,…+=E12t,,11,12,,113TBTTBT由,则== ATBT,ATBTTBT,,,,,iiiiiii,121,,1==,TBTTBBTTBTiiii=Ai2故. AA,ii,,11,1,,11TBTTBTTBBT4ij,TBTTBT当时,====0;0为零矩阵 AA,,,,,ijijijij故 AAij,,0,ij4临沂大学理学院2013届本科毕业论文(设计)15115,,,,1,2,3例2.2.1 设是数域上的矩阵.是矩阵的特征根,A,,20158PA,,,,876,,, 100231,,,,,,,,,1则存在可逆矩阵,使得=,其中T,342TAT,020B,,,,,,,,112003,,,,,,652,,,,,1, T,,431,,,,111,,,100,,,,,,,,,,,,由于,记 BBB,,23B,,,02130123,,,,,,,,,,,,001,,,,,,,,11ATBTTBBBT,,,,23所以,,123,,,111TBTTBTTBT,,23= ,,,,123,1=,其中AAA,,23ATBT,123ii,,,,,121041293111,,,,,,,,,,,,,且满足: AAA,,,,,,,18156,16124,222123,,,,,,则 ,,,,,,,,,,652431222,,,,,,123AAAA,,,; ,1232AAAE,,,; ,12323AA,i,1,2,3,; ,,,ii40,AAij,,,0为零矩阵. ,,,ij通过一个具体的可对角化矩阵,鲜明地反映了上述性质是成立的.2.3 矩阵的对角化2.3.1 用矩阵初等变换将矩阵对角化的方法VV数域P上维线性空间的一个线性变换判定其是否在中能找到一组基n使它在此基下的矩阵为对角形矩阵; 当这种基存在时, 如何去寻求它是线性代数学上一个十分重要的问题,利用矩阵的初等变换法解决此问题.,1TAT若矩阵在数域上可对角化,则有上可逆矩阵使=为对角阵.APPBT5临沂大学理学院2013届本科毕业论文(设计) 于是的主对角线上的元素即为的全体特征值,并且可表示为,BATQQQ,…12s,1,,,111i,1,2,…,s其中为初等矩阵,,于是,,又也BQQQAQQQ,……QQis1112sS,,1是初等矩阵,由初等矩阵与矩阵的初等变换的关系,即知相当于对施AQAQ11行了一次初等行变换和一次初等列变换,将此种变换称为对施行了一次相似变A注:为单位矩阵E换.又由,可进行如下初等变换,则可将化A TEQQQ,…,,12S 为对角矩阵,且可求得: BTAB,,,,对施行一系列相似变换A,对只施行其中的初等列变换. E,,,,,,,,,,,,ET,,,,当不可对角化时,也可经相似变换化简后,求得其特征值,判定它可否对角AA 化.-1,,,111T类似地,可有=,做如下的初等变换则可将化为对角形矩阵AQQQE…s11s,,且可求得或由求的特征值,判定可否对角化: BBAAT对施行一系列相似变换A,1AEBT,,,,,,,,,对对只施行其中的初等行变换. E,,,,并且在施行相似变换时,不必施行一次行变换后接着施行一次列变换这样进行,可施行若干次行(或列)变换后再施行若干次相应的列(或行)变换,只要保持变换后,最后所得矩阵与相似即可. Ajk为叙述简便,这里用表示第行,表示第列,表示用数乘第行iicrkr,riiji jk后加到第行上,表示用数乘第列后加到第列上. iickc,ij注意到初等矩阵的逆矩阵,,11,1,1PijPijPikPijkPijkPijk,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1A故用左乘A,相当于对施行了变换,右乘A,相当于对A施rkr,Pijk,,,,,ji行了变换. ckc,ji例 2.3.1 求如下矩阵的特征值,并判定它们可否对角化,若可,则将其对角化: 1111,,511,,,,,1111,,,,,,21602,,,,,,,,,1111,,,,,311,,,,1111,,,,;511,411,,,,,,,,,rr,cc,31131CC解由=,知与相似.A,,,,602,,,,402A,,,,,, ,,,,,311002,,,,C2,2,2,2EC,C易知,的特征值为的秩为,所以不可对角化,从而知的特2A6临沂大学理学院2013届本科毕业论文(设计)2,2,2,征值为且不可对角化. A11111111,2111,,,,,,,,,,,,1111,,22000200,,,,,,,,,,,,1111,,20200020,,,,,,1111,,20020002rri,,,2,3,4cci,,,2,3,4,,,,,,i11i,,,,,,,,,,,2由,,,,,,,,100010001000,,,,,,01000100,1100,,,,,,,,,,,,00100010,1010,,,,,,,,,,,,00010001,1001,,,,,,,,2000,,111,,,2,,,,0200222,,,,,,00200200,,,,,,00020020,,1,,,2,3,4rri, ,,,1i,知可对角化,的BB111400021,,,,,,,,1,,cci,,,2,3,4ii4444,,,,,,,,,,1000,,311,,,,,1,,,,,11 00444,,,,131,1010,,,,,,,1,,,,444,1001,,,,113,,,,,1,,,,444 111,,1,,444,2,,,,,,311,,2,1,,,1,,,2,2,2,2。

