九年级数学提高练习:二次函数与方程和不等式
二次函数与一元二次方程、不等式

2.3 二次函数与一元二次方程、不等式(一)教材梳理填空(1)一元二次不等式:一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.一元二次不等式的一般形式是ax 2+bx +c >0或ax 2+bx +c <0,其中a ,b ,c 均为常数,a ≠0.(2)二次函数的零点:一般地,对于二次函数y =ax 2+bx +c ,我们把使ax 2+bx +c =0的实数x 叫做二次函数y =ax 2+bx +c 的零点.(3)二次函数与一元二次方程、不等式的解的对应关系Δ>0 Δ=0 Δ<0y =ax 2+bx +c (a >0)的图象ax 2+bx +c =0 (a >0)的根 有两个不相等的实数根x 1,x 2(x 1<x 2) 有两个相等的实数根x 1=x 2=-b2a没有实数根ax 2+bx +c >0 (a >0)的解集 {x |x <x 1, 或x >x 2} ⎩⎨⎧x ⎪⎪⎭⎬⎫x ≠-b 2aRax 2+bx +c <0 (a >0)的解集 {x |x 1<x <x 2}∅∅(二)基本知能小试 1.判断正误(1)mx 2-5x <0是一元二次不等式.( )(2)若a >0,则一元二次不等式ax 2+1>0无解.( )(3)若一元二次方程ax 2+bx +c =0的两根为x 1,x 2(x 1<x 2),则一元二次不等式ax 2+bx +c <0的解集为{x |x 1<x <x 2}.( )(4)不等式x 2-2x +3>0的解集为R.( ) 2.不等式2x 2-x -1>0的解集是( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <1 B .{x |x >1} C .{x |x <1或x >2} D .⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >1 3.不等式-2x 2+x +3<0的解集是( )A .{x |x <-1}B .⎩⎨⎧⎭⎬⎫x ⎪⎪ x >32C .⎩⎨⎧⎭⎬⎫x ⎪⎪ -1<x <32D .⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >32 4.若不等式ax 2+5x +c >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12,则a ,c 的值分别为________,________.题型一 一元二次不等式的解法[学透用活][典例1] 解下列不等式:(1)-2x 2+x -6<0; (2)-x 2+6x -9≥0; (3)x 2-2x -3>0; (4)-4x 2+4x -1>0.[对点练清]1.(2018·全国卷Ⅰ)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2} D .{x |x ≤-1}∪{x |x ≥2}2.不等式(x +5)(3-2x )≥6的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-1或x ≥92B.⎩⎨⎧⎭⎬⎫x ⎪⎪-1≤x ≤92C.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-92或x ≥1D.⎩⎨⎧⎭⎬⎫x ⎪⎪-92≤x ≤1 3.解不等式:-2<x 2-3x ≤10.题型二 二次函数与一元二次方程、不等式间的关系[学透用活][典例2] 已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3},求关于x 的不等式cx 2+bx +a <0的解集.[对点练清]1.[变结论]本例中条件不变,求关于x 的不等式cx 2-bx +a >0的解集.2.[变条件]若将本例的条件“关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3}”变为“关于x 的不等式ax 2+bx +c ≥0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪-13≤x ≤2”.求不等式cx 2+bx +a <0的解集.题型三一元二次不等式的实际应用[学透用活][典例3]某校园内有一块长为800 m,宽为600 m的长方形地面,现要对该地面进行绿化,规划四周种花卉(花卉带的宽度相同),中间种草坪,若要求草坪的面积不小于总面积的一半,求花卉带宽度的范围.[对点练清]1.某商品在最近30天内的价格y1与时间t(单位:天)的关系式是y1=t+10(0<t≤30,t ∈N);销售量y2与时间t的关系式是y2=-t+35(0<t≤30,t∈N),则使这种商品日销售金额z不小于500元的t的范围为________.2.在一个限速40 km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事发后现场测得甲车的刹车距离略超过12 m,乙车的刹车距离略超过10 m. 又知甲、乙两种车型的刹车距离S m与车速x km/h之间分别有如下关系:S甲=0.1x +0.01x2,S乙=0.05x+0.005x2.问超速行驶谁应负主要责任.[课堂一刻钟巩固训练]一、基础经典题1.下列不等式:①x 2>0;②-x 2-x ≤5;③ax 2>2;④x 3+5x -6>0;⑤mx 2-5y <0;⑥ax 2+bx +c >0.