中考数学二次函数压轴题(含答案)
四川省广安市2020年九年级数学中考复习:二次函数压轴 练习(Word版,含答案)

四川省广安市2020 年中考九年级数学二次函数压轴题练习1、如图,在平面直角坐标系 xOy 中,以M 为顶点的抛物线与 x 轴分别相交于 B,C 两点,抛物线上一点 A 的横坐标为 2,连接 AB,AC,正方形 DEFG 的一边 GF 在线段 BC 上,点 D,E 在线段 AB,AC 上,AK⊥x 轴于点 K,交 DE 于点H,下表给出了这条抛物线上部分点(x,y)的坐标值:x…﹣204810…y…05950…(2)求正方形 DEFG 的边长;(3)请问在抛物线的对称轴上是否存在点 P,在 x 轴上是否存在点 Q,使得四边形 ADQP 的周长最小?若存在,请求出P,Q 两点的坐标;若不存在,请说明理由.2、如图所示,抛物线y=ax2+bx+4与x轴交于A,B两点,与y轴交于C点,且A(﹣2,0)、B(4,0),其原点为D,连接BD,点P是线段BD上的一个动点(不与B、D重合),过点P作y 轴的垂线,垂足为 E,连接 BE.(1)求抛物线的解析式,并写出原点 D 的坐标;(2)设P点的坐标为(x,y),△PBE的面积为S,求S与x之间的函数关系式,写出自变量x 的取值范围,并求出 S 的最大值;(3)在(2)的条件下,当 S 取值最大值时,过点 P 作x 轴的垂线,垂足为 F,连接 EF,△PEF 沿直线 EF 折叠,点 P 的对应点为点 P′,请直接写出 P′点的坐标,并判断点 P′是否在该抛物线上.3、如图,抛物线y=﹣x2+bx+c与x轴分别相交于点A(﹣2,0),B(4,0),与y轴交于点C,顶点为点 P.(1)求抛物线的解析式;(2)动点 M、N 从点O 同时出发,都以每秒 1 个单位长度的速度分别在线段 OB、OC 上向点B、C 方向运动,过点 M 作 x 轴的垂线交 BC 于点 F,交抛物线于点 H.①当四边形 OMHN 为矩形时,求点 H 的坐标;②是否存在这样的点 F,使△PFB 为直角三角形?若存在,求出点 F 的坐标;若不存在,请说明理由.4、如图,边长为1 的正方形ABCD 一边AD 在x 负半轴上,直线x+2 经过点B(x,1)与x轴,y轴分别交于点H,F,抛物线y=﹣x2+bx+c.(1)求 A,D 两点的坐标及抛物线经过 A,D 两点时的解析式;(2)当动点 E(m,n)在直线 l 上运动时,连接 EA,ED,试求△EAD 的面积 S 与m 之间的函数解析式,并写出 m 的取值范围;(3)设抛物线与 y 轴交于G 点,当动点 E 在直线 l 上运动时,以 A,C,E,G 为顶点的四边形能否成为平行四边形?若能,求出 E 点坐标;若不能,请说明理由.5、如图,已知抛物线y=ax2+bx+c与x轴交于点A、B,与直线AC:y=﹣x﹣6交y轴于点C,点D 是抛物线的顶点,且横坐标为﹣2.(1)求出抛物线的解析式.(2)判断△ACD 的形状,并说明理由.(3)直线 AD 交y 轴于点F,在线段 AD 上是否存在一点 P,使∠ADC=∠PCF?若存在,直接写出点 P 的坐标;若不存在,说明理由.26、如图,已知二次函数y1=﹣x+x+c的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A、B的直线为y2=kx+b.(1)求二次函数y1的解析式及点B的坐标;(2)由图象写出满足y1<y2的自变量x的取值范围;(3)在两坐标轴上是否存在点 P,使得△ABP 是以AB 为底边的等腰三角形?若存在,求出P 的坐标;若不存在,说明理由.2 7、已知抛物线 E 1:y=x 经过点 A (1,m ),以原点为顶点的抛物线 E 2 经过点 B (2,2),点 A、B 关于 y 轴的对称点分别为点 A ′,B ′.(1)求 m 的值及抛物线 E 2 所表示的二次函数的表达式; (2)如图 1,在第一象限内,抛物线 E 1 上是否存在点 Q ,使得以点 Q 、B 、B ′为顶点的三角形为直角三角形?若存在,求出点 Q 的坐标;若不存在,请说明理由; (3)如图 2,P 为第一象限内的抛物线 E 1 上与点 A 不重合的一点,连接 OP 并延长与抛物线 E 2 相交于点 P ′,求△PAA ′与△P ′BB ′的面积之比.28、如图,曲线 y 1 抛物线的一部分,且表达式为:y 1=(x ﹣2x ﹣3)(x ≤3)曲线 y 2与曲 线 y 1 关于直线 x=3 对称. (1)求 A 、B 、C 三点的坐标和曲线 y 2 的表达式; (2)过点 D 作 CD ∥x 轴交曲线 y 1 于点 D ,连接 AD ,在曲线 y 2 上有一点 M ,使得四边形 ACDM 为筝形(如果一个四边形的一条对角线被另一条对角线垂直平分,这样的四边形为筝形),请求出点 M 的横坐标; (3)设直线 CM 与 x 轴交于点 N ,试问在线段 MN 下方的曲线 y 2 上是否存在一点 P ,使△PMN 的面积最大?若存在,求出点 P 的坐标;若不存在,请说明理由.9、如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与 x 轴交于点 B.(1)若直线 y=mx+n 经过 B、C 两点,求直线 BC 和抛物线的解析式;(2)在抛物线的对称轴 x=﹣1 上找一点 M,使点 M 到点A 的距离与到点 C 的距离之和最小,求出点 M 的坐标;(3)设点 P 为抛物线的对称轴 x=﹣1 上的一个动点,求使△BPC 为直角三角形的点 P 的坐标.10、如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标);(3)有一个点 M 从点A 出发,以每秒 1 个单位的速度在 AB 上向点 B 运动,另一个点 N 从点D 与点M 同时出发,以每秒 2 个单位的速度在抛物线的对称轴上运动,当点 M 到达点 B 时,点M、N 同时停止运动,问点 M、N 运动到何处时,△MNB 面积最大,试求出最大面积.11、已知直线 y=kx+b (k ≠0)过点 F (0,1),与抛物线 y= x 2 相交于 B 、C 两点.(1)如图 1,当点 C 的横坐标为 1 时,求直线 BC 的解析式;(2)在(1)的条件下,点 M 是直线 BC 上一动点,过点 M 作 y 轴的平行线,与抛物线交于点 D ,是否存在这样的点 M ,使得以 M 、D 、O 、F 为顶点的四边形为平行四边形?若存在,求出点 M 的坐标;若不存在,请说明理由; (3)如图 2,设 B (m .n )(m <0),过点 E (0.﹣1)的直线 l ∥x 轴,BR ⊥l 于 R ,CS ⊥l 于 S ,连接 FR 、FS .试判断△RFS 的形状,并说明理由.12、如图,已知二次函数 y=x 2+(1﹣m )x ﹣m (其中 0<m <1)的图象与 x 轴交于 A 、B 两点 (点 A 在点 B 的左侧),与 y 轴交于点 C ,对称轴为直线 l .设 P 为对称轴 l 上的点,连接 PA 、PC ,PA=PC (1)∠ABC 的度数为45°; (2)求 P 点坐标(用含 m 的代数式表示); (3)在坐标轴上是否存在着点 Q (与原点 O 不重合),使得以 Q 、B 、C 为顶点的三角形与△ PAC 相似,且线段 PQ 的长度最小?如果存在,求出所有满足条件的点 Q 的坐标;如果不存在,请说明理由..在点B的左侧),交y轴于点W,顶点为C,抛物线的对称轴与x轴的交点为D.(1)求直线 BC 的解析式;(2)点E(m,0),F(m+2,0)为x轴上两点,其中2<m<4,EE′,FF′分别垂直于x 轴,交抛物线于点 E′,F′,交 BC 于点M,N,当 ME′+NF′的值最大时,在 y 轴上找一点R,使|RF′﹣RE′|的值最大,请求出 R 点的坐标及|RF′﹣RE′|的最大值;(3)如图2,已知x轴上一点P (,0),现以P为顶点,2为边长在x轴上方作等边三角形Q PG,使G P⊥x 轴,现将△QPG 沿P A 方向以每秒1个单位长度的速度平移,当点P到达点A 时停止,记平移后的△QPG 为△Q′P′G′.设△Q′P′G′与△ADC 的重叠部分面积为s.当 Q′到 x 轴的距离与点 Q′到直线 AW 的距离相等时,求 s 的值.14、如图,已知抛物线y=ax2+bx+c的顶点D的坐标为(1,﹣),且与x轴交于A、B两点,与y轴交于C点,A点的坐标为(4,0).P点是抛物线上的一个动点,且横坐标为m.(l)求抛物线所对应的二次函数的表达式;(2)若动点 P 满足∠PAO 不大于 45°,求 P 点的横坐标 m 的取值范围;(3)当P 点的横坐标 m<0 时,过P 点作y 轴的垂线 PQ,垂足为 Q.问:是否存在 P 点,使∠QPO=∠BCO?若存在,请求出 P 点的坐标;若不存在,请说明理由.15、如图,已知抛物线y=﹣(x2﹣7x+6)的顶点坐标为M,与x轴相交于A,B两点(点B 在点A的右侧),与y轴相交于点C.(1)用配方法将抛物线的解析式化为顶点式:y=a(x﹣h)2+k(a≠0),并指出顶点M的坐标;(2)在抛物线的对称轴上找点 R,使得 CR+AR 的值最小,并求出其最小值和点 R 的坐标;(3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是⊙N的切线.。
2023年中考数学压轴题专题23 二次函数推理计算与证明综合问题【含答案】

专题23二次函数推理计算与证明综合问题【例1】(2022•北京)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c (a>0)上,设抛物线的对称轴为直线x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t的取值范围及x0的取值范围.【例2】(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.【例3】(2022•青岛)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P (2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.【例4】(2022•杭州)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x ﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.【例5】(2022•安顺)在平面直角坐标系中,如果点P的横坐标和纵坐标相等,则称点P为和谐点.例如:点(1,1),(,),(﹣,﹣),……都是和谐点.(1)判断函数y=2x+1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点(,).①求a,c的值;②若1≤x≤m时,函数y=ax2+6x+c+(a≠0)的最小值为﹣1,最大值为3,求实数m 的取值范围.一.解答题(共20题)1.(2022•瑞安市校级三模)已知抛物线y=ax2﹣2ax﹣2+a2(a≠0).(1)求这条抛物线的对称轴;若该抛物线的顶点在x轴上,求a的值;(2)设点P(m,y1),Q(4,y2)在抛物线上,若y1<y2,求m的取值范围.2.(2022•西城区校级模拟)在平面直角坐标系xOy中,点A(x1,y1)、点B(x2,y2)为抛物线y=ax2﹣2ax+a(a≠0)上的两点.(1)求抛物线的对称轴;(2)当﹣2<x1<﹣1且1<x2<2时,试判断y1与y2的大小关系并说明理由;(3)若当t<x1<t+1且t+2<x2<t+3时,存在y1=y2,求t的取值范围.3.(2022•新野县三模)在平面直角坐标系中,已知抛物线y=ax2﹣4ax+2.(1)抛物线的对称轴为直线,抛物线与y轴的交点坐标为;(2)若当x满足1≤x≤5时,y的最小值为﹣6,求此时y的最大值.4.(2022•萧山区二模)在平面直角坐标系中,已知二次函数y=ax2+(a﹣1)x﹣1.(1)若该函数的图象经过点(1,2),求该二次函数图象的顶点坐标.(2)若(x1,y1),(x1,y2)为此函数图象上两个不同点,当x1+x2=﹣2时,恒有y1=y2,试求此函数的最值.(3)当a<0且a≠﹣1时,判断该二次函数图象的顶点所在象限,并说明理由.5.(2022•盈江县模拟)抛物线C1:y=x2+bx+c的对称轴为x=1,且与y轴交点的纵坐标为﹣3.(1)求b,c的值;(2)抛物线C2:y=﹣x2+mx+n经过抛物线C1的顶点P.①求证:抛物线C2的顶点Q也在抛物线C1上;②若m=8,点E是在点P和点Q之间抛物线C1上的一点,过点E作x轴的垂线交抛物线C2于点F,求EF长度的最大值.6.(2022•沂水县二模)抛物线y=ax2+bx经过点A(﹣4,0),B(1,5);点P(2,c),Q (x0,y0)是抛物线上的点.(1)求抛物线的顶点坐标;(2)若x0>﹣6,比较c、y0的大小;(3)若直线y=m与抛物线交于M、N两点,(M、N两点不重合),当MN≤5时,求m的取值范围.7.(2022•姜堰区二模)设一次函数y1=2x+m+n和二次函数y2=x(2x+m)+n.(1)求证:y1,y2的图象必有交点;(2)若m>0,y1,y2的图象交于点A(x1,a)、B(x2,b),其中x1<x2,设C(x3,b)为y2图象上一点,且x3≠x2,求x3﹣x1的值;(3)在(2)的条件下,如果存在点D(x1+2,c)在y2的图象上,且a>c,求m的取值范围.8.(2022•西城区校级模拟)已知抛物线y=x2﹣4mx+4m2﹣1.(1)求此抛物线的顶点的坐标;(2)若直线y=n与该抛物线交于点A、B,且AB=4,求n的值;(3)若这条抛物线经过点P(2m+1,y1),Q(2m﹣t,y2),且y1<y2,求t的取值范围.9.(2022•黄岩区一模)在平面直角坐标系中,已知抛物线y1=ax2+bx+3与直线y2=x+1.(1)当抛物线y1=ax2+bx+3与直线y2=x+1两个交点的横坐标分别为﹣1和2时.①求抛物线解析式;②直接写出当y1>y2,时x的取值范围;(2)设y=y1﹣y2,当x=m时y=M,x=n时y=N,当m+n=1(m≠n)时,M=N.求证:a+b=1.10.(2022•路桥区一模)在平面直角坐标系中,已知二次函数y=x2﹣(m+2)x+m(m是常数).(1)求证:不论m取何值,该二次函数的图象与x轴总有两个交点;(2)若点A(2m+1,7)在该二次函数的图象上,求该二次函数的解析式;(3)在(2)的条件下,若抛物线y=x2﹣(m+2)x+m与直线y=x+t(t是常数)在第四象限内有两个交点,请直接写出t的取值范围.11.(2022•安徽模拟)已知:抛物线y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)若抛物线经过(﹣1,﹣2)时,求抛物线解析式;(2)设P点的纵坐标为y p,当y p取最小值时,抛物线上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)若线段AB两端点坐标分别是A(0,2),B(2,2),当抛物线与线段AB有公共点时,直接写出m的取值范围.12.(2022•富阳区一模)已知抛物线y=a(x﹣1)(x﹣).(1)若抛物线过点(2,1),求抛物线的解析式;(2)若该抛物线上任意不同两点M(x1,y1)、N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,试判断点(2,﹣9)在不在此抛物线上;(3)抛物线上有两点E(0,n)、F(b,m),当b≤﹣2时,m≤n恒成立,试求a的取值范围.13.(2022•河东区二模)已知抛物线y=a(x+3)(x﹣4)与y轴交于点A(0,﹣2).(Ⅰ)求抛物线y=a(x+3)(x﹣4)的解析式及顶点坐标;(Ⅱ)设抛物线与x轴的正半轴的交点为点B,点P为x轴上一动点,点D满足∠DPA=90°,PD=PA.(i)若点D在抛物线上,求点D的坐标;(ii)点E(2,﹣)在抛物线上,连接PE,当PE平分∠APD时,求出点P的坐标.14.(2022•长春模拟)在平面直角坐标系中,已知抛物线y=x2+bx+c(b、c是常数)经过点(0,﹣1)和(2,7),点A在这个抛物线上,设点A的横坐标为m.(1)求此抛物线对应的函数表达式并写出顶点C的坐标.(2)点B在这个抛物线上(点B在点A的左侧),点B的横坐标为﹣1﹣2m.①当△ABC是以AB为底的等腰三角形时,求OABC的面积.②将此抛物线A、B两点之间的部分(包括A、B两点)记为图象G,当顶点C在图象G 上,记图象G最高点的纵坐标与最低点的纵坐标的差为h,求h与m之间的函数关系式.(3)设点D的坐标为(m,2﹣m),点E的坐标为(1﹣m,2﹣m),点F在坐标平面内,以A、D、E、F为顶点构造矩形,当此抛物线与矩形有3个交点时,直接写出m的取值范围.15.(2022•长春二模)在平面直角坐标系中,抛物线y=x2﹣2mx+m2与y轴的交点为A,过点A作直线l垂直于y轴.(1)求抛物线的对称轴(用含m的式子表示);(2)将抛物线在y轴右侧的部分沿直线l翻折,其余部分保持不变,组成图形G,点M(x1,y1),N(x2,y2)为图形G上任意两点.①当m=0时,若x1<x2,判断y1与y2的大小关系,并说明理由;②若对于x1=m﹣1,x2=m+1,都有y1>y2,求m的取值范围;(3)当图象G与直线y=m+2恰好有3个公共点时,直接写出m的取值范围.16.(2022•开福区校级一模)已知:抛物线C1:y=ax2+bx+c(a>0).(1)若顶点坐标为(1,1),求b和c的值(用含a的代数式表示);(2)当c<0时,求函数y=﹣2022|ax2+bx+c|﹣1的最大值;(3)若不论m为任何实数,直线与抛物线C1有且只有一个公共点,求a,b,c的值;此时,若k≤x≤k+1时,抛物线的最小值为k,求k的值.17.(2022•安徽模拟)已知二次函数y=ax2﹣x+c的图象经过点A(﹣2,2),该图象与直线x=2相交于点B.(1)求点B的坐标;(2)当c>0时,求该函数的图象顶点纵坐标的最小值;(3)点M(m,0)、N(n,0)是该函数图象与x轴的两个交点.当m>﹣2,n<3时,结合函数图象分析a的取值范围.18.(2022•江都区一模)对某一个函数给出如下定义:如果存在实数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数.在所有满足条件的M中,其最小值称为这个函数的上确界.例如,函数y=﹣(x﹣3)2+2是有上界函数,其上确界是2.(1)函数①y=x2+2x+1和②y=2x﹣3(x≤5)中是有上界函数的为(只填序号即可),其上确界为;(2)若反比例函数y=(a≤x≤b,a>0)的上确界是b+1,且该函数的最小值为2,求a、b的值;(3)如果函数y=﹣x2+2ax+2(﹣1≤x≤3)是以6为上确界的有上界函数,求实数a的值.19.(2022•亭湖区校级一模)已知抛物线y=ax2﹣(3a﹣1)x﹣2(a为常数且a≠0)与y 轴交于点A.(1)点A的坐标为;对称轴为(用含a的代数式表示);(2)无论a取何值,抛物线都过定点B(与点A不重合),则点B的坐标为;(3)若a<0,且自变量x满足﹣1≤x≤3时,图象最高点的纵坐标为2,求抛物线的表达式;(4)将点A与点B之间的函数图象记作图象M(包含点A、B),若将M在直线y=﹣2下方的部分保持不变,上方的部分沿直线y=﹣2进行翻折,可以得到新的函数图象M1,若图象M1上仅存在两个点到直线y=﹣6的距离为2,求a的值.20.(2022•义安区模拟)已知抛物线的图象经过坐标原点O.(1)求抛物线解析式.(2)若B,C是抛物线上两动点,直线BC:y=kx+b恒过点(0,1),设直线OB为y=k1x,直线OC为y=k2x.①若B、C两点关于y轴对称,求k1k2的值.②求证:无论k为何值,k1k2为定值.【例1】(2022•北京)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c (a>0)上,设抛物线的对称轴为直线x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t的取值范围及x0的取值范围.【分析】(1)将点(1,m),(3,n)代入抛物线解析式,再根据m=n得出b=﹣4a,再求对称轴即可;(2)再根据m<n<c,可确定出对称轴的取值范围,进而可确定x0的取值范围.【解答】解:(1)将点(1,m),(3,n)代入抛物线解析式,∴,∵m=n,∴a+b+c=9a+3b+c,整理得,b=﹣4a,∴抛物线的对称轴为直线x=﹣=﹣=2;∴t=2,∵c=2,∴抛物线与y轴交点的坐标为(0,2).(2)∵m<n<c,∴a+b+c<9a+3b+c<c,解得﹣4a<b<﹣3a,∴3a<﹣b<4a,∴<﹣<,即<t<2.当t=时,x0=2;当t=2时,x0=3.∴x0的取值范围2<x0<3.【例2】(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.【分析】(1)将图象经过的两个点的坐标代入二次函数解析式解答即可;(2)根据x的取值范围,二次函数图象的开口方向和对称轴,结合二次函数的性质判定y 的最大值即可;(3)根据对称轴为x=﹣3,结合二次函数图象的性质,分类讨论得出m的取值范围即可.【解答】解:(1)把(0,﹣3),(﹣6,﹣3)代入y=﹣x2+bx+c,得b=﹣6,c=﹣3.(2)∵y=﹣x2﹣6x﹣3=﹣(x+3)2+6,又∵﹣4≤x≤0,∴当x=﹣3时,y有最大值为6.(3)①当﹣3<m≤0时,当x=0时,y有最小值为﹣3,当x=m时,y有最大值为﹣m2﹣6m﹣3,∴﹣m2﹣6m﹣3+(﹣3)=2,∴m=﹣2或m=﹣4(舍去).②当m≤﹣3时,当x=﹣3时y有最大值为6,∵y的最大值与最小值之和为2,∴y最小值为﹣4,∴﹣(m+3)2+6=﹣4,∴m=或m=(舍去).综上所述,m=﹣2或.【例3】(2022•青岛)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P (2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.【分析】(1)将(2,4)代入解析式求解.(2)由判别式Δ的符号可判断抛物线与x轴交点个数.【解答】解:(1)将(2,4)代入y=x2+mx+m2﹣3得4=4+2m+m2﹣3,解得m1=1,m2=﹣3,又∵m>0,∴m=1.(2)∵m=1,∴y=x2+x﹣2,∵Δ=b2﹣4ac=12+8=9>0,∴二次函数图象与x轴有2个交点.【例4】(2022•杭州)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x ﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.【分析】(1)根据A、B两点的坐标特征,可设函数y1的表达式为y1=2(x﹣x1)(x﹣x2),其中x1,x2是抛物线与x轴交点的横坐标;(2)把函数y1=2(x﹣h)2﹣2,化成一般式,求出对应的b、c的值,再根据b+c式子的特点求出其最小值;(3)把y1,y2代入y=y1﹣y2求出y关于x的函数表达式,再根据其图象过点(x0,0),把(x0,0)代入其表达式,形成关于x0的一元二次方程,解方程即可.【解答】解:(1)∵二次函数y1=2x2+bx+c过点A(1,0)、B(2,0),∴y1=2(x﹣1)(x﹣2),即y1=2x2﹣6x+4.∴抛物线的对称轴为直线x=﹣=.(2)把y1=2(x﹣h)2﹣2化成一般式得,y1=2x2﹣4hx+2h2﹣2.∴b=﹣4h,c=2h2﹣2.∴b+c=2h2﹣4h﹣2=2(h﹣1)2﹣4.把b+c的值看作是h的二次函数,则该二次函数开口向上,有最小值,∴当h=1时,b+c的最小值是﹣4.(3)由题意得,y=y1﹣y2=2(x﹣m)(x﹣m﹣2)﹣(x﹣m)=(x﹣m)[2(x﹣m)﹣5].∵函数y的图象经过点(x0,0),∴(x0﹣m)[2(x0﹣m)﹣5]=0.∴x0﹣m=0,或2(x0﹣m)﹣5=0.即x0﹣m=0或x0﹣m=.【例5】(2022•安顺)在平面直角坐标系中,如果点P的横坐标和纵坐标相等,则称点P为和谐点.例如:点(1,1),(,),(﹣,﹣),……都是和谐点.(1)判断函数y=2x+1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点(,).①求a,c的值;②若1≤x≤m时,函数y=ax2+6x+c+(a≠0)的最小值为﹣1,最大值为3,求实数m 的取值范围.【分析】(1)设函数y=2x+1的和谐点为(x,x),可得2x+1=x,求解即可;(2)将点(,)代入y=ax2+6x+c,再由ax2+6x+c=x有且只有一个根,Δ=25﹣4ac =0,两个方程联立即可求a、c的值;②由①可知y=﹣x2+6x﹣6=﹣(x﹣3)2+3,当x=1时,y=﹣1,当x=3时,y=3,当x=5时,y=﹣1,则3≤m≤5时满足题意.【解答】解:(1)存在和谐点,理由如下,设函数y=2x+1的和谐点为(x,x),∴2x+1=x,解得x=﹣1,∴和谐点为(﹣1,﹣1);(2)①∵点(,)是二次函数y=ax2+6x+c(a≠0)的和谐点,∴=a+15+c,∴c=﹣a﹣,∵二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点,∴ax2+6x+c=x有且只有一个根,∴Δ=25﹣4ac=0,∴a=﹣1,c=﹣;②由①可知y=﹣x2+6x﹣6=﹣(x﹣3)2+3,∴抛物线的对称轴为直线x=3,当x=1时,y=﹣1,当x=3时,y=3,当x=5时,y=﹣1,∵函数的最大值为3,最小值为﹣1;当3≤m≤5时,函数的最大值为3,最小值为﹣1.