第七章 第五节 对角矩阵

第七章 第五节 对角矩阵
1 0 0 0 1 0 ; 0 0 1
§7.5 对角矩阵
1 0 1 0 1 0 . 1 ,2 ,3 1 , 2 , 3 1 0 1
即基 1 , 2 , 3 到 1 ,2 ,3 的过渡矩阵为
§7.5 对角矩阵
所以A可对角化.

1 2 1 3 2 T 1 0 0 1 13

2 0 0 T 1 AT 0 2 0 0 0 4
§7.5 对角矩阵
四、小结 五、作业 P321,21,23,2)利用2) 的计算结果判断是否可以对角化。
§7.5 对角矩阵
2)对角矩阵D主对角线上元素除排列次序外是唯一
确定的,它们就是 的全部特征根(重根按重数计算).
§7.5 对角矩阵
三、对角化的一般方法
设 为维线性空间V的一个线性变换, 1 , 2 ,
为V的一组基, 在这组基下的矩阵为A.
, n
步骤:
1° 求出矩阵A的全部特征值 1 , 2 ,
的一个基础解系:(-2、1、0),(1、0、1)
对于特征值-4,求出齐次方程组
7 2 1 x1 0 2 2 2 x2 0 3 6 3 x 0 3 1 2 的一个基础解系: ( , ,1) 3 3
如果 的特征多项式在数域 P 中有n个不同特征值, 则 可对角化. 特别地,(推论2) 在复数域C上的线性空间中, 如果线性变换 的特征多项式没有重根,则 可 对角化.
§7.5 对角矩阵
定理8的推广:
4. (定理9) 设 为线性空间V的一个线性变换,
1 , 2 , k 是 的不同特征值,而 i 1 , i 2 , iri 是属于

7.6 可对角化矩阵

7.6  可对角化矩阵

的特征多项式是
−3
2
−3
−2
1
+2
−2 = 3 − 12 + 16 = ( − 2)2
−6
+1
特征根是 2,2,-4.
对于特征根-4,求出齐次线性方程组
−7 −2
2 −2
−3 −6
的一个基础系
1
2
, − ,1
3

1
−2
−3
1
0
2 = 0
3
0
对于特征根 2,求出齐次线性方程组

根据归纳法假设, 1 , 2 , ⋯ , −1 线性无关,所以
( − ) = , = , , ⋯ , − .
但 1 , 2 , ⋯ 两两不同,所以 1 = 2 = ⋯ = −1 = 0 ,再代入(3),
因为 ≠ 0, 所以 = 0. 这就证明了 , , ⋯ , 线性无关。
()
+ + ⋯ + = . ∈ ,
推论7.6.2 设σ是数域F上向量空间V的一个线性变换, 1 , 2 , ⋯ , 是σ的
互不相同的特征值。又设 1 , ⋯ , , = 1, ⋯ , , 是属于特征值 的线性
无关的特征向量, 那么向量 11 , ⋯ , 11 , ⋯ , 1 , ⋯ , 线性无关.
如果等式
()
+ + ⋯ + = . ∈ ,
成立,那么以 乘(3)的两端得
()
+ + ⋯ + = .
另一方面,对(3)式两端施行线性变换σ,
注意到等式(2),我们有
()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二 矩阵的对角化 1.矩阵对角化的定义
定义 6’设 A∈ Pnn , A可看作n维线性空间 V的线性变换 / A关于某组 基的矩阵,若/A 可对角化,则称 A 在 P 上可对角化。