其中是一元二次不等式的有( )A .5个B .4个C .3个D .2个2.不等式-x 2-5x +6≥0的解集为( ) A .{x |x ≥6或x ≤-1} B .{x |-1≤x ≤6} C .{x |-6≤x ≤1}D .{x |x ≤-6或x ≥1}3.二次不等式ax 2+bx +c <0的解集是全体实数的条件是( )A.⎩⎪⎨⎪⎧ a >0,Δ>0B.⎩⎪⎨⎪⎧ a >0,Δ<0C.⎩⎪⎨⎪⎧a <0,Δ>0 D.⎩⎪⎨⎪⎧a <0,Δ<0 4.若a <0,则关于x 的不等式a (x +1)⎝⎛⎭⎫x +1a <0的解集为________. 5.若关于x 的不等式(k -1)x 2+(k -1)x -1<0恒成立,则实数k 的取值范围是________. 二、创新应用题6.解关于x 的不等式x 2-3ax -18a 2>0.[课下双层级演练过关]A 级——学考水平达标练1.设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则S ∩T =( )A .{x |2≤x ≤3}B .{x |x ≤2或x ≥3}C .{x |x ≥3}D .{x |0<x ≤2或x ≥3} 2.下列四个不等式:①-x 2+x +1≥0;②x 2-25x +5>0;③x 2+6x +10>0;④2x 2-3x +4<1.其中解集为R 的是( )A .①B .②C .③D .④3.若0<t <1,则不等式(x -t )⎝⎛⎭⎫x -1t <0的解集为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪ 1t <x <t B.⎩⎨⎧⎭⎬⎫x ⎪⎪ x >1t 或x <t C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <1t 或x >t D.⎩⎨⎧⎭⎬⎫x ⎪⎪t <x <1t 4.一元二次方程ax 2+bx +c =0的两根为-2,3,a <0,那么ax 2+bx +c >0的解集为( ) A .{x |x >3或x <-2} B .{x |x >2或x <-3} C .{x |-2<x <3}D .{x |-3<x <2}5.若产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2(0<x <240),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是( )A .100台B .120台C .150台D .180台 6.要使17-6x -x 2有意义,则x 的解集为________.7.已知集合A ={x |3x -2-x 2<0},B ={x |x -a <0},且B ⊆A ,则a 的取值范围为________. 8.若关于x 的不等式ax 2-6x +a 2<0的非空解集为{x |1<x <m },则m =________. 9.解下列不等式:(1)2x 2+7x +3>0;(2)-4x 2+18x -814≥0; (3)-2x 2+3x -2<0; (4)-12x 2+3x -5>0.10.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏.为了使这批台灯每天能获得400元以上的销售收入,应怎样制定这批台灯的销售价格?B级——高考水平高分练1.设x2-2x+a-8≤0对于任意x∈{x|1≤x≤3}恒成立,则a的取值范围是________.2.对于实数x,当且仅当n≤x<n+1(n∈N*)时,[x]=n,则关于x的不等式4[x]2-36[x]+45<0的解集为________.3.解关于x的不等式x2-(a+a2)x+a3>0.4.某小商品在2018年的价格为8元/件,年销量是a件.现经销商计划在2019年将该商品的价格下调至5.5元/件到7.5元/件之间,经调查,顾客的期望价格是4元/件.经测算,该商品价格下调后新增的年销量与实际价格和顾客期望价格的差成反比,比例系数为k.该商品的成本价为3元/件.(1)写出该商品价格下调后,经销商的年收益y与实际价格x的关系式;(2)设k=2a,当实际价格最低定为多少时,仍然可以保证经销商2019年的收益比2018年至少增长20%?5.某热带风暴中心B 位于海港城市A 东偏南30°的方向,与A 市相距400 km.该热带风暴中心B 以40 km/h 的速度向正北方向移动,影响范围的半径是350 km.问:从此时起,经多少时间后A 市将受热带风暴影响,大约受影响多长时间?习题课(提升关键能力) 一元二次函数、方程和不等式高频考点一|比较大小[例1] (1)已知a, b 满足等式x =a 2+b 2+20, y =4(2b -a ), 则x, y 满足的大小关系是( )A .x ≤yB .x ≥yC .x <yD .x >y (2)对于a >0,b >0,下列不等式中不正确的是( ) A.ab 2<1a +1b B .ab ≤a 2+b 22 C .ab ≤⎝⎛⎭⎫a +b 22D.⎝⎛⎭⎫a +b 22≤a 2+b22(3)若角α,β满足-π2<α<π2,-π2<β<π2,则2α+β的取值范围是( )A .-π<2α+β<0B .-π<2α+β<πC .-3π2<2α+β<π2D .-3π2<2α+β<3π2[集训冲关]1.若a >b ,x >y ,下列不等式正确的是( )A .a +x <b +yB .ax >byC .|a |x ≥|a |yD .