一.解答题(共20题)1.(2022•瑞安市校级三模)已知抛物线y=ax2﹣2ax﹣2+a2(a≠0).(1)求这条抛物线的对称轴;若该抛物线的顶点在x轴上,求a的值;(2)设点P(m,y1),Q(4,y2)在抛物线上,若y1<y2,求m的取值范围.【分析】(1)把解析式化成顶点式,根据顶点式求得对称轴和顶点坐标,根据顶点在x轴上得到关于a的方程,解方程求得a的值;(2)根据二次函数的性质,分两种情况即可求出m的范围.【解答】解:(1)∵抛物线y=ax2﹣2ax﹣2+a2=a(x﹣1)2+a2﹣a﹣2,∴抛物线的对称轴为直线x=1.若抛物线的顶点在x轴上,则a2﹣a﹣2=0,∴a=2或﹣1.(2)∵抛物线的对称轴为直线x=1,则Q(4,y2)关于直线x=1对称点的坐标为(﹣2,y2),∴当a>0时,若y1<y2,m的取值范围为:﹣2<m<4;当a<0时,若y1<y2,m的取值范围为:m<﹣2或m>4.2.(2022•西城区校级模拟)在平面直角坐标系xOy中,点A(x1,y1)、点B(x2,y2)为抛物线y=ax2﹣2ax+a(a≠0)上的两点.(1)求抛物线的对称轴;(2)当﹣2<x1<﹣1且1<x2<2时,试判断y1与y2的大小关系并说明理由;(3)若当t<x1<t+1且t+2<x2<t+3时,存在y1=y2,求t的取值范围.【分析】(1)先化抛物线的表达式为y=a(x﹣1)2+1,依此可求抛物线的对称轴;(2)利用二次函数性质即可求得答案;(3)利用二次函数性质存在A到对称轴的距离与B到对称轴的距离相等即可解答.【解答】解:(1)y=ax2﹣2ax+a=a(x﹣1)2,∴抛物线的对称轴为x=1;(2)∵﹣2<x1<﹣1,1<x2<2,∴1﹣x1>1﹣x2,∴A离对称轴越远,若a>0,开口向上,则y1>y2,若a<0,开口向下,则y1<y2,(3)∵t<x1<t+1,t+2<x2<t+3,存在y1=y2,则t+1<1且t+2>1,∴t<0且t>1,∴存在1﹣x1=x2﹣1,即存在A到对称轴的距离与B到对称轴的距离相等,∴1﹣t>t+2﹣1且1﹣(t+1)<t+3﹣1,∴﹣1<t<0.3.(2022•新野县三模)在平面直角坐标系中,已知抛物线y=ax2﹣4ax+2.(1)抛物线的对称轴为直线x=2,抛物线与y轴的交点坐标为(0,2);(2)若当x满足1≤x≤5时,y的最小值为﹣6,求此时y的最大值.【分析】(1)由对称轴方程,将对应系数代入可得,令抛物线解析式中的x=0,求得y,答案可得;(2)利用当x满足1≤x≤5时,y的最小值为﹣6,可求得a的值,再利用二次函数图象的特点可确定y的最大值.【解答】解:(1)∵抛物线y=ax2﹣4ax+2的对称轴为直线x=﹣=2.令x=0,则y=2.∴抛物线y=ax2﹣4ax+2与y轴的交点为(0,2).故答案为:x=2;(0,2).(2)∵抛物线y=ax2﹣4ax+2的对称轴为直线x=2,∴顶点在1≤x≤5范围内,∵当x满足1≤x≤5时,y的最小值为﹣6,∴当a<0时,抛物线开口向下,x=5时y有最小值﹣6,∴25a﹣20a+2=﹣6,解得a=﹣,∴抛物线为y=﹣x2+x+2当x=2时,y=﹣×22+×2+2=,∴此时y的最大值为.当a>0,抛物线开口向上,x=2时y有最小值﹣6,∴4a﹣8a+2=﹣6,解得a=2,∴抛物线为y=2x2﹣8x+2,当x=5时,y=2×25﹣8×5+2=12,∴此时y的最大值12.综上,y的最大值为12.4.(2022•萧山区二模)在平面直角坐标系中,已知二次函数y=ax2+(a﹣1)x﹣1.(1)若该函数的图象经过点(1,2),求该二次函数图象的顶点坐标.(2)若(x1,y1),(x1,y2)为此函数图象上两个不同点,当x1+x2=﹣2时,恒有y1=y2,试求此函数的最值.(3)当a<0且a≠﹣1时,判断该二次函数图象的顶点所在象限,并说明理由.【分析】(1)直接将点(1,2)代入即可求得a的值,然后根据顶点公式求得即可;(2)利用题意,﹣===﹣1求解a,然后把解析式化成顶点式,根据二次函数的性质即可得到结论;(3)利用顶点公式求得x=﹣=﹣+,y==﹣,由a<0且a≠﹣1即可判断x<0,y>0,即可得到该二次函数图象的顶点在第二象限.【解答】解:(1)∵函数图象过点(1,2),∴将点代入y=ax2+(a﹣1)x﹣1,解得a=2,∴二次函数的解析式为y=2x2+x﹣1,∴x=﹣=﹣,∴y=2×﹣﹣1=﹣,∴该二次函数的顶点坐标为(﹣,﹣);(2)函数y=ax2+(a﹣1)x﹣1的对称轴是直线x=﹣,∵(x1,y1),(x2,y2)为此二次函数图象上的两个不同点,且x1+x2=﹣2,则y1=y2,∴﹣===﹣1,∴a=﹣1,∴y=﹣x2﹣2x﹣1=﹣(x+1)2≤0,∴当x=﹣1时,函数有最大值0;(3)∵y=ax2+(a﹣1)x﹣1,∴由顶点公式得:x=﹣=﹣+,y==﹣,∵a<0且a≠﹣1,∴x<0,y>0,∴该二次函数图象的顶点在第二象限.5.(2022•盈江县模拟)抛物线C1:y=x2+bx+c的对称轴为x=1,且与y轴交点的纵坐标为﹣3.(1)求b,c的值;(2)抛物线C2:y=﹣x2+mx+n经过抛物线C1的顶点P.①求证:抛物线C2的顶点Q也在抛物线C1上;②若m=8,点E是在点P和点Q之间抛物线C1上的一点,过点E作x轴的垂线交抛物线C2于点F,求EF长度的最大值.【分析】(1)根据对称轴公式x=﹣,即可求出b的值,由抛物线与y轴交点的纵坐标为﹣3即可求得c的值;(2)①由(1)可得抛物线C1的解析式,从而可得抛物线C1的顶点P的坐标,由抛物线C2经过抛物线C1的顶点可得n=﹣m﹣3,从而可得抛物线C2为:y=﹣x2+mx﹣m﹣3,根据对称轴公式x=﹣,即可求出顶点Q的坐标,再将点Q的横坐标代入抛物线C1的解析式中,即可证明;②先分别求出点P和点Q的横坐标,由①可得n=﹣11,设点E横坐标为x,由点E在抛物线C1上可表示出纵坐标,由题可知点F与点E横坐标相同,代入抛物线C2的解析式中可得点F纵坐标,即可求解.【解答】(1)解:∵抛物线C1:y=x2+bx+c对称轴为x=1,且与y轴交点的纵坐标为﹣3,∴x=﹣=1,c=﹣3,∴b=﹣2;(2)①证明:∵抛物线C1的解析式为:y=x2﹣2x﹣3,∴顶点P的坐标为:(1,﹣4),∵抛物线C2经过抛物线C1的顶点,∴﹣4=﹣12+m+n,∴n=﹣m﹣3,∴抛物线C2为:y=﹣x2+mx﹣m﹣3,∴对称轴为:直线x=﹣=,将x=代入y=﹣x2+mx﹣m﹣3,得:y=﹣m﹣3,∴点Q坐标为:(,﹣m﹣3),将x=代入y=x2﹣2x﹣3,得:y=﹣m﹣3,∴点Q也在抛物线C1上;②解:由①知n=﹣m﹣3,∵m=8,∴n=﹣11,∴抛物线C2的解析式为:y=﹣x2+8x﹣11,对称轴为:直线x==4,设点E横坐标为x,∵点E是在点P和点Q之间抛物线C1上的一点,∴点E坐标为(x,x2﹣2x﹣3),1<x<4,∵过点E作x轴的垂线交抛物线C2于点F,∴点F横坐标为x,∴点F坐标为(x,﹣x2+8x﹣11),∴EF=﹣x2+8x﹣11﹣(x2﹣2x﹣3)=﹣x2+8x﹣11﹣x2+2x+3=﹣2x2+10x﹣8=﹣2(x2﹣5x+4)=﹣2(x2﹣5x+)+=﹣2(x﹣)2+,∴当x=时,EF取得最大值,最大值为,∴EF长度的最大值为.6.(2022•沂水县二模)抛物线y=ax2+bx经过点A(﹣4,0),B(1,5);点P(2,c),Q (x0,y0)是抛物线上的点.(1)求抛物线的顶点坐标;(2)若x0>﹣6,比较c、y0的大小;(3)若直线y=m与抛物线交于M、N两点,(M、N两点不重合),当MN≤5时,求m的取值范围.【分析】(1)利用待定系数法即可求得抛物线解析式,化成顶点式即可求得顶点坐标;(2)根据二次函数的性质判断即可;(3)设M、N的横坐标分别为x1、x2,则x1、x2是方程x2+4x=m的两个根,根据根与系数的关系得到x1+x2=﹣4,x1x2=﹣m,由MN≤5,则(x1﹣x2)2≤25,所以(x1+x2)2﹣4x1x2≤25,即16+4m≤25,解得即可.【解答】解:(1)∵抛物线y=ax2+bx经过点A(﹣4,0),B(1,5),∴,解得,∴抛物线为y=x2+4x,∵y=x2+4x=(x+2)2﹣4,∴抛物线的顶点坐标为(﹣2,﹣4);(2)∵抛物线为y=x2+4x的对称轴为直线x=﹣2,且开口向上,∴当x<﹣2时,y随x的增大而减小,∵点P(2,c)关于对称轴的对称点为(﹣6,c),∵x0>﹣6,∴当﹣6<x0<2时,则c>y0;当x0≥2时,则c≤y0;(3)设M、N的横坐标分别为x1、x2,∵直线y=m与抛物线交于M、N两点,(M、N两点不重合),∴x1、x2是方程x2+4x=m的两个根,∴x1+x2=﹣4,x1x2=﹣m,∵MN≤5,∴(x1﹣x2)2≤25,∴(x1+x2)2﹣4x1x2≤25,即16+4m≤25,解得m≤,∵抛物线的顶点坐标为(﹣2,﹣4),∴函数的最小值为﹣4,∴﹣4<m≤.7.(2022•姜堰区二模)设一次函数y1=2x+m+n和二次函数y2=x(2x+m)+n.(1)求证:y1,y2的图象必有交点;(2)若m>0,y1,y2的图象交于点A(x1,a)、B(x2,b),其中x1<x2,设C(x3,b)为y2图象上一点,且x3≠x2,求x3﹣x1的值;(3)在(2)的条件下,如果存在点D(x1+2,c)在y2的图象上,且a>c,求m的取值范围.【分析】(1)证明y1=y2时,方程2x+m+n=x(2x+m)+n有解,进而转化证明一元二次方程的根的判别式非负便可;(2)由y1=y2,求出x1与x2,进而求得b,由b的值,求得x3的值,进而得x3﹣x1的值;(3)把点A(x1,a)、点D(x1+2,c)代入y2=x(2x+m)+n,根据a>c得x1(2x1+m)+n﹣2(x1+2)2﹣m(x1+2)﹣n>0,化简得4x1+4+m<0,由(2)得x1=﹣,代入求解即可.【解答】(1)证明:当y1=y2时,得2x+m+n=x(2x+m)+n,化简为:2x2+(m﹣2)x﹣m=0,△=(m﹣2)2+8m=(m+2)2≥0,∴方程2x+m+n=x(2x+m)+n有解,∴y1,y2的图象必有交点;(2)解:当y1=y2时,2x+m+n=x(2x+m)+n,化简为:2x2+(m﹣2)x﹣m=0,(2x+m)(x﹣1)=0,∵m>0,x1<x2,∴x1=﹣,x2=1,∴b=2+m+n,当y=2+m+n时,y2=x(2x+m)+n=2+m+n,化简为:2x2+mx﹣m﹣2=0,2x2﹣2+mx﹣m=0,2(x+1)(x﹣1)+m(x﹣1)=0,(2x+m+2)(x﹣1)=0,解得,x=1(等于x2),或x=,∴x3=,∴x3﹣x1=﹣(﹣)=﹣1;(3)解:∵点D(x1+2,c)在y2的图象上,∴c=(x1+2)[2(x1+2)+m]+n=2(x1+2)2+m(x1+2)+n.∵点A(x1,a)在y2的图象上,∴a=x1(2x1+m)+n.∵a>c,∴a﹣c>0,∴x1(2x1+m)+n﹣2(x1+2)2﹣m(x1+2)﹣n>0,化简得4x1+4+m<0,由(2)得x1=﹣,∴4×(﹣)+4+m<0,﹣2m+4+m<0,﹣m+4<0,m>4,∴m的取值范围为m>4.8.(2022•西城区校级模拟)已知抛物线y=x2﹣4mx+4m2﹣1.(1)求此抛物线的顶点的坐标;(2)若直线y=n与该抛物线交于点A、B,且AB=4,求n的值;(3)若这条抛物线经过点P(2m+1,y1),Q(2m﹣t,y2),且y1<y2,求t的取值范围.【分析】(1)将二次函数解析式化为顶点式求解.(2)由二次函数的对称性及AB=4可得点A,B坐标,进而求解.(3)由点P坐标及抛物线对称轴可得点P关于对称轴的对称点P'坐标,由抛物线开口向下可求解.【解答】解:(1)∵y=x2﹣4mx+4m2﹣1=(x﹣2m)2﹣1,∴抛物线顶点坐标为(2m,﹣1).(2)∵点A,B关于抛物线对称轴对称,AB=4,对称轴为直线x=2m,∴抛物线经过(2m+2,n),(2m﹣2,n),将(2m+2,n)代入y=(x﹣2m)2﹣1得n=22﹣1=3.(3)点P(2m+1,y1)关于抛物线对称轴的对称点P'坐标为(2m﹣1,y1),∵抛物线开口向上,∴当2m﹣t>2m+1或2m﹣t<2m﹣1时,且y1<y2,解得t<﹣1或t>1.9.(2022•黄岩区一模)在平面直角坐标系中,已知抛物线y1=ax2+bx+3与直线y2=x+1.(1)当抛物线y1=ax2+bx+3与直线y2=x+1两个交点的横坐标分别为﹣1和2时.①求抛物线解析式;②直接写出当y1>y2,时x的取值范围;(2)设y=y1﹣y2,当x=m时y=M,x=n时y=N,当m+n=1(m≠n)时,M=N.求证:a+b=1.【分析】(1)①由交点横坐标及直线解析式可得交点坐标,然后通过待定系数法求解.②由抛物线开口方向及交点横坐标求解.(2)由y=y1﹣y2,M=N可得m,n为方程ax2+(b﹣1)x+2=0的两个根,由一元二次方程根与系数的关系进行证明.【解答】解:(1)①将x=﹣1和x=2分别代入y2=x+1得y2=0,y2=3,∴抛物线经过(﹣1,0),(2,3),∴,解得,∴y1=﹣x2+2x+3.②∵抛物线y1=﹣x2+2x+3开口向下,抛物线与直线交点坐标为(﹣1,0),(2,3),∴﹣1<x<2时,y1>y2.(2)∵y=y1﹣y2=ax2+bx+3﹣(x+1)=ax2+(b﹣1)x+2,∴x=m时,M=am2+(b﹣1)m+2,x=n时,N=an2+(b﹣1)n+2,∴m,n为方程ax2+(b﹣1)x+2=0的两个根,由一元二次方程根与系数的关系可得m+n=﹣=1,∴b﹣1=﹣a,∴a+b=1.10.(2022•路桥区一模)在平面直角坐标系中,已知二次函数y=x2﹣(m+2)x+m(m是常数).(1)求证:不论m取何值,该二次函数的图象与x轴总有两个交点;(2)若点A(2m+1,7)在该二次函数的图象上,求该二次函数的解析式;(3)在(2)的条件下,若抛物线y=x2﹣(m+2)x+m与直线y=x+t(t是常数)在第四象限内有两个交点,请直接写出t的取值范围.【分析】(1)由Δ=b2﹣4ac>0证明.(2)将点A坐标代入解析式求解.(3)分类讨论,通过数形结合求解.【解答】解:(1)令x2﹣(m+2)x+m=0,则Δ=(m+2)2﹣4m=m2+4>0,∴方程x2﹣(m+2)x+m=0有两个不相等实数根,∴二次函数的图象与x轴总有两个交点.(2)将(2m+1,7)代入y=x2﹣(m+2)x+m得7=(2m+1)2﹣(m+2)(2m+1)+m,解得m=2或m=﹣2,当m=2时,y=x2﹣4x+2,当m=﹣2时,y=x2﹣2.(3)①当m=2时,y=x2﹣4x+2,令x2﹣4x+2=0,解得x1=2+,x2=2﹣,∴抛物线与x轴交点坐标为(2+,0),(2﹣,0),如图,当直线y=x+t经过(2+,0)时,2++t=0,解得t=﹣2﹣,当直线y=x+t与抛物线y=x2﹣4x+2只有1个公共点时,令x2﹣4x+2=x+t,整理得x2﹣5x+2﹣t=0,则Δ=52﹣4(2﹣t)=17+4t=0,解得t=﹣,∴﹣<t<﹣2﹣满足题意.②同理,当m=﹣2时,y=x2﹣2,将x=0代入y=x2﹣2得y=﹣2,∴抛物线经过(0,﹣2),将(0,﹣2)代入y=x+t得t=﹣2,令x2﹣2=x+t,由Δ=1﹣4(﹣2﹣t)=0可得t=﹣,∴﹣<t<﹣2满足题意.综上所述,﹣<t<﹣2﹣或﹣<t<﹣2.11.(2022•安徽模拟)已知:抛物线y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)若抛物线经过(﹣1,﹣2)时,求抛物线解析式;(2)设P点的纵坐标为y p,当y p取最小值时,抛物线上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)若线段AB两端点坐标分别是A(0,2),B(2,2),当抛物线与线段AB有公共点时,直接写出m的取值范围.【分析】(1)将(﹣1,﹣2)代入解析式求解.(2)将x=﹣2代入解析式求出点P纵坐标,通过配方可得y p取最小值时m的值,再将二次函数解析式化为顶点式求解.(3)分别将点A,B坐标代入解析式求解.【解答】解:(1)将(﹣1,﹣2)代入y=x2﹣2mx+m2﹣2得﹣2=1+2m+m2﹣2,解得m=﹣1,∴y=x2+2x﹣1.(2)将x=﹣2代入y=x2﹣2mx+m2﹣2得y P=m2+4m+2=(m+2)2﹣2,∴m=﹣2时,y p取最小值,∴y=x2+4x+2=(x+2)2﹣2,∴x<﹣2时,y随x增大而减小,∵x1<x2≤﹣2,∴y1>y2.(3)∵y=x2﹣2mx+m2﹣2=(x﹣m)2﹣2,∴抛物线顶点坐标为(m,﹣2),∴抛物线随m值的变化而左右平移,将(0,2)代入y=x2﹣2mx+m2﹣2得m2﹣2=2,解得m=2或m=﹣2,将(2,2)代入y=x2﹣2mx+m2﹣2得2=4﹣4m+m2﹣2,解得m=0或m=4,∴﹣2≤m≤0时,抛物线对称轴在点A左侧,抛物线与线段AB有交点,2≤m≤4时,抛物线对称轴在点A右侧,抛物线与线段AB有交点.∴﹣2≤m≤0或2≤m≤4.12.(2022•富阳区一模)已知抛物线y=a(x﹣1)(x﹣).(1)若抛物线过点(2,1),求抛物线的解析式;(2)若该抛物线上任意不同两点M(x1,y1)、N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,试判断点(2,﹣9)在不在此抛物线上;(3)抛物线上有两点E(0,n)、F(b,m),当b≤﹣2时,m≤n恒成立,试求a的取值范围.【分析】(1)将(2,1)代入函数解析式求解.(2)由当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,可得抛物线对称轴为y轴,从而可得a的值,然后将x=2代入解析式判断.(3)由b≤﹣2时,m≤n恒成立,可得抛物线开口向下,求出点E关于对称轴对称的点坐标,列不等式求解.【解答】解:(1)将(2,1)代入y=a(x﹣1)(x﹣)得1=a(2﹣),解得a=2,∴y=2(x﹣1)(x﹣).(2)∵y=a(x﹣1)(x﹣),∴抛物线与x轴交点坐标为(1,0),(,0),∴抛物线对称轴为直线x=,∵x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,∴抛物线对称轴为值x=0,即1+=0,解得a=﹣3,∴y=﹣3(x﹣1)(x+1),将x=2代入y=﹣3(x﹣1)(x+1)得y=﹣9,∴点(2,﹣9)在抛物线上.(3)∵抛物线对称轴为直线x=,∴点E(0,n)关于对称轴对称的点E'(1+,n),∵当b≤﹣2时,m≤n恒成立,∴抛物线开口向下,即a<0,且﹣2≤1+,解得a≤﹣1.13.(2022•河东区二模)已知抛物线y=a(x+3)(x﹣4)与y轴交于点A(0,﹣2).(Ⅰ)求抛物线y=a(x+3)(x﹣4)的解析式及顶点坐标;(Ⅱ)设抛物线与x轴的正半轴的交点为点B,点P为x轴上一动点,点D满足∠DPA=90°,PD=PA.(i)若点D在抛物线上,求点D的坐标;(ii)点E(2,﹣)在抛物线上,连接PE,当PE平分∠APD时,求出点P的坐标.【分析】(Ⅰ)将点A(0,﹣2)代入y=a(x+3)(x﹣4),即可求解;(Ⅱ)(i)设P(t,0),分两种情况讨论:当D点在点P右侧时,过点D作DN⊥x轴交于点N,通过证明△PND≌△AOP(AAS),可得D(t+2,﹣t),再将D点代入二次函数解析式求出t的值,从而求出D的坐标;当点D在点P的左侧时,同理可得D(t﹣2,t),再将D点代入二次函数解析式求出t的值,即可求解;(ii)分两种情况讨论:当D点在x轴下方时,当PE∥y轴时,∠OAP=45°,P(2,0);当D点在x轴上方时,过A点作AG⊥PA交PE于点G,过G点作FG⊥x轴,交于点F,可证明△GAF≌△APO(AAS),从而得到GF=2,则E点与G点重合,OP=AF=OA﹣OF=2﹣=,求出P(﹣,0).【解答】解:(Ⅰ)将点A(0,﹣2)代入y=a(x+3)(x﹣4),得﹣12a=﹣2,∴a=,∴y=(x+3)(x﹣4)=x2﹣x﹣2,∵y=x2﹣x﹣2=(x﹣)2﹣,∴顶点为(,﹣);(Ⅱ)(i)令a(x+3)(x﹣4)=0,解得x=4或x=﹣3,∴B(4,0),设P(t,0),如图1,当D点在点P右侧时,过点D作DN⊥x轴交于点N,∵∠APD=90°,∴∠OPA+∠NPD=90°,∠OPA+∠OAP=90°,∴∠NPD=∠OAP,∴△PND≌△AOP(AAS),∴OP=ND,AO=PN,∴D(t+2,﹣t),∴(t+5)(t﹣2)=﹣t,解得t=1或t=﹣10,∴D(3,﹣1)或(﹣8,10);当点D在点P的左侧时,同理可得D(t﹣2,t),∴t=(t﹣2+3)(t﹣2﹣4),解得t=,∴D(,)或(,);综上所述:D点坐标为(3,﹣1)或(﹣8,10)或(,)或(,);(ii)如图2,当D点在x轴下方时,∵PE平分∠APD,∴∠APE=∠EPD,∵∠APD=90°,∴∠APE=45°,当PE∥y轴时,∠OAP=45°,∴P(2,0);如图3,当D点在x轴上方时,过A点作AG⊥PA交PE于点G,过G点作FG⊥x轴,交于点F,∵∠PAF+∠FAG=90°,∠FAG+∠FGA=90°,∴∠PAF=∠FGA,∵PE平分∠APD,∠APD=90°,∴∠APE=∠EPD=45°=∠AGP,∵AP=AG,∴△GAF≌△APO(AAS),∴AF=OP,FG=OA,∵OA=2,∴GF=2,∵E(2,﹣),∴E点与G点重合,∴OP=AF=OA﹣OF=2﹣=,∴P(﹣,0);综上所述:P点坐标为(2,0)或(﹣,0).14.(2022•长春模拟)在平面直角坐标系中,已知抛物线y=x2+bx+c(b、c是常数)经过点(0,﹣1)和(2,7),点A在这个抛物线上,设点A的横坐标为m.(1)求此抛物线对应的函数表达式并写出顶点C的坐标.(2)点B在这个抛物线上(点B在点A的左侧),点B的横坐标为﹣1﹣2m.①当△ABC是以AB为底的等腰三角形时,求OABC的面积.②将此抛物线A、B两点之间的部分(包括A、B两点)记为图象G,当顶点C在图象G 上,记图象G最高点的纵坐标与最低点的纵坐标的差为h,求h与m之间的函数关系式.(3)设点D的坐标为(m,2﹣m),点E的坐标为(1﹣m,2﹣m),点F在坐标平面内,以A、D、E、F为顶点构造矩形,当此抛物线与矩形有3个交点时,直接写出m的取值范围.【分析】(1)用待定系数法求出抛物线的解析式,再将抛物线的解析式化成顶点式,即可求解;(2)①先根据等腰三角形的性质求出A、B、C三点坐标,再根据三角形面积公式求解即可;②按第一种情况:当点A是最高点,可得m>1或m<﹣,第二种情况:当点B是最高点,得m的取值范围,再计算纵坐标的差h即可解答;(3)分情况讨论:①当m<﹣1时,②当﹣1≤m≤1时时,③当1<m<2时,④当2<m<3时,⑤当m=3,⑥当3≤m<4时,⑦当m=4时,⑧当m>4时,分别画出图形求解即可.【解答】解:(1)把(0,﹣1)和(2,7)代入y=x2+bx+c,得:,解得:,∴抛物线对应的函数表达式为:y=x2+2x﹣1,∵y=x2+2x﹣1=(x+1)2﹣2,∴顶点C的坐标为(﹣1,﹣2);(2)①当x=﹣1﹣2m时,y=(﹣1﹣2m+1)2﹣2=4m2﹣2,∴B(﹣1﹣2m,4m2﹣2).当△ABC是以AB为底的等腰三角形时,则AC=BC,又∵点C在抛物线对称轴x=﹣1上,∴点A、点B关于直线x=﹣1对称,∴A(2m﹣1,4m2﹣2),∵点A的横坐标为m,∴2m﹣1=m,解得:m=1,∴A(1,2),B(﹣3,2),∵由(1)得,C(﹣1,﹣2),=[1﹣(﹣3)]×[2﹣(﹣2)]=8;∴S△ABC②∵A(m,(m+1)2﹣2),B(﹣1﹣2m,4m2﹣2).∴当点A是最高点,即m>1或m<﹣时,则h=(m+1)2﹣2﹣(﹣2)=(m+1)2;当点B是最高点,即0≤m<1时,则h=4m2﹣2﹣(﹣2)=4m2,综上,h与m之间的函数关系式为:h=(m+1)2(m>1或m<﹣)或h=4m2(0≤m<1);(3)①当m<﹣1时,则2﹣m>3,1﹣m>2,如图:。
中考数学二次函数压轴题(含答案)