A


1 2
2 1
2 2
在任一数域P上可对角化。
2 2 1
2.矩阵可对角化的判别
定理 7’ A ∈ Pnn ,则 A 在 P 上可对角化的充要条件是 A 在 Pn 中有 n 个线性无关的特征向量。
定理 8 属于不同特征值的特征向量是线性无关的。
推论 1 设 / A L(V ), 若 / A的特征多项式 f / A 在数域P中有n个不同的根 。
即/A 有 n 个不同的特征值,那么/A 可对角化。 推论 2 在复数域 上的线性空间中,如果 线性变换/A 的特征多项式没有重
根,那/A 在某组基下的矩阵是对角矩阵.
V 的恒等变换.零变换都可以对角化。
例 2 设线性变换/A 在基 ε1 ,ε 2 , 3 下的矩阵是
1 2 2 A= 2 1 2
2 2 1 则 / A可以对角化。
2.线性变换可对角化的条件
定理 7 设/A 是 n 维线性空间 V 的一个线性变换,那么/A 可对角化的充 要条件是/A 有 n 个线性无关的特征向量。
§5对角矩阵
一、线性变换的对角化 1、线性变换对角化定义
定义 6 设 V 是数域 P 上 n 维线性空间,/A L(V ) ,若/A 在 V 的 某个基下的矩阵是对角矩阵,则称线性变换/A 可对角化.
例 1 设 V 是数域 P 上 n 维线性空间,/K 是由 P 中数 k 确定的数乘
变换,即 / K k ,则/K 可对角化。
习题 13 /A 是数域 P 上 n 维线性空间 V 的一个线性变换,证明:如果/A 在任意一组基下的矩阵都相同,那么/A 是数乘变换。
n
注意:若 A 相似于对角矩阵.则对角矩阵主对角线上的元素正是 A 的所有特征值。
例 3 设 R 上的矩阵 1 4 2
A 0 3 4 0 4 3
(1)证明 A 可对角化;
(2) 求可逆矩阵 T 使 T 1 AT为对角矩阵 ;
(3)求 A100 =?
习题 12 设 V 是数域 P 上 n 维线性空间,证明:V 的与全体线性变换可以 交换的线性变换是数乘变换.
定理 10 设 V 是数域 P 上的 n 维线性空间,/A∈L(V), 1, 2 ,, r
r
是/A 的全部不同的特征值,则/A 可对角化 dim Vi n 。 i 1 定理 11 设 V 是数域 P 上 n 维线性空间,/A∈L(V),/A 可对角化.则 /A 相应的对角矩阵主对角线上元素除排列次序外是唯一确定的,它们正是 f/ A 全部的根(重根按重数计算)。
定 理 9 如 果 1, 2 ,, k 是 线 性 变 换 /A 的 不 同 的 特 征 值 , 而
i1,i2 ,, iri 是属于特征值 i的线性无关的特征向量 , i 1,2,, k , 那么向量组11,12 ,,1r1 ,, k1, k 2 ,, krk 也线性无关。
r
P 上可对角化 dim Vi n 。 i 1
定理 12 设 A∈ Pnn ,则 A 可对角化 A 相似于对角阵。即存在 P
上 n 阶可逆矩阵 T 使
1 0 0
T
1 AT


0
0
2

0
Βιβλιοθήκη 0 , 其中i

P, i
1,2,, n

推论 1’ 设 A∈ Pnn ,若 A 在数域 P 上有 n 个不同的特征值,则 A 可对角化。
推论 2’ 设 A 是复矩阵,若 f A 在复数域上的根都是单根,则 A 可对角化。
定理 10’ 设 A∈ Pnn , 1, 2 ,, r 是 A 在 P 中全部不同的特征值,则 A 在
相关文档
最新文档