中考数学(Xue)二次函数压轴题(含答案)面(Mian)积类1.如(Ru)图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三(San)点.(1)求抛物线的(De)解析式.(2)点(Dian)M是线(Xian)段BC上(Shang)的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.解答:解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则:a(0+1)(0﹣3)=3,a=﹣1;∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)设直线BC的解析式为:y=kx+b,则有:,解得;故(Gu)直线BC的解(Jie)析式:y=﹣x+3.已(Yi)知点M的横坐标(Biao)为m,MN∥y,则(Ze)M(m,﹣m+3)、N(m,﹣m2+2m+3);∴故(Gu)MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3).(3)如(Ru)图;∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,∴S△BNC=(﹣m2+3m)•3=﹣(m﹣)2+(0<m<3);∴当(Dang)m=时,△BNC的面积最大,最大值为.2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B 点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.解答:解(Jie):(1)将(Jiang)B(4,0)代入抛物线的解析式(Shi)中,得:0=16a﹣×4﹣2,即(Ji):a=;∴抛物线的解析式(Shi)为:y=x2﹣x﹣2.(2)由(You)(1)的函数解析式(Shi)可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=4,即(Ji):OC2=OA•OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为:(,0).(3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0;∴4﹣4×(﹣2﹣b)=0,即b=﹣4;∴直线l:y=x﹣4.所以点M即直线l和抛物线的唯一交点,有:,解得:即M(2,﹣3).过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.平行四边形类3.如(Ru)图,在平面直角坐(Zuo)标系(Xi)中,抛物线y=x2+mx+n经(Jing)过点A(3,0)、B(0,﹣3),点(Dian)P是直(Zhi)线AB上(Shang)的动点,过点P作(Zuo)x轴的垂线交抛物线于点M,设点P 的横坐标为t.(1)分别求出直线AB和这条抛物线的解析式.(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.(1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,﹣3)分别代入y=x2+mx+n与y=kx+b,得到关于m、n的两个方程组,解方程组即可;(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根据二次函数的最值得到当t=﹣=时,PM最长为=,再利用三角形的面积公式利用S△ABM=S△BPM+S△APM计算即可;(3)由PM∥OB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;当P在第三象限:PM=OB=3,t2﹣3t=3,分别解一元二次方程即可得到满足条件的t的值.解答:解:(1)把A(3,0)B(0,﹣3)代入y=x2+mx+n,得解(Jie)得,所以抛物线的解析(Xi)式是y=x2﹣2x﹣3.设(She)直线AB的解(Jie)析式是y=kx+b,把(Ba)A(3,0)B(0,﹣3)代(Dai)入y=kx+b,得(De),解(Jie)得,所以直线AB的解析式是y=x﹣3;(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),因为p在第四象限,所以PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,当(Dang)t=﹣=时,二次(Ci)函数的最大值,即PM最长(Chang)值为=,则(Ze)S△ABM=S△BPM+S△APM==.(3)存(Cun)在,理由如下:∵PM∥OB,∴当(Dang)PM=OB时(Shi),点P、M、B、O为顶点的四边形为平(Ping)行四边形,①当P在第四象限:PM=OB=3,PM最长时只有,所以不可能有PM=3.②当(Dang)P在(Zai)第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3,解(Jie)得t1=,t2=(舍去(Qu)),所以P点的横坐标(Biao)是;③当(Dang)P在(Zai)第三象限:PM=OB=3,t2﹣3t=3,解(Jie)得t1=(舍去),t2=,所以P点的横坐标是.所以P点的横坐标是或.4.如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O.(1)一抛物线经(Jing)过点A′、B′、B,求(Qiu)该抛物线的解析式;(2)设(She)点P是在第一(Yi)象限内(Nei)抛物线上的一动点(Dian),是否存在点P,使(Shi)四边形PB′A′B的面(Mian)积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B的两条性质.解:(1)△A′B′O是由△ABO绕原点O逆时针旋转90°得到的,又A(0,1),B(2,0),O(0,0),∴A′(﹣1,0),B′(0,2).方法一:设抛物线的解析式为:y=ax2+bx+c(a≠0),∵抛物线经过点A′、B′、B,∴,解得:,∴满足条件的抛物线的解析式为y=﹣x2+x+2.方法二:∵A′(﹣1,0),B′(0,2),B(2,0),设抛物线的解析式为:y=a(x+1)(x﹣2)将B′(0,2)代入得出:2=a(0+1)(0﹣2),解得:a=﹣1,故满足条件的抛物线的解析式为y=﹣(x+1)(x﹣2)=﹣x2+x+2;(2)∵P为第一象限内抛物线上的一动点,设P(x,y),则x>0,y>0,P点坐标满足y=﹣x2+x+2.连(Lian)接PB,PO,PB′,∴S四边(Bian)形PB′A′B=S△B′OA′+S△PB′O+S△POB,=×1×2+×2×x+×2×y,=x+(﹣x2+x+2)+1,=﹣x2+2x+3.∵A′O=1,B′O=2,∴△A′B′O面(Mian)积为:×1×2=1,假(Jia)设四边形PB′A′B的面(Mian)积是△A′B′O面积(Ji)的4倍(Bei),则4=﹣x2+2x+3,即(Ji)x2﹣2x+1=0,解得:x1=x2=1,此时y=﹣12+1+2=2,即P(1,2).∴存在点P(1,2),使四边形PB′A′B的面积是△A′B′O面积的4倍.(3)四边形PB′A′B为等腰梯形,答案不唯一,下面性质中的任意2个均可.①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等;③等腰梯形上底与下底平行;④等腰梯形两腰相等.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)或用符号表示:①∠B′A′B=∠PBA′或∠A′B′P=∠BPB′;②PA′=B′B;③B′P∥A′B;④B′A′=PB.5.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.解(Jie):(1)∵顶(Ding)点A的横坐标(Biao)为x=﹣=1,且顶(Ding)点A在(Zai)y=x﹣5上(Shang),∴当(Dang)x=1时(Shi),y=1﹣5=﹣4,∴A(1,﹣4).(2)△ABD是直角三角形.将A(1,﹣4)代入y=x2﹣2x+c,可得,1﹣2+c=﹣4,∴c=﹣3,∴y=x2﹣2x﹣3,∴B(0,﹣3)当y=0时,x2﹣2x﹣3=0,x1=﹣1,x2=3∴C(﹣1,0),D(3,0),BD2=OB2+OD2=18,AB2=(4﹣3)2+12=2,AD2=(3﹣1)2+42=20,BD2+AB2=AD2,∴∠ABD=90°,即△ABD是直角三角形.(3)存在.由题意知:直线y=x﹣5交y轴于点E(0,﹣5),交x轴于点F(5,0)∴OE=OF=5,又∵OB=OD=3∴△OEF与△OBD都是等腰直角三角形∴BD∥l,即PA∥BD则构成平行四边形只能是PADB或PABD,如图,过点P作y轴的垂线,过点A作x轴的垂线交过P且平行于x轴的直线于点G.设P(x1,x1﹣5),则G(1,x1﹣5)则PG=|1﹣x1|,AG=|5﹣x1﹣4|=|1﹣x1|PA=BD=3由勾股定理得:(1﹣x1)2+(1﹣x1)2=18,x12﹣2x1﹣8=0,x1=﹣2或(Huo)4∴P(﹣2,﹣7)或(Huo)P(4,﹣1),存(Cun)在点P(﹣2,﹣7)或(Huo)P(4,﹣1)使(Shi)以点A、B、D、P为顶点的四(Si)边形是平行四边形.周(Zhou)长类6.如(Ru)图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M 作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.解(Jie):(1)∵抛(Pao)物线y=经过(Guo)点B(0,4)∴c=4,∵顶点在直(Zhi)线x=上(Shang),∴﹣=﹣=,∴b=﹣;∴所求函数关系(Xi)式为;(2)在(Zai)Rt△ABO中(Zhong),OA=3,OB=4,∴AB=,∵四边形ABCD是菱形,∴BC=CD=DA=AB=5,∴C、D两点的坐标分别是(5,4)、(2,0),当(Dang)x=5时(Shi),y=,当(Dang)x=2时(Shi),y=,∴点(Dian)C和(He)点D都在所(Suo)求抛物线上;(3)设(She)CD与对称轴交于点P,则P为所求的点,设直线CD对应的函数关系式为y=kx+b,则,解得:,∴,当x=时,y=,∴P(),(4)∵MN∥BD,∴△OMN∽△OBD,∴即(Ji)得(De)ON=,设对称轴(Zhou)交x于(Yu)点F,则(Ze)(PF+OM)•OF=(+t)×,∵,S△PNF=×NF•PF=×(﹣t)×=,S=(﹣),=﹣(0<t<4),a=﹣<0∴抛物线(Xian)开口向下,S存在最(Zui)大值.由(You)S△PMN=﹣t2+t=﹣(t﹣)2+,∴当(Dang)t=时(Shi),S取最大值(Zhi)是,此(Ci)时,点M的(De)坐标为(0,).等(Deng)腰三角形类7.如图(Tu),点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.解(Jie):(1)如图(Tu),过B点(Dian)作BC⊥x轴,垂(Chui)足为C,则(Ze)∠BCO=90°,∵∠AOB=120°,∴∠BOC=60°,又(You)∵OA=OB=4,∴OC=OB=×4=2,BC=OB•sin60°=4×=2,∴点(Dian)B的坐标(Biao)为(﹣2,﹣2);(2)∵抛物线过原点O和点A、B,∴可设抛物线解析式为y=ax2+bx,将(Jiang)A(4,0),B(﹣2.﹣2)代(Dai)入,得,解(Jie)得,∴此抛物线(Xian)的解析式为y=﹣x2+x(3)存(Cun)在,如图,抛物线的对称轴(Zhou)是直线x=2,直(Zhi)线x=2与(Yu)x轴的交点为D,设点P的坐标为(2,y),①若OB=OP,则22+|y|2=42,解得y=±2,当(Dang)y=2时(Shi),在Rt△POD中(Zhong),∠PDO=90°,sin∠POD==,∴∠POD=60°,∴∠POB=∠POD+∠AOB=60°+120°=180°,即(Ji)P、O、B三点在(Zai)同一直线上,∴y=2不符合题(Ti)意,舍去,∴点(Dian)P的(De)坐标为(2,﹣2)②若OB=PB,则42+|y+2|2=42,解(Jie)得y=﹣2,故(Gu)点P的坐标(Biao)为(2,﹣2),③若(Ruo)OP=BP,则(Ze)22+|y|2=42+|y+2|2,解(Jie)得y=﹣2,故(Gu)点P的坐(Zuo)标为(2,﹣2),综上所述,符合条件的(De)点P只有一(Yi)个,其坐标为(2,﹣2),8.在(Zai)平面直角(Jiao)坐标系中(Zhong),现将一块等腰直角三角板ABC放在第二象限(Xian),斜靠在两坐标轴上,且点A(0,2),点(Dian)C(﹣1,0),如图所示(Shi):抛物线y=ax2+ax﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.解:(1)过点B作BD⊥x轴,垂足为D,∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°,∴∠BCD=∠CAO,(1分)又∵∠BDC=∠COA=90°,CB=AC,∴△BCD≌△CAO,(2分)∴BD=OC=1,CD=OA=2,(3分)∴点B的坐标为(﹣3,1);(4分)(2)抛物线y=ax2+ax﹣2经过点B(﹣3,1),则得到1=9a﹣3a﹣2,(5分)解得a=,所以抛物线的解析式为y=x2+x﹣2;(7分)(3)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:①若以点C为直角顶点;则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,(8分)过(Guo)点P1作(Zuo)P1M⊥x轴(Zhou),∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,∴△MP1C≌△DBC.(10分(Fen))∴CM=CD=2,P1M=BD=1,可(Ke)求得点P1(1,﹣1);(11分(Fen))②若(Ruo)以点A为直角顶(Ding)点;则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,(12分)过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,(13分)∴NP2=OA=2,AN=OC=1,可求得点P2(2,1),(14分)经检验,点P1(1,﹣1)与点P2(2,1)都在抛物线y=x2+x﹣2上.(16分)9.在平面直角坐标系中,现将一块等腰直角三角板放在第一象限,斜靠在两坐标轴上,且点A(0,2),点C(1,0),如图所示,抛物线y=ax2﹣ax﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.解:(1)过点B作BD⊥x轴,垂足为D,∵∠BCD+∠ACO=90°,∠AC0+∠OAC=90°,∴∠BCD=∠CAO,又∵∠BDC=∠COA=90°,CB=AC,∴△BDC≌△COA,∴BD=OC=1,CD=OA=2,∴点B的坐标为(3,1);(2)∵抛物线y=ax2﹣ax﹣2过点B(3,1),∴1=9a﹣3a﹣2,解得:a=,∴抛物线的解析式为y=x2﹣x﹣2;(3)假(Jia)设存在点P,使(Shi)得△ACP是等腰直角(Jiao)三角形,①若(Ruo)以AC为直角边(Bian),点C为直角(Jiao)顶点,则(Ze)延长BC至(Zhi)点P1使得P1C=BC,得到等腰直角三角形ACP1,过点P1作P1M⊥x轴,如图(1),∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,∴△MP1C≌△DBC,∴CM=CD=2,P1M=BD=1,∴P1(﹣1,﹣1),经检验点P1在抛物线y=x2﹣x﹣2上;②若以AC为直角边,点A为直角顶点,则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形ACP2,过点P2作P2N⊥y轴,如图(2),同理可证△AP2N≌△CAO,∴NP2=OA=2,AN=OC=1,∴P2(﹣2,1),经检验P2(﹣2,1)也在抛物线y=x2﹣x﹣2上;③若以AC为直角边,点A为直角顶点,则过点A作AP3⊥CA,且使得AP3=AC,得到等腰直角三角形ACP3,过点P3作P3H⊥y轴,如图(3),同理可证△AP3H≌△CAO,∴HP3=OA=2,AH=OC=1,∴P3(2,3),经检验P3(2,3)不在抛物线y=x2﹣x﹣2上;故符合条件的点有P1(﹣1,﹣1),P2(﹣2,1)两点.。
2020年九年级数学中考二轮复习:《二次函数综合》压轴题专题训练(含答案)

《二次函数综合》压轴题专题训练1.定义:关于x轴对称且对称轴相同的两条抛物线叫作“同轴对称抛物线”.例如:y=(x﹣1)2﹣2的“同轴对称抛物线”为y=﹣(x﹣1)2+2.(1)满足什么条件的抛物线与其“同轴对称抛物线”的顶点重合:.(2)求抛物线y=﹣x2+x+1的“同轴对称抛物线”.(3)如图,在平面直角坐标系中,点B是抛物线L:y=ax2﹣4ax+1上一点,点B的横坐标为1,过点B作x轴的垂线,交抛物线L的“同轴对称抛物线”于点C,分别作点B、C关于抛物线对称轴对称的点B′、C′,连接BC、CC′、B′C′、BB′,设四边形BB′C′C的面积为S(S>0).①当四边形BB′C′C为正方形时,求a的值.②当抛物线L与其“同轴对称抛物线”围成的封闭区域内(不包括边界)共有11个横、纵坐标均为整数的点时,直接写出a的取值范围.2.已知抛物线C:y=ax2+bx+c向左平移1个单位长度,再向上平移4个单位长度得到抛1物线C:y=x2.2(1)直接写出抛物线C的解析式;1与x轴交于A,B两点,点A在点B的左侧,点P(,t)(2)如图1,已知抛物线C1在抛物线C上,QB⊥PB交抛物线于点Q.求点Q的坐标;1上,EM∥x轴,点E在点M的左侧,过点M的直线MD与抛(3)已知点E,M在抛物线C2物线C只有一个公共点(MD与y轴不平行),直线DE与抛物线交于另一点N.若线段2NE=DE,设点M,N的横坐标分别为m,n,直接写出m和n的数量关系(用含m的式子表示n)为.3.如图1,抛物线y=x2+bx+c过点A(4,﹣1),B(0,﹣),点C为直线AB下方抛物线上一动点,M为抛物线顶点,抛物线对称轴与直线AB交于点N.(1)求抛物线的表达式与顶点M的坐标;(2)在直线AB上是否存在点D,使得以C,D,M,N为顶点的四边形是平行四边形,若存在,请求出D点坐标;(3)在y轴上是否存在点Q,使∠AQM=45°?若存在,求点Q的坐标;若不存在,请说明理由.4.如图,已知抛物线y=ax2+bx+c与x轴的交点为A(﹣1,0),B(2,0)且与y轴交于点C,OA=OC.(1)求该抛物线的表达式;(2)点C关于x轴的对称点为C1,M是线段BC1上的一个动点(不与B、C1重合),ME⊥x轴,MF⊥y轴,垂足分别为E、F,当点M在什么位置时,矩形MFOE的面积最大?说明理由;(3)已知点P时直线y=x+1上的动点,点Q为抛物线上的动点,当以C、C1、P、Q 为顶点的四边形为平行四边形时,求出相应的点P和点Q的坐标.5.如图,抛物线y=﹣x2+bx+c与x轴相交于A,B两点(点A位于点B的左侧),与y轴相交于点C,M是抛物线的顶点,直线x=1是抛物线的对称轴,且点C的坐标为(0,3).(1)求抛物线的解析式;(2)已知P为线段MB上一个动点,过点P作PD⊥x轴于点D.若PD=m,△PCD的面积为S.①求S与m之间的函数关系式,并写出自变量m的取值范围;②当S取得最值时,求点P的坐标.(3)在(2)的条件下,在线段MB上是否存在点P,使△PCD为等腰三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.6.如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y 轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;=3,请求出点P的坐标.(2)如图2,点P为直线BD上方抛物线上一点,若S△PBD(3)如图3,M为线段AB上的一点,过点M作MN∥BD,交线段AD于点N,连接MD,若△DNM∽△BMD,请求出点M的坐标.7.已知抛物线交x轴于A,B两点(A在B右边),A(3,0),B(1,0)交y轴于C点,C(0,3),连接AC;(1)求抛物线的解析式;(2)P为抛物线上的一点,作PE⊥CA于E点,且CE=3PE,求P点坐标;(3)将原抛物线向上平移1个单位抛物线的对称轴交x轴于H点,过H作直线MH,NH,当MH⊥NH时,求MN恒过的定点坐标.:y=(x﹣1)2+k(k>0)经过y轴上的点A,顶点为B.抛物线8.如图,已知抛物线l1l:y=(x﹣h)2+2﹣h(h≥2)的顶点为D,直线y=﹣x+b经过A,B,D三点,两抛物2线交于点C.(1)求b的值和点B的坐标;(2)设点C的横坐标为m,探究m与h之间的数量关系;(3)当△ABC是直角三角形时,求h的值.9.综合与探究.如图1,抛物线y=x2﹣x﹣2与x轴交于A,B两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).(1)求A,B,C三点的坐标及直线BE的解析式.(2)如图2,过点A作BE的平行线交抛物线于点D,点P是抛物线上位于线段AD下方的一个动点,连接PA,PD,求OAPD面积的最大值.(3)若(2)中的点P为抛物线上一动点,在x轴上是否存在点Q,使得以A,D,P,Q 为顶点的四边形是平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.10.如图,抛物线y=ax2+bx+c与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C(0,3),抛物线的对称轴与直线BC交于点D.(1)求抛物线的表达式;(2)在抛物线的对称轴上找一点M,使|BM﹣CM|的值最大,求出点M的坐标;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,直接写出点E的坐标.11.如图1,抛物线y=ax2+2ax+c(a≠0)与x轴交于点A,B(1,0)两点,与y轴交于点C,且OA=OC.(1)求抛物线的解析式;(2)点D是抛物线顶点,求△ACD的面积;(3)如图2,射线AE交抛物线于点E,交y轴的负半轴于点F(点F在线段AE上),点P是直线AE下方抛物线上的一点,S=,求△APE面积的最大值和此动点P的坐标.△ABE12.图①,抛物线y=﹣2x2+bx+c过A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC.(1)求该抛物线的表达式和对称轴;(2)点D是抛物线对称轴上一动点,当△BCD是以BC为直角边的直角三角形时,求所有符合条件的点D的坐标;(3)如图2,将抛物线在BC上方的图象沿BC折叠后与y轴交与点E,求点E的坐标.13.已知,抛物线y=ax2,其中a>0.(1)如图1,若点A、B是此抛物线上两点,且分属于y轴两侧,连接AB与y轴相交于点C,且∠AOB=90°.求证:CO=;(2)如图2,若点A是此抛物线上一点,过点A的直线恰好与此抛物线仅有一个交点,且与y轴交于点B,与x轴相交于点C.求证:AC=BC.14.如图,抛物线y=ax2﹣x+c与x轴交于A,B两点,与y轴交于C点,连结AC,已知B(1﹣,0),且抛物线经过点D(2,﹣2).(1)求抛物线的解析式;(2)若点E是抛物线上位于x轴下方的一点,且S△ACE =S△ABC,求E的坐标;(3)若点P是y轴上一点,以P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标.15.如图,在平面直角坐标系中,直线y=﹣x+4分别与x轴、y轴相交于点B、C,经过点B、C的抛物线y=﹣+bx+c与x轴的另一个交点为A.(1)求出抛物线表达式,并求出点A坐标.(2)已知点D在抛物线上,且横坐标为3,求出△BCD的面积;(3)点P是直线BC上方的抛物线上一动点,过点P作PQ垂直于x轴,垂足为Q.是否存在点P,使得以点A、P、Q为顶点的三角形与△BOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案1.解:(1)∵“同轴对称抛物线”的顶点重合,∴顶点关于x轴对称且重合,∴顶点在x轴上,故答案为:顶点在x轴上;(2)∵y=﹣x2+x+1=﹣(x﹣1)2+,∴“同轴对称抛物线”的顶点坐标为(1,﹣),∴y=(x﹣1)2﹣;(3)①由题可知,B(1,1﹣3a),∴C(1,3a﹣1),∵抛物线y=ax2﹣4ax+1的对称轴为x=2,∴B'(3,1﹣3a),C'(3,3a﹣1),∴BB'=CC'=2,∴BC=2﹣6a或BC=6a﹣2,∴2﹣6a=2或6a﹣2=2,∴a=0(舍去)或a=;②函数的对称轴为x=2,函数L的顶点坐标为(2,1﹣4a),∵L与“同轴对称抛物线”是关于x轴对称的,所以整数点也是对称的出现,∵抛物线L与其“同轴对称抛物线”围成的封闭区域内,在x轴上的整数点可以是3个或5个,∴L与x轴围城的区域的整数点为4个或3个;当a>0时,当x=1时,﹣2≤1﹣3a<﹣1,∴<a≤1,当x=2时,1﹣4a<﹣2,∴a>,∴<a≤1;当a<0时,当x=2时,1﹣4a≤2,∴a≥﹣,当x=﹣1时,5a+1<0,∴a<﹣,∴﹣≤a<﹣;综上所述:<a≤1或﹣≤a<﹣.2.解:(1)由已知可知,抛物线C:y=x2向右平移1个单位长度,再向下平移4个单位2:y=ax2+bx+c,长度得到抛物线C1:y=(x﹣1)2﹣4,∴抛物线C1故答案为y=(x﹣1)2﹣4;(2)∵y=(x﹣1)2﹣4,令y=0,(x﹣1)2﹣4=0,解得x=3或x=﹣1,∴A(﹣1,0),B(3,0),上,∵点P(,t)在抛物线C1∴t=(﹣1)2﹣4,解得t=﹣,∴P(,﹣),设Q(t,t2﹣2t﹣3),过点P作PM⊥x轴交于点M,过点Q作QN⊥x轴交于点N,∵BQ⊥BP,∴∠QBN+∠MBP=∠QBN+∠MQN=90°,∴∠BQN=∠PBM,∴△BNQ∽△QMP,∴=,∴=,∴t=﹣或t=3,∵Q点在第二象限,∴t=﹣,∴Q(﹣,);(3)∵点M与N在y=x2上,∴M(m,m2),N(n,n2)∵EM∥x轴,∴E(﹣m,m2),设MD的解析式为y=kx+b,∴m2=km+b,∴b=m2﹣km,∴y=kx+m2﹣km,∵直线MD与抛物线y=x2只有一个交点,∴kx+m2﹣km=x2,∴△=k2﹣4(m2+km)=0,∴k=2m,∴直线MD的解析式为y=2mx﹣m2,∵NE=DE,∴D(﹣2m﹣n,2m2﹣n2),∴2m2﹣n2=2m(﹣2m﹣n)﹣m2,整理得,n2﹣2mn﹣7m2=0,∴n=(1±2)m,故答案为n=(1±2)m.3.解:(1)将点A(4,﹣1),B(0,﹣)代入抛物线y=x2+bx+c,得,解得,∴y=x2﹣x﹣,∴M点的坐标为(1,﹣4);(2)设直线AB的表达式为y=mx+n,∴,解得,∴y=x﹣;当x=1时,y=﹣3,∴N(1,﹣3),∴MN=1;①若MN为平行四边形的一边时,则有CD∥MN,且CD=MN,设C(t,t2﹣t﹣),则D(t,t﹣),∴CD=t﹣﹣(t2﹣t﹣)=1,∴t=3或t=1(舍去),∴D(3,﹣);②若MN为平行四边形的对角线,设D(t,t﹣),则C(2﹣t,﹣t﹣),将点C代入抛物线解析式得,(2﹣t)2﹣(2﹣t)﹣=﹣t﹣,∴t=﹣1或t=1(舍去),∴D(﹣1,﹣);综上所述:符合条件的D点坐标为(3,﹣)或(﹣1,﹣);(3)在对称轴上取点P(1,﹣1),∴PA=PM=3,∠APM=90°,以P为圆心,PA为半径作圆交y轴于点Q,∴∠AQM=∠APM=45°,作PE⊥y轴交于点E,∴PE=1,∵PQ=3,∴EQ==2,∴Q点坐标为(0,﹣1+2)或(0,﹣1﹣2).4.解:(1)∵点A (﹣1,0)∴OA =1,∵OA =OC =1,且点C 在y 轴负半轴,∴点C (0,﹣1)∵抛物线y =ax 2+bx +c 与x 轴的交点为A (﹣1,0),B (2,0)且与y 轴交于点C , ∴ 解得:∴抛物线的表达式为:y =x 2﹣x ﹣1;(2)∵点C 关于x 轴的对称点为C 1,∴C 1(0,1),∵点B (2,0),点C 1(0,1),∴直线BC 1的解析式为:y =﹣x +1,∴设点M 坐标为(m ,﹣m +1)∴MF =m ,ME =﹣m +1,∴矩形MFOE 的面积=MF ×ME =m ×(﹣m +1)=﹣m 2+m =﹣(m ﹣1)2+, ∴当m =1时,矩形MFOE 的最大面积为,此时点M 的坐标为(1,),即点M 为线段C 1B 中点时,S 矩形MFOE 最大;(3)由题意,C (0,﹣1),C 1(0,1),以C 、C 1、P 、Q 为顶点的四边形为平行四边形,分以下两种情况:①C 1C 为边,则C 1C ∥PQ ,C 1C =PQ ,设P (m ,m +1),Q (m ,m 2﹣m ﹣1),∴|(m 2﹣m ﹣1)﹣(m +1)|=2,解得:m 1=4,m 2=﹣2,m 3=2,m 4=0(舍),P 1(4,3),Q 1(4,5);P 2(﹣2,0),Q 2(﹣2,2);P 3(2,2),Q 3(2,0) ②C 1C 为对角线,∵C 1C 与PQ 互相平分,C 1C 的中点为(0,0),∴PQ 的中点为(0,0),设P (m ,m 2﹣m +1),则Q (﹣m ,m 2+m ﹣1) ∴(m +1)+(m 2+m ﹣1)=0,解得:m 1=0(舍去),m 2=﹣2,∴P 4(﹣2,0),Q 4(2,0);综上所述,点P 和点Q 的坐标为:P 1(4,3),Q 1(4,5)或P 2(﹣2,0),Q 2(﹣2,2)或P 3(2,2),Q 3(2,0)或P 4(﹣2,0),Q 4(2,0).5.解:(1)∵直线x =1是抛物线的对称轴,且点C 的坐标为(0,3),∴c =3,﹣=1,∴b =2,∴抛物线的解析式为:y =﹣x 2+2x +3;(2)①∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴点M (1,4),∵抛物线的解析式为:y =﹣x 2+2x +3与x 轴相交于A ,B 两点(点A 位于点B 的左侧), ∴0=﹣x 2+2x +3∴x 1=3,x 2=﹣1,∴点A (﹣1,0),点B (3,0),∵点M (1,4),点B (3,0)∴直线BM 解析式为y =﹣2x +6,∵点P 在直线BM 上,且PD ⊥x 轴于点D ,PD =m ,∴点P (3﹣,m ),∴S △PCD =×PD ×OD =m ×(3﹣)=﹣m 2+m ,∵点P 在线段BM 上,且点M (1,4),点B (3,0),∴0<m ≤4∴S与m之间的函数关系式为S=﹣m2+m(0<m≤4)②∵S=﹣m2+m=﹣(m﹣3)2+,∴当m=3时,S有最大值为,∴点P(,3)∵0<m≤4时,S没有最小值,综上所述:当m=3时,S有最大值为,此时点P(,3);(3)存在,若PC=PD=m时,∵PD=m,点P(3﹣,m),点C(0,3),∴(3﹣﹣0)2+(m﹣3)2=m2,∴m1=18+6(舍去),m2=18﹣6,∴点P(﹣6+3,18﹣6);若DC=PD=m时,∴(3﹣﹣0)2+(﹣3)2=m2,∴m3=﹣2﹣2(舍去),m4=﹣2+2,∴点P(4﹣,﹣2+2);若DC=PC时,∴(3﹣﹣0)2+(m﹣3)2=(3﹣﹣0)2+(﹣3)2,∴m5=0(舍去),m6=6(舍去)综上所述:当点P的坐标为:(﹣6+3,18﹣6)或(4﹣,﹣2+2)时,使△PCD为等腰三角形.6.解:(1)设抛物线的解析式为y=a(x﹣1)2+4,将点B(3,0)代入得,(3﹣1)2×a+4=0.解得:a=﹣1.∴抛物线的解析式为:y=﹣(x﹣1)2+4=﹣x2+2x+3.(2)过点P作PQ∥y轴交DB于点Q,∵抛物线的解析式为y=﹣x2+2x+3∴D(0,3).设直线BD的解析式为y=kx+b,∴,解得:,∴直线BD的解析式为y=﹣x+3.设P(m,﹣m2+2m+3),则Q(m,﹣m+3),∴PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.∵S△PBD =S△PQD+S△PQB,∴S△PBD=(3﹣m)=PQ=﹣m,∵S△PBD=3,∴﹣m=3.解得:m1=1,m2=2.∴点P的坐标为(1,4)或(2,3).(3)∵B(3,0),D(0,3),∴BD==3,设M(a,0),∵MN∥BD,∴△AMN∽△AMD,∴,即.∴MN=(1+a),DM==,∵△DNM∽△BMD,∴,∴DM2=BD•MN.∴9+a2=3(1+a).解得:a=或a=3(舍去).∴点M的坐标为(,0).7.解:(1)∵抛物线过A(3,0),B(1,0),∴可设抛物线的解析式为y=a(x﹣3)(x﹣1)(a≠0),把c(0,3)代入,得3a=3,∴a=1,∴抛物线的解析式是y=(x﹣3)(x﹣1)=x2﹣4x+3,即y=x2﹣4x+3;(2)过点P作PD⊥x轴于点D,过E作EF⊥y轴于F,延长FE与PD交于点G,如图1,∵A(3,0),C(0,3),∴OA=OC=3,∴∠OAC=45°,∵FG∥OA,∴∠CEF=45°,∴CF=EF=CE,∵PE⊥CA,∴∠PEG=45°,∴PG=EG=PE,∵CE=3PE,∴EF=3FG,设EF=3m,则PG=EG=m,FG=4m,∴DG=OF=OC﹣CF=3﹣3m,PD=PG+DG=3﹣2m,∴P(4m,3﹣2m),把P(4m,3﹣2m)代入y=x2﹣4x+3中得,3﹣2m=16m2﹣16m+3,∴m=,或m=0(舍去),∴P(,);(3)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线y=x2﹣4x+3的顶点为(2,﹣1),∵将原抛物线向上平移1个单位抛物线的对称轴交x轴于H点,∴H(2,0),由题意知,点H是新抛物线的顶点,∴新抛物线的解析式为y=(x﹣2)2,设M(m,(m﹣2)2),N(n,(n﹣2)2),过M作MK⊥x轴于点K,过点N作NL⊥x轴于点L,则MK=(m﹣2)2,KH=2﹣m,HL=n﹣2,NL=(n﹣2)2,∵MH⊥NH,∴∠MHK+∠HMK=∠MHK+∠NHL=90°,∴∠HMK=∠NHL,∵∠MKH=∠HLN=90°,∴△KHM∽△LNH,∴,,∴,∴,设直线MN的解析式为:y=kx+b(k≠0),则,∴,∴直线MN的解析式为:,当x=2时,y=﹣(m2﹣4m+3)=m2﹣4m+4﹣m2+4m﹣3=1,∴MN恒过的定点(2,1).8.解:(1)∵y=(x﹣1)2+k(k>0)经过y轴上的点A,顶点为B,∴A(0,1+k),B(1,k),∵y=(x﹣h)2+2﹣h(h≥2)的顶点为D,∴D(h,2﹣h),∵直线y=﹣x+b经过A,D,∴,∴,∴b的值为2,点B的坐标为(1,1);:y=(x﹣1)2+1,(2)由(1)知,抛物线l1∵点C的横坐标为m,两抛物线交于点C.∴(m﹣1)2+1=(m﹣h)2﹣h+2,整理得2mh﹣2m=h2﹣h∵h≥2∴m==;(3)当AC⊥AB时,则直线AC解析式为:y=x+2,∴∴(舍去),,∴点C坐标为(3,5),∴3=∴h=6;当BC⊥AB时,则直线BC解析式为:y=x,∴∴(舍去),∴点C坐标为(2,2),∴2=∴h=4;9.解:(1)令y=0,则x2﹣x﹣2=0,解得x=4或x=﹣1,∴A(﹣1,0),B(4,0),令x=0,则y=﹣2,∴C(0,﹣2),设直线BE的解析式为y=kx+b,将B(4,0)、E(0,2)代入得,,解得:,∴y=﹣x+2;(2)由题意可设AD的解析式为y=﹣x+m,将A(﹣1,0)代入,得到m=﹣,∴y=﹣x﹣,联立,解得:,,∴D(3,﹣2),过点P作PF⊥x轴于点F,交AD于点N,过点D作DG⊥x轴于点G.∴S△APD =S△APN+S△DPN=PN•AF+PN•FG=PN(AF+FG)=PN•AG=×4PN=2PN,设P(a,﹣a2﹣a﹣2),则N(a,﹣a﹣),∴PN=﹣a2+a+,∴S△APD=﹣a2+2a+3=﹣(a﹣1)2+4,∵﹣1<0,﹣1<a<3,∴当a=1时,△APD的面积最大,最大值为4;(3)存在;①当PD与AQ为平行四边形的对边时,∵AQ∥PD,AQ在x轴上,∴P(0,﹣2),∴PD=3,∴AQ=3,∵A(﹣1,0),∴Q(2,0)或Q(﹣4,0);②当PD与AQ为平行四边形的对角线时,PD与AQ的中点在x轴上,∴P点的纵坐标为2,∴P(,2)或P(,2),∴PD的中点为(,0)或(,0),∵Q点与A点关于PD的中点对称,∴Q(,0)或Q(,0);综上所述:点Q的坐标为(2,0)或(﹣4,0)或(,0)或(,0).10.解:(1)∵抛物线y=ax2+bx+c经过点A(1,0)、B(3,0)、C(0,3),∴,解得,∴抛物线的表达式为y=x2﹣4x+3;(2)∵抛物线对称轴是线段AB的垂直平分线,∴AM=BM,由三角形的三边关系,|BM﹣CM|=|AM﹣CM|<AC,∴点A、C、M三点共线时,|BM﹣CM|最大,设直线AC的解析式为y=mx+n,则,解得,又∵抛物线对称轴为直线x =﹣=2,∴x =2时,y =﹣3×2+3=﹣3,故,点M 的坐标为(2,﹣3);(3))∵OB =OC =3,OB ⊥OC ,∴△BOC 是等腰直角三角形,∵EF ∥y 轴,直线BC 的解析式为y =﹣x +3,∴△DEF 只要是直角三角形即可与△BOC 相似,∵D (2,1),A (1,0),B (3,0),∴点D 垂直平分AB 且到点AB 的距离等于AB ,∴△ABD 是等腰直角三角形,∴∠ADB =90°,如图,①点F 是直角顶点时,点F 的纵坐标与点D 的纵坐标相同,是1,∴x 2﹣4x +3=1,整理得x 2﹣4x +2=0,解得x =2±, 当x =2﹣时,y =﹣(2﹣)+3=1+, 当x =2+时,y =﹣(2+)+3=1﹣, ∴点E 1(2﹣,1+)E 2(2+,1﹣), ②点D 是直角顶点时,联立, 解得,,当x =1时,y =﹣1+3=2,当x =4时,y =﹣4+3=﹣1,∴点E 3(1,2),E 4(4,﹣1),综上所述,存在点E 1(2﹣,1+)或E 2(2+,1﹣)或E 3(1,2)或E 4(4,﹣1),使以D 、E 、F 为顶点的三角形与△BCO 相似.11.解:(1)∵抛物线y =ax 2+2ax +c (a ≠0)与x 轴交于点A ,B (1,0)两点,与y 轴交于点C ,且OA =OC ,∴a +2a +c =0,点C 的坐标为(0,c ),∴点A 的坐标为(c ,0),∴ac 2+2ac +c =0, ∴, 解得,或,∵函数图象开口向上,∴a >0,∴a =1,c =﹣3,∴抛物线的解析式为y =x 2+2x ﹣3;(2)∵y =x 2+2x ﹣3=(x +1)2﹣4,抛物线与与y 轴交于点C ,顶点为D ,OA =OC ,抛物线y =ax 2+2ax +c (a ≠0)与x 轴交于点A ,B (1,0)两点,∴点D 的坐标为(﹣1,﹣4),点C 的坐标为(0,﹣3),点A 的坐标为(﹣3,0), 连接OD ,如右图1所示,由图可知:S △ACD =S △OAD +S △OCD ﹣S △OAC==3;(3)∵A(﹣3,0),点B(1,0),∴AB=4,设点E的纵坐标为t,t<0,∵S△ABE=,∴=,得t=,把y=﹣代入y=x2+2x﹣3,得﹣=x2+2x﹣3,解得,x1=,x2=,∵点E在y轴的右侧,∴点E(,﹣),设直线AE的解析式为y=mx+n(m≠0),∴,得,∴直线AE的解析式为y=﹣x﹣1,过点P作y轴的平行线交AC于点G,如图2所示,设点P的横坐标为x,则P(x,x2+2x﹣3),点G(x,﹣x﹣1),∴PG=(﹣x﹣1)﹣(x2+2x﹣3)=﹣x2﹣x+2,又∵A(﹣3,0),E(,﹣),∴S△APE =S△APG+S△PEG=(﹣x2﹣x+2)(x+3)+(﹣x2﹣x+2)(﹣x)=(﹣x2﹣x+2)(3+)=(x+)2+,∴当x=﹣时,S取得最大值,最大值是,△APE把x=﹣代入y=x2+2x﹣3,得y=(﹣)2+2×(﹣)﹣3=﹣,∴此时点P的坐标为(﹣,﹣).12.解:(1)∵抛物线y=﹣2x2+bx+c过A(﹣1,0)、B(3,0)两点,∴,得,∴y=﹣2x2+4x+6=﹣2(x﹣1)2+8,∴抛物线的对称轴是直线x=1,即该抛物线的解析式为y=﹣2x2+4x+6,对称轴是直线x=1;(2)分两种情况:设点D的坐标为(1,y)第一种情况是:∠BCD=90°时,则CD2+BC2=BD2,∵点B的坐标为(3,0),抛物线y=﹣2x2+4x+6交y轴于点C,∴点C的坐标为(0,6),∴[12+(y﹣6)2]+(32+62)=(3﹣1)2+y2,解得,y=6.5,∴点D的坐标为(1,6.5);第二种情况:当∠DBC=90°时,BD2+BC2=CD2,即[(3﹣1)2+y2]+(32+62)=12+(6﹣y)2,解得,y=﹣1,∴点D的坐标为(1,﹣1),综上所述,符合条件的点D的坐标为(1,6.5),(1,﹣1);(3)因为点C的坐标为(0,6),点B的坐标为(3,0),设直线BC的解析式为y=kx+6,则3k+6=0,得k=﹣2,即直线BC的解析式为y=﹣2x+6,如右图所示,作点E关于直线BC的对称点E′交BC于点F,过点F作FN⊥y轴于点N,设E(0,m),E′(x,y),则EE′⊥BC,∴∠CFE=∠COB=90°,∴BC==3,∵∠ECF=∠BCO,∴△ECF∽△BCO,∴,即,解得,CF=,又∵∠CNF=∠COB,∠NCF=∠OCB,∴△NCF∽△OCB,∴,即,解得,FN=,∴点F的横坐标为,把x=代入直线BC的解析式,得y=,∴点F的坐标为(,),∵EE′关于直线BC对称,∴点F为EE′的中点,∴,解得,∴E′(,),∵点E′在抛物线y=﹣2x2+4x+6上,∴=﹣2×[]2+4×+6,解得,m1=6,m2=,∴点E的坐标为(0,6)或(0,).13.证明:(1)设A(b,ab2),B(c,ac2),∵∠AOB=90°,∴AB2=AO2+BO2,∴(b﹣c)2+(ab2﹣ac2)2=b2+a2b4+c2+a2c4,﹣2bc﹣2a2b2c2=0,1+a2bc=0,∴bc=﹣,设直线AB的解析式为:y=mx+n,则,解得,∴直线AB的解析式为:y=a(b+c)x﹣abc,当x=0时,y=OC=﹣abc=﹣a•(﹣)=;(2)如图2,过A作AD⊥y轴于D,设直线AB的解析式为:y=kx+b,当y=0时,kx+b=0,∴x=﹣,∴OC=﹣,∵过点A的直线AB恰好与此抛物线仅有一个交点,∴ax2=kx+b,∴ax2﹣kx﹣b=0,△=k2+4ab=0,∴b =﹣,OC =﹣=,∴x =,∵a >0,k >0,∴AD =,∵AD ∥OC , ∴==,∴AB =2BC ,∴AC =BC .14.解:(1)把B (﹣1,0),D (2,﹣2)代入y =ax 2﹣x +c 得, 解得:.故抛物线的解析式为y =x 2﹣x ﹣2;(2)当y =0时,x 2﹣x ﹣2=0,解得x 1=﹣1,x 2=3,∴A (3,0),∴AB =4,当x =0时,y =﹣2,∴C (0,﹣2),∴OC =2,∴S △ABC =×4×2=4,设AC 的解析式为y =kx +b ,把A (3,0),C (0,﹣2)代入y =kx +b 得, 解得.∴y =x ﹣2,如图1,过点E 作x 轴的垂线交直线AC 于点F ,设点F (a ,a ﹣2),点E (a ,a 2﹣a ﹣2),其中﹣1<a <3,∴S △ACE =EF |x A ﹣x C |=|a 2﹣a |=,∵S △ACE =S △ABC ,∴a 2﹣3a =2或﹣a 2+3a =2,解得a 1=(舍去),a 2=,a 3=1,a 4=2, ∴E 1(,),E 2(1,﹣),E 3(2,﹣2);(3)在y =ax 2+bx ﹣2中,当x =0时,y =﹣2,∴C (0,﹣2),∴OC =2,如图2,设P (0,m ),则PC =m +2,OA =3,AC ==,①当PA =CA 时,则OP 1=OC =2,∴P 1(0,2);②当PC =CA =时,即m +2=,∴m =﹣2, ∴P 2(0,﹣2); ③当PC =PA 时,点P 在AC 的垂直平分线上,则△AOC ∽△P 3EC , ∴=,∴P 3C =,∴m =,∴P 3(0,),④当PC =CA =时,m =﹣2﹣,∴P 4(0,﹣2﹣).综上所述,P点的坐标(0,2)或(0,﹣2)或(0,)或(0,﹣2﹣).15.解:(1)由已知可求B(6,0),C(0,4),将点B(6,0),C(0,4)代入y=﹣+bx+c,则有,解得,∴y=﹣x2+x+4,令y=0,则﹣x2+x+4=0,解得x=﹣1或x=6,∴A(﹣1,0);(2)∵点D在抛物线上,且横坐标为3,∴D(3,8),过点D作y轴的垂线交于点E,过点B作BF⊥DE交ED的延长线于点F;∴E(0,8),F(6,8),∴S△BCD =S梯形ECBF﹣S△CDE﹣S△BFD=(EC+BF)×OB﹣×EC×ED﹣×DF×BF=×(4+8)×6﹣×4×3﹣×3×8=36﹣6﹣12=18;(3)设P(m,﹣m2+m+4),∵PQ垂直于x轴,∴Q(m,0),且∠PQO=90°,∵∠COB=90°,∴点A、P、Q为顶点的三角形与△BOC相似有两种情况:①△PAQ∽△CBO时,==,∴=,解得m=5或m=﹣1,∵点P是直线BC上方的抛物线上,∴0≤m≤6,∴m=5,∴P(5,4);②△PAQ∽△BCO时,==,∴=,解得m=﹣1或m=,∵点P是直线BC上方的抛物线上,∴0≤m≤6,∴m=,∴P(,);综上所述:P(5,4)或P(,)时,点A、P、Q为顶点的三角形与△BOC相似.。
中考数学二次函数压轴题集锦(50道含解析)

中考数学二次函数压轴题集锦1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t 的取值范围.3.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB的长;(2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.4.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.5.如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l 与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.6.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.7.抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L 1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.8.在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx﹣2m (m是常数),顶点为P.(Ⅰ)当抛物线经过点A时,求顶点P的坐标;(Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式.9.如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为;(2)当△CBQ与△PAQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.10.如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(圆可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.11.已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x 轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.12.在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.13.如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标14.小贤与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b= ,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(3)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1,其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n ,其顶点为An…(n为正整数).求AnAn+1的长(用含n的式子表示).15.如图,已知抛物线y=ax2+bx(a≠0)过点A(,﹣3)和点B(3,0).过点A作直线AC∥x轴,交y轴于点C.(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D.连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;(3)抛物线上是否存在点Q,使得S△AOC =S△AOQ?若存在,求出点Q的坐标;若不存在,请说明理由.16.如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C 为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.17.如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.(1)若点P的横坐标为﹣,求△DPQ面积的最大值,并求此时点D的坐标;(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.18.已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.19.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.20.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE 的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;①=;②=;③“十字形”ABCD的周长为12.21.如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.(1)求抛物线y2的解析式;(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.22.如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M、N的坐标;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.23.如图,抛物线y=ax2+bx经过△OAB的三个顶点,其中点A(1,),点B(3,﹣),O为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC的大小及点C的坐标.24.如图,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点K,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.25.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.26.如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在请说明理由.27.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M,N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.28.如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=.求K关于m的函数表达式及K的范围.29.抛物线y=﹣x2﹣x+与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.(1)如图1,连接CD,求线段CD的长;(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+EC的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标;(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B 2 C的位置,再将△O2B2C绕点B2旋转一周,在旋转过程中,点O2,C的对应点分别是点O3,C1,直线O3C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M的长;若不存在,请说明理由.30.综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.31.如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b= ,点B的坐标是;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在,求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.32.如图,在平面直角坐标系中,二次函数y=(x﹣a)(x﹣3)(0<a<3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上?若能,求出a的值;若不能,请说明理由.33.如图,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y 轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.34.已知,点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>﹣(x﹣b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(,y1),D(,y 2)都在二次函数图象上,试比较y1与y2的大小.35.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣5交y轴于点A,交x轴于点B(﹣5,0)和点C(1,0),过点A作AD∥x轴交抛物线于点D.(1)求此抛物线的表达式;(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD的面积;(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP 的面积最大,求出此时点P的坐标和△ABP的最大面积.36.已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.37.直线y=﹣x+3交x轴于点A,交y轴于点B,顶点为D的抛物线y=﹣x2+2mx ﹣3m经过点A,交x轴于另一点C,连接BD,AD,CD,如图所示.(1)直接写出抛物线的解析式和点A,C,D的坐标;(2)动点P在BD上以每秒2个单位长的速度由点B向点D运动,同时动点Q 在CA上以每秒3个单位长的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒.PQ交线段AD于点E.①当∠DPE=∠CAD时,求t的值;②过点E作EM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N,当PN=EM时,求t的值.38.如图1,在平面直角坐标系中,直线y=x﹣1与抛物线y=﹣x2+bx+c交于A、B两点,其中A(m,0)、B(4,n),该抛物线与y轴交于点C,与x轴交于另一点D.(1)求m、n的值及该抛物线的解析式;(2)如图2,若点P为线段AD上的一动点(不与A、D重合),分别以AP、DP 为斜边,在直线AD的同侧作等腰直角△APM和等腰直角△DPN,连接MN,试确定△MPN面积最大时P点的坐标;(3)如图3,连接BD、CD,在线段CD上是否存在点Q,使得以A、D、Q为顶点的三角形与△ABD相似,若存在,请直接写出点Q的坐标;若不存在,请说明理由.39.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.40.如图1,在平面直角坐标系xOy中,已知点A和点B的坐标分别为A(﹣2,0),B(0,﹣6),将Rt△AOB绕点O按顺时针方向分别旋转90°,180°得到Rt△A1OC,Rt△EOF.抛物线C1经过点C,A,B;抛物线C2经过点C,E,F.(1)点C的坐标为,点E的坐标为;抛物线C的解析式1的解析式为;为.抛物线C2上的一个动点.(2)如果点P(x,y)是直线BC上方抛物线C1①若∠PCA=∠ABO时,求P点的坐标;②如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C于点N,记2h=PM+NM+BM,求h与x的函数关系式,当﹣5≤x≤﹣2时,求h的取值范围.41.如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C (0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.42.如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y 轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y≤9时,直接写出L的取值范围.43.已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.44.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y 轴交于点C(0,4).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.45.如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+分别与y轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN 的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.46.如图,已知抛物线y=ax2+bx﹣3与x轴交于点A(﹣3,0)和点B(1,0),交y轴于点C,过点C作CD∥x轴,交抛物线于点D.(1)求抛物线的解析式;(2)若直线y=m(﹣3<m<0)与线段AD、BD分别交于G、H两点,过G点作EG⊥x轴于点E,过点H作HF⊥x轴于点F,求矩形GEFH的最大面积;(3)若直线y=kx+1将四边形ABCD分成左、右两个部分,面积分别为S1,S2,且S1:S2=4:5,求k的值.47.如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.48.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.49.在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D (4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.50.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC 面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.一.解答题(共50小题)1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC是直角三角形.(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一个点,即可求得点N的坐标;(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,根据三角形相似对应边成比例求得MD=(n+2),然后根据S△AMN =S△ABN﹣S△BMN得出关于n的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x 轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,AB==2,BC=8﹣(﹣2)=10,AC==4,∴AB2+AC2=BC2,∴∠BAC=90°.∴AC⊥AB.∵AC∥MN,∴MN⊥AB.设点N的坐标为(n,0),则BN=n+2,∵MN∥AC,△BMN∽△BAC∴=,∴=,BM==,MN==,AM=AB﹣BM=2﹣==AM•MN∵S△AMN=××=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点评】本题是二次函数的综合题,解(1)的关键是待定系数法求解析式,解(2)的关键是勾股定理和逆定理,解(3)的关键是等腰三角形的性质,解(4)的关键是三角形相似的判定和性质以及函数的最值等.2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t 的取值范围.【分析】(1)根据点A、B、C三点的坐标作出△ABC,利用“闭距离”的定义即可得;(2)由题意知y=kx在﹣1≤x≤1范围内函数图象为过原点的线段,再分别求得经过(1,﹣1)和(﹣1,﹣1)时k的值即可得;(3)分⊙T在△ABC的左侧、内部和右侧三种情况,利用“闭距离”的定义逐一判断即可得.【解答】解:(1)如图所示,点O到△ABC的距离的最小值为2,∴d(点O,△ABC)=2;(2)y=kx(k≠0)经过原点,在﹣1≤x≤1范围内,函数图象为线段,当y=kx(﹣1≤x≤1,k≠0)经过(1,﹣1)时,k=﹣1,此时d(G,△ABC)=1;当y=kx(﹣1≤x≤1,k≠0)经过(﹣1,﹣1)时,k=1,此时d(G,△ABC)=1;∴﹣1≤k≤1,∵k≠0,∴﹣1≤k≤1且k≠0;。
2023年中考数学压轴题专题04 二次函数与相似问题-【含答案】

专题4二次函数与相似问题函数中因动点产生的相似三角形问题一般有三个解题途径①求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
相似三角形常见的判定方法:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;这是判定三角形相似的一种基本方法.相似的基本图形可分别记为“A”型和“X”型,如图所示在应用时要善于从复杂的图形中抽象出这些基本图形.(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.判定定理“两边及其夹角法”是常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边表示出来,按照对应边成比例,分AB DEAC DF=和AB DFAC DE=两种情况列方程.应用判定定理“两角法”解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理“三边法”解题不多见,根据三边对应成比例列连比式解方程(组).还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.【例1】(2022•贵港)如图,已知抛物线y=﹣x2+bx+c经过A(0,3)和B(,﹣)两点,直线AB与x轴相交于点C,P是直线AB上方的抛物线上的一个动点,PD⊥x轴交AB于点D.(1)求该抛物线的表达式;(2)若PE∥x轴交AB于点E,求PD+PE的最大值;(3)若以A,P,D为顶点的三角形与△AOC相似,请直接写出所有满足条件的点P,点D的坐标.【例2】.(2022•衡阳)如图,已知抛物线y=x2﹣x﹣2交x轴于A、B两点,将该抛物线位于x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.(1)写出图象W位于线段AB上方部分对应的函数关系式;(2)若直线y=﹣x+b与图象W有三个交点,请结合图象,直接写出b的值;(3)P为x轴正半轴上一动点,过点P作PM∥y轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使△CMN与△OBC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.【例3】.(2022•桂林)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y 轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ(点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.(1)直接写出A,B,C三点的坐标;(2)求CP+PQ+QB的最小值;(3)过点P作PM⊥y轴于点M,当△CPM和△QBN相似时,求点Q的坐标.【例4】(2022•玉林)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.(1)求抛物线的解析式;(2)若点D为线段OC的中点,则△POD能否是等边三角形?请说明理由;(3)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.1.(2020秋•兴城市期末)如图,抛物线y=ax2+bx+4经过A(4,0),B(﹣1,0)两点,与y轴交于点C,D为第一象限抛物线上的动点,连接AC,BC,DA,DB,DB与AC相交于点E.(1)求抛物线的解析式;(2)如图1,设△ADE的面积为S1,△BCE的面积为S2,当S1=S2+5时,求点D的坐标;(3)如图2,过点C作CF∥x轴,点M是直线CF上的一点,MN⊥CF交抛物线于点N,是否存在以C,M,N为顶点的三角形与△BCO相似?若存在,请直接写出点M的坐标,若不存在,请说明理由.2.(2020秋•郴州期末)已知抛物线y=x2﹣3x+与x轴交于A,B两点(点A在点B的左边).(1)求A,B两点的坐标;(2)如图1,若点D是抛物线上在第四象限的点,连接DA并延长,交y轴于点P,过点D作DE⊥x轴于点E.当△APO与△ADE的面积比为=时.求点D的坐标;(3)如图2,抛物线与y轴相交于点F.若点Q是线段OF上的动点,过点Q作与x轴平行的直线交抛物线于M,N两点(点M在点N的左边).请问是否存在以Q,A,M为顶点的三角形与△QNA相似?若存在,求出点Q的坐标;若不存在,请说明理由.3.(2020秋•长垣市期末)如图1,抛物线y=x2+bx+c与x轴、y轴分别交于点B(6,0)和点C(0,﹣3).(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,其横坐标为m,连接PB、PC,当△PBC的面积为时,求m 值;(3)如图2,点M是线段OB上的一个动点,过点M作x轴的垂线l分别与直线BC和抛物线交于D,E 两点,是否存在以C,D,E为顶点的三角形与△BDM相似,若存在,请直接写出点M的坐标;若不存在,请说明理由.4.(2021秋•邹城市期末)如图,已知抛物线y=x2+2x的顶点为A,直线y=x+2与抛物线交于B,C两点.(1)求A,B,C三点的坐标;(2)作CD⊥x轴于点D,求证:△ODC∽△ABC;(3)若点P为抛物线上的一个动点,过点P作PM⊥x轴于点M,则是否还存在除C点外的其他位置的点,使以O,P,M为顶点的三角形与△ABC相似?若存在,请求出这样的P点坐标;若不存在,请说明理由.5.(2021秋•攸县期末)如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M和点N的坐标;②在抛物线的对称轴上找一点Q,使|AQ﹣BQ|的值最大,请直接写出点Q的坐标;③是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.6.(2022•禹城市模拟)如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求出抛物线的解析式;(2)P是抛物线在第一象限上的一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M 为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;=S△ABC,直接写出点D (3)若抛物线上有一点D(点D位于直线AC的上方且不与点B重合)使得S△DCA的坐标.7.(2022•祥云县模拟)如图,已知抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),交y轴于点C(0,3),点M是该抛物线上第一象限内的一个动点,ME垂直x轴于点E,交线段BC于点D,MN∥x轴,交y轴于点N.(1)求抛物线y=ax2+bx+c的表达式;(2)若四边形MNOE是正方形,求该正方形的边长;(3)连结OD,AC,抛物线上是否存在点M,使得以C,O,D为顶点的三角形与△ABC相似,若存在,请求出点M的坐标,若不存在,请说明理由.8.(2022•松江区校级模拟)如图,抛物线y=x2﹣bx+c过点B(3,0),C(0,﹣3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)连接BC,CD,DB,求∠CBD的正切值;(3)点C关于抛物线y=x2﹣bx+c对称轴的对称点为E点,连接BE,直线BE与对称轴交于点M,在(2)的条件下,点P是抛物线对称轴上的一点,是否存在点P使△CDB和△BMP相似,若存在,求点P坐标,若不存在,请说明理由.9.(2022•平江县一模)如图,抛物线y=ax2+bx+8与x轴交于A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求该抛物线的函数表达式;(2)点P是第一象限内抛物线上的动点,连接PB,PC,设四边形PBOC和△AOC的面积分别为S四边形PBOC ,记S=S四边形PBOC﹣S△AOC,求S最大值点P的坐标及S的最大值;和S△AOC(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△BOC相似?若存在,求点M的坐标;若不存在,请说明理由.10.(2022•莱州市一模)如图①,在平面直角坐标系中,抛物线y=x2+c经过点A(4,3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,﹣2)且垂直于y轴的直线,连接PO.(1)求抛物线的表达式,并求出顶点B的坐标;(2)试证明:经过点O的⊙P与直线l相切;(3)如图②,已知点C的坐标为(1,2),是否存在点P,使得以点P,O及(2)中的切点为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.11.(2022•巩义市模拟)已知,二次函数y=ax2+bx﹣3的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于C点,点A的坐标为(﹣1,0),且OB=OC.(1)求二次函数的解析式;(2)当0≤x≤4时,求二次函数的最大值和最小值分别为多少?(3)设点C'与点C关于该抛物线的对称轴对称.在y轴上是否存在点P,使△PCC'与△POB相似,且PC 与PO是对应边?若存在,求出点P的坐标;若不存在,请说明理由.12.(2022•澄迈县模拟)在平面直角坐标系中,抛物线经过点A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求该抛物线的函数表达式及顶点C的坐标;(2)设该抛物线上一动点P的横坐标为t.①在图1中,当﹣3<t<0时,求△PBO的面积S与t的函数关系式,并求S的最大值;②在图2中,若点P在该抛物线上,点E在该抛物线的对称轴上,且以A,O,P,E为顶点的四边形是平行四边形,求点P的坐标;③在图3中,若P是y轴左侧该抛物线上的动点,过点P作PM⊥x轴,垂足为M,是否存在点P使得以点P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.13.(2022•丰南区二模)如图①、②,在平面直角坐标系中,一边长为2的等边三角板CDE恰好与坐标系中的△OAB重合,现将三角板CDE绕边AB的中点G(G点也是DE的中点),按顺时针方向旋转180°到△C′ED的位置.(1)直接写出C′的坐标,并求经过O、A、C′三点的抛物线的解析式;(2)点P在第四象限的抛物线上,求△C′OP的最大面积;(3)如图③,⊙G是以AB为直径的圆,过B点作⊙G的切线与x轴相交于点F,抛物线上是否存在一点M,使得△BOF与△AOM相似?若存在,请求出点M的坐标;若不存在,请说明理由.14.(2022•莱芜区三模)如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与x轴交于点A,与y轴交于点B,二次函数y=x2+bx+c的图象经过A和点C(0,﹣3).(1)求二次函数的表达式;(2)如图1,平移线段AC,点A的对应点D落在二次函数在第一象限的图象上,点C的对应点E落在直线AB上,直接写出四边形ACED的形状,并求出此时点D的坐标;(3)如图2,在(2)的条件下,连接CD,交x轴于点M,点P为直线CD下方抛物线上一个动点,过点P作PF⊥x轴,交CD于点F,连接PC,是否存在点P,使得以点P,C,F为顶点的三角形与△COM相似?若存在,求出线段FP的长度;若不存在,请说明理由.15.(2022•临清市三模)如图,抛物线y=﹣x2+bx+c的顶点D坐标为(1,4),且与x轴相交于A,B两点(点A在点B的左侧,与y轴相交于点C,点E在x轴上方且在对称轴左侧的抛物线上运动,点F在抛物线上并且和点E关于抛物线的对称轴对称,作矩形EFGH,其中点G,H都在x轴上.(1)求抛物线解析式;(2)设点F横坐标为m,①用含有m的代数式表示点E的横坐标为(直接填空);②当矩形EFGH为正方形时,求点G的坐标;③连接AD,当EG与AD垂直时,求点G的坐标;(3)过顶点D作DM⊥x轴于点M,过点F作FP⊥AD于点P,直接写出△DFP与△DAM相似时,点F 的坐标.16.(2022•成都模拟)如图①,已知抛物线y=﹣(x﹣1)2+k交x轴于A,B两点,交y轴于点C,P是抛物线上的动点,且满足OB=3OA.(1)求抛物线的解析式;(2)若点P在第一象限,直线y=x+b经过点P且与直线BC交于点E,设点P的横坐标为t,当线段PE 的长度随着t的增大而减小时,求t的取值范围;(3)如图②,过点A作BC的平行线m,与抛物线交于另一点D.点P在直线m上方,点Q在线段AD 上,若△CPQ与△AOC相似,且点P与点O是对应点,求点P的坐标.17.(2022•东莞市校级一模)在平面直角坐标系xOy中,已知抛物线y=﹣x2+2kx+2k2+1与x轴的左交点为A,右交点为B,与y轴的交点为C,对称轴为直线l,对于抛物线上的两点(x1,y1),(x2,y2)(x1<k<x2),当x1+x2=2时,y1﹣y2=0恒成立.(1)求该抛物线的解析式;(2)点M是第二象限内直线AC上方的抛物线上的一点,过点M作MN⊥AC于点N,求线段MN的最大值,并求出此时点M的坐标;(3)点P是直线l右侧抛物线上的一点,PQ⊥l于点Q,AP交直线l于点F,是否存在这样的点P,使△PQF与△ACO相似?若存在,请求出点P的坐标,若不存在,请说明理由.18.(2022•碑林区校级模拟)如图,Rt△ABC中,∠ACB=90°,AB=8,AC=4,以AB所在直线为x轴建立平面直角坐标系,若C(0,2).(1)请直接写出A、B的坐标;(2)求经过A、B、C三点的抛物线表达式;(3)l为抛物线对称轴,P是直线l右侧抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△ABC全等,求满足条件的点P,点E的坐标.【例1】(2022•贵港)如图,已知抛物线y=﹣x2+bx+c经过A(0,3)和B(,﹣)两点,直线AB与x轴相交于点C,P是直线AB上方的抛物线上的一个动点,PD⊥x轴交AB于点D.(1)求该抛物线的表达式;(2)若PE∥x轴交AB于点E,求PD+PE的最大值;(3)若以A,P,D为顶点的三角形与△AOC相似,请直接写出所有满足条件的点P,点D的坐标.【分析】(1)直接利用待定系数法,即可求出解析式;(2)先求出点C的坐标,然后证明Rt△DPE∽Rt△AOC,再由二次函数的最值性质,求出答案;(3)根据题意,可分为两种情况进行分析:当△AOC∽△APD时;当△AOC∽△DAP时;分别求出两种情况的点的坐标,即可得到答案.【解析】(1)将A(0,3)和B(,﹣)代入y=﹣x2+bx+c,,解得,∴该抛物线的解析式为y=﹣x2+2x+3;(2)设直线AB的解析式为y=kx+n,把A(0,3)和B(,﹣)代入,,解得,∴直线AB的解析式为y=﹣x+3,当y=0时,﹣x+3=0,解得:x=2,∴C点坐标为(2,0),∵PD⊥x轴,PE∥x轴,∴∠ACO=∠DEP,∴Rt△DPE∽Rt△AOC,∴,∴PE=PD,∴PD+PE=PD,设点P的坐标为(a,﹣a2+2a+3),则D点坐标为(a,﹣a+3),∴PD=(﹣a2+2a+3)﹣(﹣a+3)=﹣(a﹣)2+,∴PD+PE=﹣(a﹣)2+,∵﹣<0,∴当a=时,PD+PE有最大值为;(3)①当△AOC∽△APD时,∵PD⊥x轴,∠DPA=90°,∴点P纵坐标是3,横坐标x>0,即﹣x2+2x+3=3,解得x=2,∴点D的坐标为(2,0);∵PD⊥x轴,∴点P的横坐标为2,∴点P的纵坐标为:y=﹣22+2×2+3=3,∴点P的坐标为(2,3),点D的坐标为(2,0);②当△AOC∽△DAP时,此时∠APG=∠ACO,过点A作AG⊥PD于点G,∴△APG∽△ACO,∴,设点P的坐标为(m,﹣m2+2m+3),则D点坐标为(m,﹣m+3),则,解得:m=,∴D点坐标为(,1),P点坐标为(,),综上,点P的坐标为(2,3),点D的坐标为(2,0)或P点坐标为(,),D点坐标为(,1).【例2】(2022•衡阳)如图,已知抛物线y=x2﹣x﹣2交x轴于A、B两点,将该抛物线位于x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.(1)写出图象W位于线段AB上方部分对应的函数关系式;(2)若直线y=﹣x+b与图象W有三个交点,请结合图象,直接写出b的值;(3)P为x轴正半轴上一动点,过点P作PM∥y轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使△CMN与△OBC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)令x=0和翻折的性质可得C(0,2),令y=0可得点A、B的坐标,利用待定系数法即可求出图象W的解析式;(2)利用数形结合找出当y=﹣x+b经过点C或者y=﹣x+b与y=x2﹣x﹣2相切时,直线y=﹣x+b与新图象恰好有三个不同的交点,①当直线y=﹣x+b经过点C(0,2)时,利用一次函数图象上点的坐标特征,即可求出b值;②当y=﹣x+b与y=x2﹣x﹣2相切时,联立一次函数解析式和抛物线解析式,利用根的判别式Δ=0,即可求出b值.综上即可得出结论;(3)先确定△BOC是等腰直角三角形,分三种情况:∠CNM=90°或∠MCN=90°,分别画图可得结论.【解析】(1)当x=0时,y=﹣2,∴C(0,2),当y=0时,x2﹣x﹣2=0,(x﹣2)(x+1)=0,∴x1=2,x2=﹣1,∴A(﹣1,0),B(2,0),设图象W的解析式为:y=a(x+1)(x﹣2),把C(0,2)代入得:﹣2a=2,∴a=﹣1,∴y=﹣(x+1)(x﹣2)=﹣x2+x+2,∴图象W位于线段AB上方部分对应的函数关系式为:y=﹣x2+x+2(﹣1<x<2);(2)由图象得直线y=﹣x+b与图象W有三个交点时,存在两种情况:①当直线y=﹣x+b过点C时,与图象W有三个交点,此时b=2;②当直线y=﹣x+b与图象W位于线段AB上方部分对应的函数图象相切时,如图1,﹣x+b=﹣x2+x+2,x2﹣2x+b﹣2=0,Δ=(﹣2)2﹣4×1×(b﹣2)=0,∴b=3,综上,b的值是2或3;(3)∵OB=OC=2,∠BOC=90°,∴△BOC是等腰直角三角形,如图2,CN∥OB,△CNM∽△BOC,∵PN∥y轴,∴P(1,0);如图3,CN∥OB,△CNM∽△BOC,当y=2时,x2﹣x﹣2=2,x2﹣x﹣4=0,∴x1=,x2=,∴P(,0);如图4,当∠MCN=90°时,△OBC∽△CMN,∴CN的解析式为:y=x+2,∴x+2=x2﹣x﹣2,∴x1=1+,x2=1﹣(舍),∴P(1+,0),综上,点P的坐标为(1,0)或(,0)或(1+,0).【例3】(2022•桂林)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ(点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.(1)直接写出A,B,C三点的坐标;(2)求CP+PQ+QB的最小值;(3)过点P作PM⊥y轴于点M,当△CPM和△QBN相似时,求点Q的坐标.【分析】(1)由y=﹣x2+3x+4可得A(﹣1,0),B(4,0),C(0,4);(2)将C(0,4)向下平移至C',使CC'=PQ,连接BC'交抛物线的对称轴l于Q,可知四边形CC'QP是平行四边形,及得CP+PQ+BQ=C'Q+PQ+BQ=BC'+PQ,而B,Q,C'共线,故此时CP+PQ+BQ最小,最小值为BC'+PQ的值,由勾股定理可得BC'=5,即得CP+PQ+BQ最小值为6;(3)由在y=﹣x2+3x+4得抛物线对称轴为直线x=﹣=,设Q(,t),则P(,t+1),M(0,t+1),N(,0),知BN=,QN=t,PM=,CM=|t﹣3|,①当=时,=,可解得Q(,)或(,);②当=时,=,得Q(,).【解析】(1)在y=﹣x2+3x+4中,令x=0得y=4,令y=0得x=﹣1或x=4,∴A(﹣1,0),B(4,0),C(0,4);(2)将C(0,4)向下平移至C',使CC'=PQ,连接BC'交抛物线的对称轴l于Q,如图:∵CC'=PQ,CC'∥PQ,∴四边形CC'QP是平行四边形,∴CP=C'Q,∴CP+PQ+BQ=C'Q+PQ+BQ=BC'+PQ,∵B,Q,C'共线,∴此时CP+PQ+BQ最小,最小值为BC'+PQ的值,∵C(0,4),CC'=PQ=1,∴C'(0,3),∵B(4,0),∴BC'==5,∴BC'+PQ=5+1=6,∴CP+PQ+BQ最小值为6;(3)如图:由在y=﹣x2+3x+4得抛物线对称轴为直线x=﹣=,设Q(,t),则P(,t+1),M(0,t+1),N(,0),∵B(4,0),C(0,4);∴BN=,QN=t,PM=,CM=|t﹣3|,∵∠CMP=∠QNB=90°,∴△CPM和△QBN相似,只需=或=,①当=时,=,解得t=或t=,∴Q(,)或(,);②当=时,=,解得t=或t=(舍去),∴Q(,),综上所述,Q的坐标是(,)或(,)或(,).【例4】(2022•玉林)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.(1)求抛物线的解析式;(2)若点D为线段OC的中点,则△POD能否是等边三角形?请说明理由;(3)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.【分析】(1)把点B(2,0)代入y=﹣2x2+bx+c中,再由对称轴是直线x=列方程,两个方程组成方程组可解答;(2)当△POD是等边三角形时,点P在OD的垂直平分线上,所以作OD的垂直平分线与抛物线的交点即为点P,计算OD≠PD,可知△POD不可能是等边三角形;(3)分种情况:①当PC∥x轴时,△CPM∽△BHM时,根据PH的长列方程可解答;②②如图3,△PCM ∽△BHM,过点P作PE⊥y轴于E,证明△PEC∽△COB,可得结论.【解析】(1)由题意得:,解得:,∴抛物线的解析式为:y=﹣2x2+2x+4;(2)△POD不可能是等边三角形,理由如下:如图1,取OD的中点E,过点E作EP∥x轴,交抛物线于点P,连接PD,PO,∵C(0,4),D是OD的中点,∴E(0,1),当y=1时,﹣2x2+2x+4=1,2x2﹣2x﹣3=0,解得:x1=,x2=(舍),∴P(,1),∴OD≠PD,∴△POD不可能是等边三角形;(3)设点P的坐标为(t,﹣2t2+2t+4),则OH=t,BH=2﹣t,分两种情况:①如图2,△CMP∽△BMH,∴∠PCM=∠OBC,∠BHM=∠CPM=90°,∴tan∠OBC=tan∠PCM,∴====2,∴PM=2PC=2t,MH=2BH=2(2﹣t),∵PH=PM+MH,∴2t+2(2﹣t)=﹣2t2+2t+4,解得:t1=0,t2=1,∴P(1,4);②如图3,△PCM∽△BHM,则∠PCM=∠BHM=90°,过点P作PE⊥y轴于E,∴∠PEC=∠BOC=∠PCM=90°,∴∠PCE+∠EPC=∠PCE+∠BCO=90°,∴∠BCO=∠EPC,∴△PEC∽△COB,∴=,∴=,解得:t1=0(舍),t2=,∴P(,);综上,点P的坐标为(1,4)或(,).1.(2020秋•兴城市期末)如图,抛物线y=ax2+bx+4经过A(4,0),B(﹣1,0)两点,与y轴交于点C,D为第一象限抛物线上的动点,连接AC,BC,DA,DB,DB与AC相交于点E.(1)求抛物线的解析式;(2)如图1,设△ADE的面积为S1,△BCE的面积为S2,当S1=S2+5时,求点D的坐标;(3)如图2,过点C作CF∥x轴,点M是直线CF上的一点,MN⊥CF交抛物线于点N,是否存在以C,M,N为顶点的三角形与△BCO相似?若存在,请直接写出点M的坐标,若不存在,请说明理由.【分析】(1)运用待定系数法将A(4,0),B(﹣1,0)代入y=ax2+bx+4,解方程组即可求得答案;(2)根据题意,当S1=S2+5,即S△ABD=S△ABC+5,设D(x,y),表示出△ABD和△ABC的面积,列方程求解即可;(3)分情况讨论,列出三角形相似的三种情况,画出相应图形,设M(m,4),则N(m,﹣m2+3m+4),运用相似三角形性质,建立方程求解即可.【解析】(1)∵抛物线y=ax2+bx+4经过A(4,0),B(﹣1,0)两点,∴,解得:,∴y=﹣x2+3x+4;(2)∵抛物线y=﹣x2+3x+4与y轴交于点C,令x=0,则y=4,∴C(0,4),∵S1=S2+5,∴S1+S△AEB=S2+S△AEB+5,=S△ABC+5,即S△ABD∵A(4,0),B(﹣1,0),∴AB=5,设D(x,y),∴×5×y=×5×4+5,∴y=6,∴﹣x2+3x+4=6,解得:x1=1,x2=2,∴D1(1,6),D2(2,6);(3)设M(m,4),则N(m,﹣m2+3m+4),①如图2,△BOC∽△NMC,则=,∴=,解得:m=0(舍去),m=,经检验,m=是原方程的解,∴M(,4);②如图3,△BOC∽△CMN,则=,∴=,解得:m=0(舍去),m=﹣1,经检验,m=﹣1是原方程的解,∴M(﹣1,4);③如图4,△BOC∽△NMC,则=,∴=,解得:m=0(舍去),m=,经检验,m=是原方程的解,∴M(,4);④如图5,△BOC∽△CMN,则=,∴=,解得:m=0(舍去),m=7,经检验,m=7是原方程的解,∴M(7,4);综上所述,点M的坐标为(,4)或(﹣1,4)或(,4)或(7,4).2.(2020秋•郴州期末)已知抛物线y=x2﹣3x+与x轴交于A,B两点(点A在点B的左边).(1)求A,B两点的坐标;(2)如图1,若点D是抛物线上在第四象限的点,连接DA并延长,交y轴于点P,过点D作DE⊥x轴于点E.当△APO与△ADE的面积比为=时.求点D的坐标;(3)如图2,抛物线与y轴相交于点F.若点Q是线段OF上的动点,过点Q作与x轴平行的直线交抛物线于M,N两点(点M在点N的左边).请问是否存在以Q,A,M为顶点的三角形与△QNA相似?若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)在抛物线解析式中,令y=0则可求得A、B的坐标;(2)证明△AOP∽△AED,根据相似三角形面积的比等于对应边的比的平方列比例式可得AE=2,从而得点D的横坐标为3,代入抛物线的解析式可得点D的坐标;(3)如图2所示,若以Q,A,M为顶点的三角形与△QNA相似,有两种情况,但是∠QAM与∠QAN不可能相等,所以最后只存在一种情况:△AQM∽△NQA,列比例式可得结论.【解析】(1)当y=0时,x2﹣3x+=0,解得:x1=1,x2=5,∴A(1,0),B(5,0);(2)∵DE⊥x轴,∴∠AED=90°,∴∠AOP=∠AED=90°,∵∠OAP=∠DAE,∴△AOP∽△AED,∴==,∴=,∵OA=1,∴AE=2,∴OE=3,当x=3时,y=﹣3×3+=﹣2,∴D(3,﹣2);(3)如图2,设Q(0,m),当x=0时,y=,∴F(0,),∵点Q是线段OF上的动点,∴0≤m≤,当y=m时,x2﹣3x+=m,x2﹣6x+5﹣2m=0,x=3,∴x1=3+,x2=3﹣,∴QM=3﹣,QN=3+,在Rt△AOQ中,由勾股定理得:AQ=,∵∠AQM=∠AQN,∴当△AQM和△AQN相似只存在一种情况:△AQM∽△NQA,∴,∴AQ2=NQ•QM,即1+m2=(3+)(3﹣),解得:m1=﹣1+,m2=﹣1﹣(舍),∴Q(0,﹣1+).3.(2020秋•长垣市期末)如图1,抛物线y=x2+bx+c与x轴、y轴分别交于点B(6,0)和点C(0,﹣3).(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,其横坐标为m,连接PB、PC,当△PBC的面积为时,求m 值;(3)如图2,点M是线段OB上的一个动点,过点M作x轴的垂线l分别与直线BC和抛物线交于D,E 两点,是否存在以C,D,E为顶点的三角形与△BDM相似,若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)根据点A、B的坐标,利用待定系数法即可求出该抛物线的函数关系式;(2)根据点P是直线BC下方抛物线上一动点,其横坐标为m,表示PH的长,根据三角形的面积列方程解出即可得出结论;(3)先根据两三角形相似判断出∠CED=∠BMD=90°或∠DCE=∠DMB=90°,进而分两种情况讨论即可得出结论.【解析】(1)把点B(6,0)和点C(0,﹣3)代入得:,解得:,∴抛物线的解析式为;(2)设直线BC的解析式为:y=ax+n,由点B(6,0)和C(0,﹣3)得:,解得:,∴直线BC的解析式为,如图1,过点P作y轴的平行线交BC于点H,∵点P的坐标为(m,),PH∥y轴,∴点H的坐标为(m,),∴PH=y H﹣y P=﹣()=﹣,x B﹣x C=6﹣0=6,=PH×6=(﹣)×6=﹣=,∵S△PBC解得:m1=1,m2=5,∴m值为1或5;(3)如图2,∵∠CDE=∠BDM,△CDE与△BDM相似,∴∠CED=∠BMD=90°或∠DCE=∠DMB=90°,设M(x,0),①当∠CED=∠BDM=90°,∴CE∥AB,∵C(0,﹣3),∴点E的纵坐标为﹣3,∵点E在抛物线上,∴x2﹣x﹣3=﹣3.∴x=0(舍)或x=5,∴M(5,0);②当∠DCE=∠DMB=90°,∵OB=6,OC=3,∴BC==3,由(2)知直线BC的关系式为y=x﹣3,∴OM=x,BM=6﹣x,DM=3﹣x,由(2)同理得ED=﹣+3x,∵DM∥OC,∴,即,∴CD=,∴BD=BC﹣CD=﹣x,∵△ECD∽△BMD,∴,即=,∴=x(3﹣x)2,x(6﹣x)(1﹣x)=0,x1=0(舍),x2=6(舍),x3=1,∴M(1,0);综上所述:点M的坐标为(5,0)或(1,0).4.(2021秋•邹城市期末)如图,已知抛物线y=x2+2x的顶点为A,直线y=x+2与抛物线交于B,C两点.(1)求A,B,C三点的坐标;(2)作CD⊥x轴于点D,求证:△ODC∽△ABC;(3)若点P为抛物线上的一个动点,过点P作PM⊥x轴于点M,则是否还存在除C点外的其他位置的点,使以O,P,M为顶点的三角形与△ABC相似?若存在,请求出这样的P点坐标;若不存在,请说明理由.【分析】(1)将抛物线配方后可得顶点A的坐标,将抛物线和一次函数的解析式联立方程组,解出可得B 和C的坐标;(2)先根据两点的距离计算AB、BC、AC的长,根据勾股定理的逆定理可得:∠ABC=90°,最后根据两边的比相等且夹角为90度得两三角形相似;(3)存在,设M(x,0),则P(x,x2+2x),表示OM=|x|,PM=|x2+2x|,分两种情况:有=或=,根据比例式代入可得对应x的值,计算点P的坐标即可.【解答】(1)解:y=x2+2x=(x+1)2﹣1,∴顶点A(﹣1,﹣1);由,解得:或∴B(﹣2,0),C(1,3);(2)证明:∵A(﹣1,﹣1),B(﹣2,0),C(1,3),∴AB==,BC==3,AC==2,∴AB2+BC2=AC2,==,∴∠ABC=90°,∵OD=1,CD=3,∴=,∴,∠ABC=∠ODC=90°,∴△ODC∽△ABC;(3)存在这样的P点,设M(x,0),则P(x,x2+2x),∴OM=|x|,PM=|x2+2x|,当以O,P,M为顶点的三角形与△ABC相似时,有=或=,由(2)知:AB=,CB=3,①当=时,则=,当P在第二象限时,x<0,x2+2x>0,∴,解得:x1=0(舍),x2=﹣,当P在第三象限时,x<0,x2+2x<0,∴=,解得:x1=0(舍),x2=﹣,②当=时,则=3,同理代入可得:x=﹣5或x=1(舍),综上所述,存在这样的点P,坐标为(﹣,﹣)或(﹣,)或(﹣5,15).5.(2021秋•攸县期末)如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M和点N的坐标;②在抛物线的对称轴上找一点Q,使|AQ﹣BQ|的值最大,请直接写出点Q的坐标;③是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.【分析】(1)①函数的对称轴为:x=﹣=,故点M(,),即可求解;②设抛物线与x轴左侧的交点为R(﹣1,0),则点A与R关于抛物线的对称轴对称,连接RB并延长交抛物线的对称轴于点Q,则点Q为所求,即可求解;③四边形MNPD为菱形,首先PD=MN,即(﹣2x2+2x+4)﹣(﹣2x+4)=,解得:x=或(舍去),故点P(,1),而PN==≠MN,即可求解;(2)分∠DBP为直角、∠BDP为直角两种情况,分别求解即可.【解析】(1)①函数的对称轴为:x=﹣=,故点M(,),当x=时,y=﹣2x+4=3,故点N(,3);②设抛物线与x轴左侧的交点为R(﹣1,0),则点A与R关于抛物线的对称轴对称,连接RB并延长交抛物线的对称轴于点Q,则点Q为所求,将R、B的坐标代入一次函数表达式:y=kx+b并解得:直线RB的表达式为:y=4x+4,当x=时,y=6,故点Q(,6);③不存在,理由:设点P(x,﹣2x+4),则点D(x,﹣2x2+2x+4),MN=﹣3=,四边形MNPD为菱形,首先PD=MN,即(﹣2x2+2x+4)﹣(﹣2x+4)=,解得:x=或(舍去),故点P(,1),而PN==≠MN,故不存在点P,使四边形MNPD为菱形;(2)当点P的横坐标为1时,则其坐标为:(1,2),此时点A、B的坐标分别为:(2,0)、(0,4),①当∠DBP为直角时,以B、P、D为顶点的三角形与△AOB相似,则∠BAO=∠BDP=α,tan∠BAO==2=tanα,则sinα=,PA=,PB=AB﹣PA=2﹣=,则PD==,故点D(1,);②当∠BDP为直角时,以B、P、D为顶点的三角形与△AOB相似,则BD∥x轴,则点B、D关于抛物线的对称轴对称,故点D(1,4),综上,点D的坐标为:(1,4)或(1,),将点A、B、D的坐标代入抛物线表达式:y=ax2+bx+c并解得:y=﹣2x2+2x+4或y=﹣x2+3x+4.6.(2022•禹城市模拟)如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求出抛物线的解析式;(2)P是抛物线在第一象限上的一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M 为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;=S△ABC,直接写出点D (3)若抛物线上有一点D(点D位于直线AC的上方且不与点B重合)使得S△DCA的坐标.。
2023年中考数学复习《二次函数综合压轴题》培优提升专题训练(含解析)

2023年春九年级数学中考复习《二次函数综合压轴题》培优提升专题训练(附答案)1.已知:抛物线y=x2+x+m交x轴于A,B两点,交y轴于点C,其中点B在点A的右侧,且AB=7.(1)如图1,求抛物线的解析式;(2)如图2,点D在第一象限内抛物线上,连接CD,AD,AD交y轴于点E.设点D 的横坐标为d,△CDE的面积为S,求S与d之间的函数关系式(不要求写出自变量d的取值范围);(3)如图3,在(2)的条件下,过点D作DH⊥CE于点H,点P在DH上,连接CP,若∠OCP=2∠DAB,且HE:CP=3:5,求点D的坐标及相应S的值.2.如图,在平面直角坐标系中,矩形ABCD的顶点B,C,D的坐标分别(1,0),(3,0),(3,4),以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,以每秒个单位的速度沿线段AD向点D匀速运动,过点P作PE⊥x轴,交对角线AC于点N.设点P运动的时间为t(秒).(1)求抛物线的解析式;(2)若PN分△ACD的面积为1:2的两部分,求t的值;(3)若动点P从A出发的同时,点Q从C出发,以每秒1个单位的速度沿线段CD向点D匀速运动,点H为线段PE上一点.若以C,Q,N,H为顶点的四边形为菱形,求t的值.3.如图1,过原点的抛物线与x轴交于另一点A,抛物线顶点C的坐标为,其对称轴交x轴于点B.(1)求抛物线的解析式;(2)如图2,点D为抛物线上位于第一象限内且在对称轴右侧的一个动点,求使△ACD 面积最大时点D的坐标;(3)在对称轴上是否存在点P,使得点A关于直线OP的对称点A'满足以点O、A、C、A'为顶点的四边形为菱形.若存在,请求出点P的坐标;若不存在,请说明理由.4.综合与探究如图,已知抛物线y=ax2﹣2x+c与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,对称轴为直线l,顶点为D.(1)求抛物线的解析式及点D坐标;(2)在直线l上是否存在一点M,使点M到点B的距离与到点C的距离之和最小?若存在,求出点M的坐标;若不存在,请说明理由.(3)在x轴上取一动点P(m,0),﹣3<m<﹣1,过点P作x轴的垂线,分别交抛物线,AD,AC于点E,F,G.①判断线段FP与FG的数量关系,并说明理由②连接EA,ED,CD,当m为何值时,四边形AEDC的面积最大?最大值为多少?5.如图,抛物线y=ax2+bx(a>0)与双曲线y=相交于点A、B,已知点A坐标(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).(1)求实数a、b、k的值;(2)在该抛物线的对称轴上是否存在点P使得△POB为等腰三角形?若存在请求出所有的P点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M,恰使得MA=MB=MO,现要求在y轴上找出点Q使得△BQM的周长最小,请求出M的坐标和△BQM周长的最小值.6.如图,已知,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(4,0)两点,过点A的直线y=kx+k与该抛物线交于点C,点P是该抛物线上不与A,B重合的动点,过点P作PD⊥x轴于D,交直线AC于点E.(1)求抛物线的解析式;(2)若k=﹣1,当PE=2DE时,求点P坐标;(3)当(2)中直线PD为x=1时,是否存在实数k,使△ADE与△PCE相似?若存在请求出k的值;若不存在,请说明你的理由.7.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE交于另一点F,连接BC.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x﹣h)2+k的形式;(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;(3)一动点M从点D出发,以每秒1个单位的速度沿平行于y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?8.如图,已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)点P是第一象限抛物线上一动点,过点P作x轴的垂线l,交BC于点H.当点P 运动到何处时满足PC=CH?求出此时点P的坐标;(3)若m≤x≤m+1时,二次函数y=ax2+bx+3的最大值为m,求m的值.9.综合与探究如图,在平面直角坐标系中,点A,B的坐标分别为(﹣4,0),(2,0),点C在y轴上,其坐标为(0,﹣3),抛物线经过点A,B,C.P为第三象限内抛物线上一动点.(1)求该抛物线的解析式.(2)连接AC,过点P作PD⊥AC,PE∥y轴交AC于点E,当△PDE的周长最大时,求P点的坐标和△PDE周长的最大值.(3)若点M为x轴上一动点,点F为平面直角坐标系内一点.当点M,B,C,F构成菱形时,请直接写出点F的坐标.10.已知:如图,在Rt△ABC中,∠ACB=90°,BC=3,CA=4,将∠ABC对折,使点C 的对应点H恰好落在直线AB上,折痕交AC于点O,以点O为坐标原点,AC所在直线为x轴建立平面直角坐标系.(1)求过A,B,O三点的抛物线解析式;(2)若在线段AB上有一动点P,过点P作x轴的垂线,交抛物线于M,连接MB,MA,求△MAB的面积的最大值;(3)若点E在抛物线上,点F在对称轴上,且以O,A,E,F为顶点的四边形为平行四边形,求点E的坐标.11.如图,矩形AOBC放置在平面直角坐标系xOy中,边OA在y轴的正半轴上,边OB在x轴的正半轴上,抛物线的顶点为F,对称轴交AC于点E,且抛物线经过点A(0,2),点C,点D(3,0).∠AOB的平分线是OE,交抛物线对称轴左侧于点H,连接HF.(1)求该抛物线的解析式;(2)在x轴上有动点M,线段BC上有动点N,求四边形EAMN的周长的最小值;(3)该抛物线上是否存在点P,使得四边形EHFP为平行四边形?如果存在,求出点P 的坐标;如果不存在,请说明理由.12.如图抛物线y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),C(0,3).(1)求抛物线的解析式,并指出抛物线的顶点坐标.(2)在抛物线的对称轴上是否存在一点P,使得△P AC的周长最小,若存在,请求出点P的坐标及△P AC的周长;若不存在,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点M(不与C点重合),使得S△P AM=S△P AC,若存在,请求出点M的坐标;若不存在,请说明理由.13.已知:抛物线y=ax2﹣3(a﹣1)x+2a﹣6(a>0).(1)求证:抛物线与x轴有两个交点.(2)设抛物线与x轴的两个交点的横坐标分别为x1,x2(其中x1>x2).若t是关于a的函数、且t=ax2﹣x1,求这个函数的表达式;(3)若a=1,将抛物线向上平移一个单位后与x轴交于点A、B.平移后如图所示,过A作直线AC,分别交y的正半轴于点P和抛物线于点C,且OP=1.M是线段AC上一动点,求2MB+MC的最小值.14.如图,在平面直角坐标系中,一次函数y=x﹣2的图象分别交x、y轴于点A、B,抛物线y=x2+bx+c经过点A、B,点P为第四象限内抛物线上的一个动点.(1)求此抛物线对应的函数表达式;(2)如图1所示,过点P作PM∥y轴,分别交直线AB、x轴于点C、D,若以点P、B、C为顶点的三角形与以点A、C、D为顶点的三角形相似,求点P的坐标;(3)如图2所示,过点P作PQ⊥AB于点Q,连接PB,当△PBQ中有某个角的度数等于∠OAB度数的2倍时,请直接写出点P的横坐标.15.如图,已知直线y=﹣x+3与x轴交于点B,与y轴交于点C,抛物线y=ax2+bx+3经过B、C两点并与x轴的另一个交点为A,且OC=3OA.(1)求抛物线的解析式;(2)点R为直线BC上方对称轴右侧抛物线上一点,当△RBC的面积为时,求R点的坐标;(3)在(2)的条件下,连接CR,作RH⊥x轴于H,连接CH、AC,点P为线段CR上一点,点Q为线段CH上一点,满足QH=CP,过点P作PE∥AC交x轴于点E,连接EQ,当∠PEQ=45°时,求CP的长.16.综合与探究如图,在平面直角坐标系中,直线y=x﹣4分别与x轴,y轴交于点A和点C,抛物线y =ax2﹣3x+c经过A,C两点,并且与x轴交于另一点B.点D为第四象限抛物线上一动点(不与点A,C重合),过点D作DF⊥x轴,垂足为F,交直线AC于点E,连接BE.设点D的横坐标为m.(1)求抛物线的解析式;(2)当∠ECD=∠EDC时,求出此时m的值;(3)点D在运动的过程中,△EBF的周长是否存在最小值?若存在,求出此时m的值;若不存在,请说明理由.17.如图,抛物线y=ax2+bx+3经过点A(1,0),B(4,0).(1)求抛物线的表达式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形P AOC的周长最小?若存在,求出四边形P AOC的周长最小值;若不存在,请说明理由;(3)如图②,点Q是OB上的一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM是直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.18.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的顶点A(﹣3,0),与y轴交于点B(0,4),在第一象限内有一点P(m,n),且满足4m+3n=12.(1)求二次函数解析式.(2)若以点P为圆心的圆与直线AB、x轴相切,求点P的坐标.(3)若点A关于y轴的对称点为点A′,点C在对称轴上,且2∠CBA+∠P A′O=90◦.求点C的坐标.19.如图,在直角坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A(﹣3,0)、B(1,0),与y轴交于点C.(1)求抛物线的函数表达式.(2)在抛物线上是否存在点D,使得△ABD的面积等于△ABC的面积的倍?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点E是以点C为圆心且1为半径的圆上的动点,点F是AE的中点,请直接写出线段OF的最大值和最小值.20.如图,抛物线y=ax2+6x﹣5交x轴于A,B两点,交y轴于C点,点B的坐标为(5,0),直线y=x﹣5经过点B,C.(1)求抛物线的函数表达式;(2)点P是直线BC上方抛物线上的一动点,求△BCP面积S的最大值并求出此时点P 的坐标;(3)过点A的直线交直线BC于点M,连接AC当直线AM与直线BC的一个夹角等于∠ACB的3倍时,请直接写出点M的坐标.21.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的解析式,并直接写出当x满足什么值时y<0?(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP面积最大?若存在,求出点P的坐标;若不存在,请说明理由;(3)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.22.如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P为抛物线上一点(不与点A重合),连接PC.当∠PCB=∠ACB时,求点P的坐标;(3)在(2)的条件下,将抛物线沿平行于y轴的方向向下平移,平移后的抛物线的顶点为点D,点P的对应点为点Q,当OD⊥DQ时,求抛物线平移的距离.23.如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c经过点A(2,﹣3)和点B(5,0),顶点为C.(1)求这条抛物线的表达式和顶点C的坐标;(2)点A关于抛物线对称轴的对应点为点D,联结OD、BD,求∠ODB的正切值;(3)将抛物线y=x2+bx+c向上平移t(t>0)个单位,使顶点C落在点E处,点B落在点F处,如果BE=BF,求t的值.24.如图,直线y=﹣x+1与x轴,y轴分别交于A,B两点,抛物线y=ax2+bx+c过点B,并且顶点D的坐标为(﹣2,﹣1).(1)求该抛物线的解析式;(2)若抛物线与直线AB的另一个交点为F,点C是线段BF的中点,过点C作BF的垂线交抛物线于点P,Q,求线段PQ的长度;(3)在(2)的条件下,点M是直线AB上一点,点N是线段PQ的中点,若PQ=2MN,直接写出点M的坐标.25.如图,直线y=﹣x+m与抛物线y=ax2+bx都经过点A(6,0),点B,过B作BH垂直x轴于H,OA=3OH.直线OC与抛物线AB段交于点C.(1)求抛物线的解析式;(2)当点C的纵坐标是时,求直线OC与直线AB的交点D的坐标;(3)在(2)的条件下将△OBH沿BA方向平移到△MPN,顶点P始终在线段AB上,求△MPN与△OAC公共部分面积的最大值.26.在平面直角坐标系xOy中(如图),已知抛物线y=ax2+(a+)x+c(a≠0)经过点A (﹣3,﹣2),与y轴交于点B(0,﹣2),抛物线的顶点为点C,对称轴与x轴交于点D.(1)求抛物线的表达式及点C的坐标;(2)点E是x轴正半轴上的一点,如果∠AED=∠BCD,求点E的坐标;(3)在(2)的条件下,点P是位于y轴左侧抛物线上的一点,如果△P AE是以AE为直角边的直角三角形,求点P的坐标.27.如图1,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)、C(3,0),点B为抛物线顶点,直线BD为抛物线的对称轴,点D在x轴上,连接AB、BC,∠ABC=90°,AB与y轴交于点E,连接CE.(1)求顶点B的坐标并求出这条抛物线的解析式;(2)点P为第一象限抛物线上一个动点,设△PEC的面积为S,点P的横坐标为m,求S关于m的函数关系式,并求出S的最大值;(3)如图2,连接OB,抛物线上是否存在点Q,使直线QC与直线BC所夹锐角等于∠OBD,若存在请直接写出点Q的坐标;若不存在,说明理由.28.如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.点G是抛物线y =ax2+bx+c位于直线y=﹣x+3下方的任意一点,连接PB、GB、GC、AC.(1)求该抛物线的解析式;(2)求△GBC面积的最大值;(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC 相似?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案1.(1)由y=x2+x+m,令y=0,则(x+2)(x﹣m)=0,∴AO=2,BO=m,∴A(﹣2,0),B(m,0),∵AB=7,∴m﹣(﹣2)=7,m=5,∴y=;(2)过点D作DK⊥x轴于点K,设∠DAB=α,则D(d,﹣),∴=.∴EO=AO•tanα=5﹣d,CE=5﹣(5﹣d)=d,∴;(3)过点E作CE的垂线,过C作∠OCP的平分线交DE于点J,交CE的垂线于点F,过点F作ED的平行线交HD于点N.∴∠ECF=∠HDE=α,HE=3k,CP=5k,CE=HD=d,∵CE=HD,∠CEF=∠CHD=90°,∴△CEF≌△DHE(ASA),∵EF∥DN,NF∥DE,∴四边形EDNF为平行四边形,∴EF=HE=DN=3k,CF=DE=FN,∴△CFN为等腰直角三角形,∴∠PCN=∠FNC=45°,∴∠PCN=∠PNC=45°﹣α,∴PC=PN=5k,∴PD=2k,∴CH=d﹣3k,PH=d﹣2k,∴(d﹣3k)2+(d﹣2k)2=(5k)2,∴(d﹣6k)(d+k)=0,∴d=6k,∴在Rt△DHE中,tan,由(2)知,∴.∴d=4,∴D(4,3),∴==8.2.解:(1)∵四边形ABCD为矩形,且B(1,0),C(3,0),D(3,4),∴A(1,4),设抛物线的解析式为y=a(x﹣1)2+4,将C(3,0)代入y=a(x﹣1)2+4,得0=4a+4,解得a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)∵PE⊥x轴,DC⊥x轴,∴PE∥DC,∴△APN∽△ADC,∵PN分△ACD的面积为1:2的两部分,∴=或,当=时,==,∵AD=2,∴AP=,∴t的值为×2=;当=时,==,∵AD=2,∴AP=,∴t的值为×2=,综上所述,t的值为或;(3)如图2﹣1,当CN为菱形的对角线时,点P,N的横坐标均为,设直线AC的解析式为y=kx+b,将A(1,4),C(3,0)代入y=kx+b,得,解得,∴直线AC的表达式为y=﹣2x+6,将点N的横坐标代入y=﹣2x+6,得,即EN=4﹣t,由菱形CQNH可得,CQ=NH=t=CH,可得EH=(4﹣t)﹣t=4﹣2t,∵,∴,在Rt△CHE中,∵CE2+EH2=CH2,∴,解得,t1=,t2=4(舍);如图2﹣2,当CN为菱形的边时,由菱形CQHN可得,CQ=CN=t,在Rt△CNE中,∵NE2+CE2=CN2,∴(4﹣t)2+(2﹣t)2=t2,解得,t1=20﹣8,t2=20+8(舍);综上所述,t的值为或.3.解:(1)设抛物线解析式为y=a(x﹣h)2+k,(a≠0)∵顶点,∴,又∵图象过原点,∴,解出:,∴,即;(2)令y=0,即,解得:x1=0,x2=4,∴A(4,0),设直线AC的解析式为y=kx+b,将点A(4,0),代入,得,解得,∴直线AC的解析式为y=﹣x+4,过点D作DF∥y轴交AC于点F,设,则,∴,∴=,∴当m=3时,S△ACD有最大值,当m=3时,,∴;(3)∵∠CBO=∠CBA=90°,OB=AB=2,,∴,∴OA=OC=AC=4,∴△AOC为等边三角形,①如图3﹣1,当点P在C时,OA=AC=CA'=OA',∴四边形ACA'O是菱形,∴;②作点C关于x轴的对称点C',当点A'与点C'重合时,OC=AC=AA'=OA',∴四边形OCAA'是菱形,∴点P是∠AOA'的角平分线与对称轴的交点,记为P2,∴,∵∠OBP2=90°,OB=2,∴OP2=2BP2,设BP2=x,∴OP2=2x,又∵,∴(2x)2=22+x2,解得或,∴;综上所述,点P的坐标为或.4.解:(1)由抛物线y=ax2﹣2x+c与x轴交于A(﹣3,0),B(1,0)两点,得,解得,∴抛物线解析式为y=﹣x2﹣2x+3;由y=﹣x2﹣2x+3=﹣(x+1)2+4,得,点D坐标为(﹣1,4);(2)在直线l上存在一点M,到点B的距离与到点C的距离之和最小,根据抛物线对称性MA=MB,∴MB+MC=MA+MC,∴使MB+MC的值最小的点M应为直线AC与对称轴l:x=﹣1的交点,当x=0时,y=3,∴C(0,3),设直线AC解析式为直线y=kx+b,把A(﹣3,0)、C(0,3)分别代入y=kx+b,得,,解得,,∴直线AC解析式为y=x+3,把x=﹣1代入y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)①PF=2FG,理由如下,设直线AD解析式为y=k'x+b',把A(﹣3,0)、D(﹣1,4)分别代入直线y=k'x+b',得,,解得,∴直线AD解析式为y=2x+6,则点F的坐标为(m,2m+6),同理G的坐标为(m,m+3),则FG=(2m+6)﹣(m+3)=m+3,FP=2m+6=2(m+3),∴FP=2FG;②根据题意得点E的坐标为(m,﹣m2﹣2m+3),设直线l与x轴交于点N,EF=(﹣m2﹣2m+3)﹣(2m+6)=﹣m2﹣4m﹣3=﹣(m+2)2+1∴S△AED=S△AEF+S△EFD==,∴当m为﹣2时,S△AED的最大值为1,如图,过点D作DH∥x轴,交y轴于点H,在△DHC中,∠DHC=180°﹣∠AOB=90°,,在Rt△AOC中,,在Rt△ADN中,,∵,∴DC2+AC2=AD2,∴∠ACD=90°,∴,∴,∴当m为﹣2时,四边形AEDC的面积最大,最大值为4.5.解:(1)将A(1,4)代入y=,得,k=4,∴双曲线解析式为y=,设B(m,)(m<0),连接AB,交x轴于点C,设直线AB的解析式为y=kx+b,将点A(1,4),B(m,)代入,得,解得,,∴直线AB的解析式为y=﹣x+,当y=0时,x=m+1,∴C(m+1,0),OC=﹣m﹣1,∴S△AOB=OC•(y A﹣y B)=(﹣m﹣1)(4﹣),∵△AOB的面积为3,∴(﹣m﹣1)(4﹣)=3,整理,得2m2+3m﹣2=0,解得,m1=(舍去),m2=﹣2,∴B(﹣2,﹣2),将A(1,4),B(﹣2,﹣2)代入y=ax2+bx,得,,解得,,∴抛物线的解析式为y=x2+3x,∴a=1,b=3,k=4;(2)在抛物线y=x2+3x中,对称轴为x=﹣,设P(﹣,y),∵O(0,0),B(﹣2,﹣2),∴PO2=+y2,OB2=8,PB2=+(y+2)2,∵△POB为等腰三角形,∴①PO2=OB2时,+y2=8,解得,y=±,∴P1(﹣,﹣),P2(﹣,);②PB2=OB2时,+(y+2)2=8,解得,y=﹣2±,∴P3(﹣,﹣2﹣),P4(﹣,﹣2+);③PB2=OP2时,+(y+2)2=+y2,解得,y=﹣,∴P5(﹣,﹣);综上所述,点P的坐标为P1(﹣,﹣),P2(﹣,),P3(﹣,﹣2﹣),P4(﹣,﹣2+),P5(﹣,﹣);(3)设M(x,y),∵A(1,4),B(﹣2,﹣2),O(0,0),∴MO2=x2+y2,MA2=(x﹣1)2+(y﹣4)2,MB2=(x+2)2+(y+2)2,又∵MO=MA=MB,∴,解得,,∴M(﹣,),作B关于y轴的对称点B'(2,﹣2),连接B'M交y轴于Q,则此时MQ+BQ的值最小,理由是两点之间,线段最短,又∵MB的长度为定值,∴此时△BQM的周长最小,C△BQM=MB+MQ+BQ=MB+MB'==,∴M的坐标为(﹣,),△BQM周长的最小值为.6.解:(1)将点A(﹣1,0),B(4,0)代入y=x2+bx+c,得,,解得,,∴抛物线的解析式为y=x2﹣3x﹣4;(2)当k=﹣1时,直线AC的解析式为y=﹣x﹣1,设P(x,x2﹣3x﹣4),则E(x,﹣x﹣1),D(x,0),则PE=|x2﹣3x﹣4﹣(﹣x﹣1)|=|x2﹣2x﹣3|,DE=|x+1|,∵PE=2ED,∴|x2﹣2x﹣3|=2|x+1|,当x2﹣2x﹣3=2(x+1)时,解得,x1=﹣1(舍去),x2=5,∴P(5,6);当x2﹣2x﹣3=﹣2(x+1)时,解得,x1=﹣1(舍去),x2=1,∴P(1,﹣6);综上所述,点P的坐标为(5,6)或(1,﹣6);(3)存在,理由如下;∵∠AED=∠PEC,∴要使△ADE与△PCE相似,必有∠EPC=∠ADE=90°或∠ECP=∠ADE=90°,①当∠EPC=∠ADE=90°时,如图1,CP∥x轴,∵P(1,﹣6),根据对称性可得C(2,﹣6),将C(2,﹣6),代入直线AC解析式中,得2k+k=﹣6,解得,k=﹣2;②当∠ECP=∠ADE=90°时,如图2,过C点作CF⊥PD于点F,则有∠FCP=∠PEC=∠AED,则△PCF∽△AED,∴=,在直线y=kx+k上,当x=1时,y=2k,∴E(1,2k),∴DE=﹣2k,由,得或,∴C(k+4,k2+5k),∴F(1,k2+5k),∴CF=k+3,FP=k2+5k+6,∴=,解得,k1=k2=﹣1,k3=﹣3(此时C与P重合,舍去),综上,当k=﹣2或﹣1时,△ADE与△PCE相似.7.(1)∵抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0),B(3,0)两点,∴,∴,∴抛物线解析式为;(2)如图1,过点A作AH∥y轴交BC于H,交BE于G,由(1),C(0,﹣2),将B(3,0),C(0,﹣2)代入y=kx+b,得,,解得,,∴直线BC的解析式为,∵H(1,y)在直线BC上,∴,∴,将点B(3,0),E(0,﹣1)代入y=kx+b,得,,解得,,∴直线BE的解析式为y=x﹣1,∴G(1,﹣),∴GH=,∵直线BE:y=x﹣1与抛物线y=﹣x2+x﹣2相交于F,B,∴F(,﹣),∴S△FHB=GH×(x B﹣x F)=××(3﹣)=;(3)如图2,由(1)y=﹣x2+x﹣2=﹣(x﹣2)2+,∴顶点D(2,),∵动点M从点D出发,以每秒1个单位的速度沿平行于y轴方向向上运动,∴设M(2,m),m>,∴OM2=m2+4,BM2=m2+1,OB2=9,∵∠OMB=90°,∴OM2+BM2=OB2,∴m2+4+m2+1=9,∴m1=,m2=﹣(舍),∴M(2,),∴MD=﹣,∴,∴当时,∠OMB=90°.8.解:(1)将点A(﹣1,0),B(3,0)代入y=ax2+bx+3,得,解得,,∴抛物线的解析式为y=﹣x2+2x+3;(2)设直线BC的解析式为y=kx+3,将点B(3,0)代入y=kx+3,得,k=﹣1,∴直线BC的解析式为y=﹣x+3,设点P(x,﹣x2+2x+3),则点H(x,﹣x+3),过点C作CM⊥PH于点M,则CM=x,PH=﹣x2+3x,当CP=CH时,PM=MH,∠MCH=∠MCP,∵OB=OC,∴∠OBC=45°,∵CM∥OB,∴∠MCH=∠OBC=45°,∴∠PCH=90°,∴MC=PH=(﹣x2+3x),即x=(﹣x2+3x),解得,x1=0(舍去),x2=1,∴P(1,4);(3)在y=﹣x2+2x+3中,对称轴为x=1,若m+1≤1,即m≤0时,当x=m+1时,函数有最大值m,∴﹣(m+1)2+2(m+1)+3=m,解得,m1=(舍去),m2=;若m<1<m+1,即0<m<1时,当x=1时,函数有最大值为m=4(舍);若m>1,当x=m时,函数有最大值为m,∴﹣m2+2m+3=m,解得,m1=(舍去),m2=,综上所述,m的值为或.9.解:(1)∵抛物线经过点A,B,它们的坐标分别为(﹣4,0)、(2,0),∴设其解析式为y=a(x+4)(x﹣2),将点C(0,﹣3)代入y=a(x+4)(x﹣2),解得,,∴抛物线的解析式为;(2)∵OA=4,OC=3,∠AOC=90°,∴AC==5,∵PD⊥AC,∠PDE=∠AOC=90°,又∵PE∥y轴,∴∠PED=∠ACO,∴△PDE∽△AOC,∴PD:AO=DE:OC=PE:AC,即PD:4=DE:3=PE:5,∴,∴△PDE的周长=,则要使△PDE周长最大,PE取最大值即可,设直线AC的解析式为y=kx﹣3,将点A(﹣4,0)代入y=kx﹣3,得,k=﹣,∴直线AC的解析式为,设点,则,∴当a=﹣2时,取得最PE大值,最大值为,则,∴P(﹣2,﹣3),△PDE周长的最大值为;(3)如右图,①当BM为对角线时,显然,点F在y轴上,根据对称性得到点F的坐标为(0,3);②当BM为边时,∵,则有以下几种情况:(I)BC为边时,BM=BC=,点M在x轴负半轴上时,点M是点B向左平移个单位长度得到的,∴M(2﹣,0),∴点C(0,﹣3)向左平移个单位长度得到点F;点M在x轴正半轴上时,点M是点B向平右移个单位长度得到的,∴M(2+,0),∴点C(0,﹣3)向右平移个单位长度得到点F;(II)BC为对角线时,设OM=x,在直角三角形OMC中,由勾股定理可得OM2+OC2=MC2,即x2+32=(x+2)2,解得,x=,∴菱形的边长为2+=,∴CF=,∴F(,﹣3),综上所述,点F的坐标为(0,3)或或或.10.解:(1)在Rt△ABC中,AB===5,由翻折知,△BCO≌△BHO,∴BH=BC=3,∴AH=AB﹣BH=2,∵∠HAO=∠CAB,∠OHA=∠BCA=90°,∴△AHO∽△ACB,∴=,即=,∴AO=,∴A(,0),B(﹣,3),∵抛物线经过原点O,∴可设抛物线的解析式为y=ax2+bx,将点A(,0),B(﹣,3)代入,得,解得,,∴过A,B,O三点的抛物线解析式为y=x2﹣x;(2)设直线AB的解析式为y=kx+b,将点A(,0),B(﹣,3)代入,得,解得∴直线AB的解析式为y=﹣x+,∴可设P(x,﹣x+),则M(x,x2﹣x),∴PM=﹣x+﹣(x2﹣x)=﹣x2+x+,∴S△MAB=PM(x A﹣x B)=(﹣x2+x+)×4=﹣x2+x+=﹣(x﹣)2+4,∴当x=时,△MAB的面积取最大值4;(3)在y=x2﹣x中,对称轴为x=,①如图3﹣1,当OA为平行四边形的一边时,OA平行且等于EF,∵OA=,∴EF=,∵x F=,∴x E=±=或﹣,当x E=或﹣,时y E=,∴点E的坐标为(,)或(﹣,);②如图3﹣2,当OA为平行四边形的对角线时,OA与EF互相平分,则点E在抛物线顶点处,∵当x=时,y=﹣,∴点E的坐标为(,﹣),综上所述,点E的坐标为(,)或(﹣,)或(,﹣).11.解:(1)∵AE∥x轴,OE平分∠AOB,∴∠AEO=∠EOB=∠AOE,∴AO=AE,∵A(0,2),∴E(2,2),∴点C(4,2),设二次函数解析式为y=ax2+bx+2,∵C(4,2)和D(3,0)在该函数图象上,∴,得,∴该抛物线的解析式为y=x2﹣x+2;(2)作点A关于x轴的对称点A1,作点E关于直线BC的对称点E1,连接A1E1,交x 轴于点M,交线段BC于点N.根据对称与最短路径原理,此时,四边形AMNE周长最小.易知A1(0,﹣2),E1(6,2).设直线A1E1的解析式为y=kx+b,,得,∴直线A1E1的解析式为.当y=0时,x=3,∴点M的坐标为(3,0).∴由勾股定理得AM=,ME1=,∴四边形EAMN周长的最小值为AM+MN+NE+AE=AM+ME1+AE=;(3)不存在.理由:过点F作EH的平行线,交抛物线于点P.易得直线OE的解析式为y=x,∵抛物线的解析式为y=x2﹣x+2=,∴抛物线的顶点F的坐标为(2,﹣),设直线FP的解析式为y=x+b,将点F代入,得,∴直线FP的解析式为.,解得或,∴点P的坐标为(,),FP=×(﹣2)=,,解得,或,∵点H是直线y=x与抛物线左侧的交点,∴点H的坐标为(,),∴OH=×=,易得,OE=2,EH=OE﹣OH=2﹣=,∵EH≠FP,∴点P不符合要求,∴不存在点P,使得四边形EHFP为平行四边形.12.解:(1)∵抛物线y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),C(0,3),∴,得,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴该抛物线的顶点坐标为(1,4),即该抛物线的解析式为y=﹣x2+2x+3,顶点坐标为(1,4);(2)点A关于对称轴的对称点是点B,连接CB与对称轴的交点为P,此时点P即为所求,设过点B(3,0),点C(0,3)的直线解析式为y=kx+m,,得,∴直线BC的解析式为y=﹣x+3,当x=1时,y=﹣1+3=2,∴点P的坐标为(1,2),∵点A(﹣1,0),点C(0,3),点B(3,0),∴AC=,BC=3,∴△P AC的周长是:AC+CP+P A=AC+CB=,即点P的坐标为(1,2),△P AC的周长是;(3)存在点M(不与C点重合),使得S△P AM=S△P AC,∵S△P AM=S△P AC,∴当以P A为底边时,只要两个三角形等高即可,即点M和点C到P A的距离相等,当点M在点C的上方时,则CM∥P A时,点M和点C到P A的距离相等,设过点A(﹣1,0),点P(1,2)的直线l1解析式为:y=kx+m,,得,∴直线AP的解析式为y=x+1,∴直线CM的解析式为y=x+3,由得,,,∴点M的坐标为(1,4);当点M在点C的下方时,则点M所在的直线l2与AP平行,且直线l2与直线AP之间的距离与直线l1与直线AP 之间的距离相等,∴直线l2的的解析式为y=x﹣1,由得,,,∴M的坐标为(,)或(,);由上可得,点M的坐标为(1,4),(,)或(,).13.(1)证明:△=b2﹣4ac=[﹣3(a﹣1)]2﹣4a(2a﹣6)=a2+6a+9=(a+3)2,∵a>0,∴(a+3)2>0,∴抛物线与x轴有两个交点;(2)解:令y=0,则ax2﹣3(a﹣1)x+2a﹣6=0,∴或,∵a>0,∴且x1>x2,∴x1=2,,∴,∴t=a﹣5;(3)解:当a=1时,则y=x2﹣4,向上平移一个单位得y=x2﹣3,令y=0,则x2﹣3=0,得,∴,,∵OP=1,∴直线,联立:,解得,,,即,,∴AO=,在Rt△AOP中,AP==2,过C作CN⊥y轴,过M作MG⊥CN于G,过C作CH⊥x轴于H,∵CN∥x轴,∴∠GCM=∠P AO,又∵∠AOP=∠CGM=90°,∴△AOP∽△CGM,∴==,∴,∵B到CN最小距离为CH,∴MB+GM的最小值为CH的长度,∴2MB+MC的最小值为.14.解:(1)令x=0,得y=x﹣2=﹣2,则B(0,﹣2),令y=0,得0=x﹣2,解得x=4,则A(4,0),把A(4,0),B(0,﹣2)代入y=x2+bx+c(a≠0)中,得:,解得:,∴抛物线的解析式为:y=x2﹣x﹣2;(2)∵PM∥y轴,∴∠ADC=90°,∵∠ACD=∠BCP,∴以点P、B、C为顶点的三角形与以点A、C、D为顶点的三角形相似,存在两种情况:①当∠CBP=90°时,如图1,过P作PN⊥y轴于N,设P(x,x2﹣x﹣2),则C(x,x﹣2),∵∠ABO+∠PBN=∠ABO+∠OAB=90°,∴∠PBN=∠OAB,∵∠AOB=∠BNP=90°,∴△AOB∽△BNP,∴,即=,解得:x1=0(舍),x2=,∴P(,﹣5);②当∠CPB=90°时,如图2,则B和P是对称点,当y=﹣2时,x2﹣x﹣2=﹣2,∴x1=0(舍),x2=,∴P(,﹣2);综上,点P的坐标是(,﹣5)或(,﹣2);(3)∵OA=4,OB=2,∠AOB=90°,∴∠BOA≠45°,∴∠BQP≠2∠BOA,∴分两种情况:①当∠PBQ=2∠OAB时,如图3,取AB的中点E,连接OE,过P作PG⊥x轴于G,交直线AB于H,∴OE=AE,∴∠OAB=∠AOE,∴∠OEB=2∠OAB=∠PBQ,∵OB∥PG,∴∠OBE=∠PHB,∴△BOE∽△HPB,∴,由勾股定理得:AB==2,∴BE=,∵GH∥OB,∴,即,∴BH=x,设P(x,x2﹣x﹣2),则H(x,x﹣2),∴PH=x﹣2﹣(x2﹣x﹣2)=﹣x2+4x,∴,解得:x1=0,x2=3,∴点P的横坐标是3;②当∠BPQ=2∠OAB时,如图4,取AB的中点E,连接OE,过P作PG⊥x轴于G,交直线AB于H,过O作OF⊥AB于F,连接AP,则∠BPQ=∠OEF,设点P(t,t2﹣t﹣2),则H(t,t﹣2),∴PH=t﹣2﹣(t2﹣t﹣2)=﹣t2+4t,∵OB=2,OA=4,∴AB=2,∴OE=BE=AE=,OF===,∴EF===,S△ABP==,∴2PQ=4(﹣t2+4t),PQ=,∵∠OFE=∠PQB=90°,∴△PBQ∽△EOF,∴,即,∴BQ=,∵BQ2+PQ2=PB2,∴=,化简得,44t2﹣388t+803=0,即:(2t﹣11)(22t﹣73)=0,解得:t1=5.5(舍),t2=;综上,存在点P,使得△PBQ中有某个角的度数等于∠OAB度数的2倍时,其P点的横坐标为3或.15.解:(1)在直线y=﹣x+3中,当x=0时,y=3;当y=0时,x=4,∴C(0,3),B(4,0),∴OC=3,∵OC=3OA,∴OA=1,∴A(﹣1,0),把A(﹣1,0),B(4,0)代入y=ax2+bx+3,得,,解得,a=﹣,b=,∴抛物线的解析式为y=﹣x2+x+3;(2)如图1,连接RO,RC,RB,设R(t,﹣t2+t+3),则S△RBC=S△OCR+S△OBR﹣S△OBC=×3t+×4(﹣t2+t+3)﹣×3×4=﹣t2+6t,∵S△RBC=,∴﹣t2+6t=,解得,t1=1,t2=3,∵点R为直线BC上方对称轴右侧,∴R(3,3);(3)如图2﹣1,在RH上截取RM=OA,连接CM、AM,AM交PE于G,作QF⊥OB 于H,∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA(SAS),∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°,∵AC∥PE,∴∠CAM=∠AGE=45°,∴∠PEQ=45°,∴∠AGE=∠PEQ,∴AM∥QE,∴∠MAH=∠QEF,∵∠QFE=MHA=90°,∴△QEF∽△MAH,∴=,∴EF=2QF,设CP=m,∴QH=CP=m,∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=2m,∴EH=3m,∵四边形ACPE为平行四边形,∴AE=CP=m,∵EH=AH﹣AE=4﹣m,∴3m=4﹣m,∴m=1,∴CP=1;如图2﹣2,在RH上截取RM=OA,连接CM、AM,AM交PE于G,交QE于N,作QF ⊥OB于H,∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA(SAS),∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°,∵AC∥PE,∴∠CAM=∠AGE=45°,∴∠PEQ=45°,∴∠AGE=∠PEQ=45°,∴∠ENG=∠ENA=90°,∵∠EQF+∠QEF=90°,∠EAN+∠QEF=90°,∴∠EQF=∠MAB,∵∠QFE=∠AHM=90°,∴△QEF∽△AMH,∴=,∴QF=2EF,设CP=m,∴QH=CP=m,∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=m,∴EH=m,∵四边形ACPE为平行四边形,∴AE=CP=m,∵EH=AH﹣AE=4﹣m,∴4﹣m=m,∴m=,∴CP=,综上所述,CP的长度为1或.16.解:(1)在y=x﹣4中,当x=0时,y=﹣4;当y=0时,x=4.∴A(4,0),C(0,﹣4)把A(4,0),C(0,﹣4)代入y=ax2﹣3x+c中,得,解得,∴抛物线的解析式是y=x2﹣3x﹣4.(2)如图1,过点E作EH⊥y轴,垂足为H.∵OA=OC=4,∴∠OAC=∠ACO=45°,∴∠HEC=∠HCE=45°.∵点D(m,m2﹣3m﹣4),E(m,m﹣4),∴EH=HC=m,ED=(m﹣4)﹣(m2﹣3m﹣4)=﹣m2+4m.∴,∴当∠ECD=∠EDC时,EC=ED.∴,解得m=0(舍去)或;(3)存在.∴点D为第四象限抛物线上一动点(不与点A,C重合),∴0<m<4,在抛物线y=x2﹣3x﹣4中,当y=0时,x2﹣3x﹣4=0,解得x1=﹣1,x2=4,∴点B坐标为(﹣1,0).∵∠F AE=∠FEA=45°,∴EF=AF.设△BFE的周长为n,则n=BF+FE+BE=BF+AF+BE=AB+BE,∵AB的值不变,∴当BE最小,即BE⊥AC时,△BFE的周长最小.∵当BE⊥AC时,∠EBA=∠BAE=45°,∴BE=AE,∴BF=AF=2.5.∴m=4﹣2.5=1.5时,△BEF的周长最小.17.解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)、B(4,0),∴,解得,∴该抛物线的解析式:y=x+3;(2)∵抛物线y=ax2+bx+3经过点A(1,0),B(4,0),∴A、B关于对称轴对称,。
中考数学(二次函数提高练习题)压轴题训练含详细答案(1)

一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图,已知二次函数y=ax 2+bx+c 的图象与x 轴相交于A (﹣1,0),B (3,0)两点,与y 轴相交于点C (0,﹣3). (1)求这个二次函数的表达式;(2)若P 是第四象限内这个二次函数的图象上任意一点,PH ⊥x 轴于点H ,与BC 交于点M ,连接PC .①求线段PM 的最大值;②当△PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标.【答案】(1)二次函数的表达式y=x 2﹣2x ﹣3;(2)①PM 最大=94;②P (2,﹣3)或(22﹣2). 【解析】 【分析】(1)根据待定系数法,可得答案;(2)①根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;②根据等腰三角形的定义,可得方程,根据解方程,可得答案. 【详解】(1)将A ,B ,C 代入函数解析式,得09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩,这个二次函数的表达式y=x 2﹣2x ﹣3; (2)设BC 的解析式为y=kx+b , 将B ,C 的坐标代入函数解析式,得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩, BC 的解析式为y=x ﹣3,设M (n ,n ﹣3),P (n ,n 2﹣2n ﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣32)2+94,当n=32时,PM最大=94;②当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,解得n1=0(不符合题意,舍),n2=2,n2﹣2n﹣3=-3,P(2,-3);当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,解得n1=0(不符合题意,舍),n2=3+2(不符合题意,舍),n3=3-2,n2﹣2n﹣3=2-42,P(3-2,2-42);综上所述:P(2,﹣3)或(3-2,2﹣42).【点睛】本题考查了二次函数的综合题,涉及到待定系数法、二次函数的最值、等腰三角形等知识,综合性较强,解题的关键是认真分析,弄清解题的思路有方法.2.如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P 在第三象限.①当线段PQ=34AB时,求tan∠CED的值;②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.【答案】(1)抛物线的函数表达式为y=x2-2x-3.(2)直线BC的函数表达式为y=x-3.(3)①23.①P1(122),P2(16,74).【解析】 【分析】已知C 点的坐标,即知道OC 的长,可在直角三角形BOC 中根据∠BCO 的正切值求出OB 的长,即可得出B 点的坐标.已知了△AOC 和△BOC 的面积比,由于两三角形的高相等,因此面积比就是AO 与OB 的比.由此可求出OA 的长,也就求出了A 点的坐标,然后根据A 、B 、C 三点的坐标即可用待定系数法求出抛物线的解析式. 【详解】(1)∵抛物线的对称轴为直线x=1,∴− 221b ba -⨯==1 ∴b=-2∵抛物线与y 轴交于点C (0,-3), ∴c=-3,∴抛物线的函数表达式为y=x 2-2x-3; (2)∵抛物线与x 轴交于A 、B 两点, 当y=0时,x 2-2x-3=0. ∴x 1=-1,x 2=3. ∵A 点在B 点左侧, ∴A (-1,0),B (3,0)设过点B (3,0)、C (0,-3)的直线的函数表达式为y=kx+m ,则033k m m ==+⎧⎨-⎩,∴13k m ⎧⎨-⎩==∴直线BC 的函数表达式为y=x-3; (3)①∵AB=4,PQ=34AB , ∴PQ=3 ∵PQ ⊥y 轴 ∴PQ ∥x 轴,则由抛物线的对称性可得PM=32, ∵对称轴是直线x=1, ∴P 到y 轴的距离是12, ∴点P 的横坐标为−12, ∴P (−12,−74)∴F(0,−74),∴FC=3-OF=3-74=54∵PQ垂直平分CE于点F,∴CE=2FC=5 2∵点D在直线BC上,∴当x=1时,y=-2,则D(1,-2),过点D作DG⊥CE于点G,∴DG=1,CG=1,∴GE=CE-CG=52-1=32.在Rt△EGD中,tan∠CED=23 GDEG=.②P1(2,-2),P2(1-62-52).设OE=a,则GE=2-a,当CE为斜边时,则DG2=CG•GE,即1=(OC-OG)•(2-a),∴1=1×(2-a),∴a=1,∴CE=2,∴OF=OE+EF=2∴F、P的纵坐标为-2,把y=-2,代入抛物线的函数表达式为y=x2-2x-3得:2或2∵点P在第三象限.∴P1(2-2),当CD为斜边时,DE⊥CE,∴OE=2,CE=1,∴OF=2.5,∴P和F的纵坐标为:-52,把y=-52,代入抛物线的函数表达式为y=x2-2x-3得:x=1-62,或1+62,∵点P在第三象限.∴P2(1-6,-52).综上所述:满足条件为P1(1-2,-2),P2(1-62,-52).【点睛】本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.3.抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.【答案】(1)y=x2﹣2x﹣3;(2)C(0,﹣3),D(0,﹣1);(3)P(2,﹣2).【解析】【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【详解】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得30 4233 a ba b--=⎧⎨+-=-⎩解得12 ab=⎧⎨=-⎩∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y =kx+b ,把A (﹣1,0)、B (2,﹣3)两点坐标代入23k b k b -+=⎧⎨+=-⎩ 解得11k b =-⎧⎨=-⎩∴y =﹣x ﹣1 ∴D (0,﹣1)(3)由C (0,﹣3),D (0,﹣1)可知CD 的垂直平分线经过(0,﹣2) ∴P 点纵坐标为﹣2, ∴x 2﹣2x ﹣3=﹣2解得:x =1±2,∵x >0∴x =1+2. ∴P (1+2,﹣2) 【点睛】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x =0代入二次函数解析式和一次函数解析式可求图象与y 轴交点坐标,知道点P 纵坐标带入抛物线解析式可求点P 的横坐标.4.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的直角坐标系,抛物线可以用y=16-x 2+bx+c 表示,且抛物线上的点C 到OB 的水平距离为3 m ,到地面OA 的距离为172m. (1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x 2+2x+4,拱顶D 到地面OA 的距离为10 m ;(2)两排灯的水平距离最小是3. 【解析】【详解】试题分析:根据点B 和点C 在函数图象上,利用待定系数法求出b 和c 的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA 的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y 的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x 的值,然后进行做差得出最小值.试题解析:(1)由题知点17(0,4),3,2B C ⎛⎫⎪⎝⎭在抛物线上 所以41719326c b c =⎧⎪⎨=-⨯++⎪⎩,解得24b c =⎧⎨=⎩,所以21246y x x =-++ 所以,当62bx a=-=时,10t y =≦ 答:21246y x x =-++,拱顶D 到地面OA 的距离为10米 (2)由题知车最外侧与地面OA 的交点为(2,0)(或(10,0)) 当x=2或x=10时,2263y =>,所以可以通过 (3)令8y =,即212486x x -++=,可得212240x x -+=,解得1266x x =+=-12x x -=答:两排灯的水平距离最小是考点:二次函数的实际应用.5.对于二次函数 y=ax 2+(b+1)x+(b ﹣1),若存在实数 x 0,使得当 x=x 0,函数 y=x 0,则称x 0 为该函数的“不变值”.(1)当 a=1,b=﹣2 时,求该函数的“不变值”;(2)对任意实数 b ,函数 y 恒有两个相异的“不变值”,求 a 的取值范围;(3)在(2)的条件下,若该图象上 A 、B 两点的横坐标是该函数的“不变值”,且 A 、B 两点关于直线 y=kx-2a+3 对称,求 b 的最小值. 【答案】(1)-1,3;(2)0<a<1;(3)-98【解析】 【分析】(1)先确定二次函数解析式为y=x 2-x-3,根据x o 是函数y 的一个不动点的定义,把(x o ,x o )代入得x 02-x 0-3=x o ,然后解此一元二次方程即可;(2)根据x o 是函数y 的一个不动点的定义得到ax o 2+(b+1)x o +(b-1)=x o ,整理得ax 02+bx o +(b-1)=0,则根据判别式的意义得到△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,把b 2-4ab+4a 看作b 的二次函数,由于对任意实数b ,b 2-4ab+4a>0成立,则(4a )2-4.4a<0,然后解此不等式即可.(3)(利用两点关于直线对称的两个结论,一是中点在已知直线上,二是两点连线和已知直线垂直.找到a ,b 之间的关系式,整理后在利用基本不等式求解可得. 【详解】解:(1)当a=1,b=-2时,二次函数解析式为y=x 2-x-3,把(x o ,x o )代入得x 02-x 0-3=x o ,解得x o =-1或x o =3,所以函数y 的不动点为-1和3;(2)因为y=x o ,所以ax o 2+(b+1)x o +(b-1)=x o ,即ax 02+bx o +(b-1)=0,因为函数y 恒有两个相异的不动点,所以此方程有两个不相等的实数解,所以△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,而对任意实数b ,b 2-4ab+4a>0成立,所以(4a )2-4.4a<0,解得0<a<1.(3)设A (x 1,x 1),B (x 2,x 2),则x 1+x 2b a=- A ,B 的中点的坐标为(1212,22x x x x ++ ),即M (,22b ba a-- ) A 、B 两点关于直线y=kx-2a+3对称, 又∵A ,B 在直线y=x 上,∴k=-1,A ,B 的中点M 在直线y=kx-2a+3上.∴b a -=ba-2a+3 得:b=2a 2-3a 所以当且仅当a=34 时,b 有最小值-98【点睛】本题是在新定义下对函数知识的综合考查,是一道好题.关于两点关于直线对称的问题,有两个结论同时存在,一是中点在已知直线上,二是两点连线和已知直线垂直.6.如图,已知抛物线的图象与x 轴的一个交点为B (5,0),另一个交点为A ,且与y 轴交于点C (0,5)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-- -- 2017年中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.
考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式. (2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长. (3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: -- -- , 解得; 故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB, ∴S△BNC=(﹣m2+3m)•3=﹣(m﹣)2+(0
∴当m=时,△BNC的面积最大,最大值为.
2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.
考点:二次函数综合题.. 专题:压轴题;转化思想. 分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可. -- -- (2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标. (3)△MBC的面积可由S△MBC=BC×h表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M. 解答: 解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA•OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程: x+b=x2﹣x﹣2,即: x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有:
,解得:即 M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4. -- -- 平行四边形类 3.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t. (1)分别求出直线AB和这条抛物线的解析式. (2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积. (3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.
考点:二次函数综合题;解一元二次方程-因式分解法;待定系数法求一次函数解析式;待定系数法求二次函数解析式;三角形的面积;平行四边形的判定.. 专题:压轴题;存在型. 分析: (1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,﹣3)分别代入y=x2+mx+n与y=kx+b,得到关于m、n的两个方程组,解方程组即可; (2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根据二次函数的最值得到 -- -- 当t=﹣=时,PM最长为=,再利用三角形的面积公式利用S△ABM=S△BPM+S△APM计算即可; (3)由PM∥OB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;当P在第三象限:PM=OB=3,t2﹣3t=3,分别解一元二次方程即可得到满足条件的t的值. 解答: 解:(1)把A(3,0)B(0,﹣3)代入y=x2+mx+n,得
解得,所以抛物线的解析式是y=x2﹣2x﹣3. 设直线AB的解析式是y=kx+b, 把A(3,0)B(0,﹣3)代入y=kx+b,得,解得, 所以直线AB的解析式是y=x﹣3; (2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3), 因为p在第四象限, 所以PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t, 当t=﹣=时,二次函数的最大值,即PM最长值为=,
则S△ABM=S△BPM+S△APM==. (3)存在,理由如下: ∵PM∥OB, ∴当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形, ①当P在第四象限:PM=OB=3,PM最长时只有,所以不可能有PM=3. ②当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3,解得t1=,t2=(舍去),所以P点的横坐标是; ③当P在第三象限:PM=OB=3,t2﹣3t=3,解得t1=(舍去),t2=,所以P点的横坐标是. -- -- 所以P点的横坐标是或.
4.如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O. (1)一抛物线经过点A′、B′、B,求该抛物线的解析式; (2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由. (3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B的两条性质.
考点:二次函数综合题.. 专题:压轴题. 分析: (1)利用旋转的性质得出A′(﹣1,0),B′(0,2),再利用待定系数法求二次函数解析式即可; (2)利用S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,再假设四边形PB′A′B的面积是△A′B′O面积的4倍,得出一元二次方程,得出P点坐标即可; -- -- (3)利用P点坐标以及B点坐标即可得出四边形PB′A′B为等腰梯形,利用等腰梯形性质得出答案即可. 解答: 解:(1)△A′B′O是由△ABO绕原点O逆时针旋转90°得到的, 又A(0,1),B(2,0),O(0,0), ∴A′(﹣1,0),B′(0,2). 方法一: 设抛物线的解析式为:y=ax2+bx+c(a≠0), ∵抛物线经过点A′、B′、B,
∴,解得:,∴满足条件的抛物线的解析式为y=﹣x2+x+2. 方法二:∵A′(﹣1,0),B′(0,2),B(2,0), 设抛物线的解析式为:y=a(x+1)(x﹣2) 将B′(0,2)代入得出:2=a(0+1)(0﹣2), 解得:a=﹣1, 故满足条件的抛物线的解析式为y=﹣(x+1)(x﹣2)=﹣x2+x+2; (2)∵P为第一象限内抛物线上的一动点, 设P(x,y),则x>0,y>0,P点坐标满足y=﹣x2+x+2. 连接PB,PO,PB′, ∴S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB, =×1×2+×2×x+×2×y, =x+(﹣x2+x+2)+1, =﹣x2+2x+3. ∵A′O=1,B′O=2,∴△A′B′O面积为:×1×2=1, 假设四边形PB′A′B的面积是△A′B′O面积的4倍,则 4=﹣x2+2x+3, 即x2﹣2x+1=0, 解得:x1=x2=1, 此时y=﹣12+1+2=2,即P(1,2).