(a -b )x <(a -b )y 2.已知a +b <0,且a >0,则( )A .a 2<-ab <b 2B .b 2<-ab <a 2C .a 2<b 2<-abD .-ab <b 2<a 23.若0<a <1,0<b <1,且a ≠b ,则a +b,2ab ,2ab ,a 2+b 2中最大的一个是( ) A .a 2+b 2 B .2ab C .2ab D .a +b4.已知a <b <c ,试比较a 2b +b 2c +c 2a 与ab 2+bc 2+ca 2的大小.高频考点二|基本不等式及应用[例2] (1)已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8(2)已知函数y =x -4+9x +1(x >-1),当x =a 时,y 取得最小值b ,则a +b =________. (3)某商品进货价每件50元,据市场调查,当销售价格(每件x 元)为50<x ≤80时,每天售出的件数为P =105(x -40)2,若要使每天获得的利润最多,销售价格每件应定为多少元?[集训冲关]1.(3-a )(a +6)(-6≤a ≤3)的最大值为( ) A .9 B.92 C .3 D.3222.设a >0,若对于任意的正数m ,n ,都有m +n =8,则满足1a ≤1m +4n +1的a 的取值范围是________.3.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位 m/s)、平均车长l (单位:m)的值有关,其公式为F =76 000vv 2+18v +20l.(1)如果不限定车型,l =6.05,则最大车流量为____辆/小时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/小时. 4.若正实数x ,y 满足2x +y +6=xy ,求2x +y 的最小值.高频考点三|一元二次不等式及其应用[例3] (1)解关于x 的不等式x 2+(1-a )x -a <0.(2)甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求1≤x ≤10),每小时可获得的利润是100⎝⎛⎭⎫5x +1-3x 元. ①要使生产该产品2小时获得的利润不低于 3 000元,求x 的取值范围;②要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.[集训冲关]1.若不等式-x 2+mx -1>0有解,则m 的取值范围是( ) A .m <-2或m >2 B .-2<m <2 C .m ≠±2D .1<m <32.关于x 的不等式x 2-ax -6a 2>0(a <0)的解集为{x |x <x 1或x >x 2},且x 2-x 1=52, 则a 的值为( )A .- 5B .-32C .- 2D .-523.某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应的提高比例为0.75x ,同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,问投入成本增加的比例x 应在什么范围内?高频考点四|一元二次函数、方程和不等式[例4] 若不等式x 2+ax +3-a >0对于满足-2≤x ≤2的一切实数x 恒成立,求实数a 的取值范围.[集训冲关]1.若关于x 的方程8x 2-(m -1)x +m -7=0的两根均大于1,则m 的取值范围是________.2.若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}. (1)解不等式2x 2+(2-a )x -a >0;(2)b 为何值时,ax 2+bx +3≥0的解集为R .一、选择题1.若A =a 2+3ab ,B =4ab -b 2,则A ,B 的大小关系是( ) A .A ≤B B .A ≥B C .A <B 或A >B D .A >B2.设集合A ={x |x 2-x -2<0},集合B ={x |1<x <3},则A ∪B =( ) A .{x |-1<x <3} B .{x |-1<x <1} C .{x |1<x <2} D .{x |2<x <3}3.设m >1,P =m +4m -1,Q =5,则P ,Q 的大小关系为( ) A .P <Q B .P =Q C .P ≥QD .P ≤Q4.若不等式ax 2+bx -2>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-2<x <-14,则a +b 等于( ) A .-18 B .8 C .-13 D .15.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的取值范围是( ) A .a ≤2 B .a ≥2 C .a ≥3D .a ≤36.《几何原本》第二卷中的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多代数的定理都能够通过图形实现证明,并称之为无字证明.现有如图所示的图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB .设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A.a +b 2≥ab (a >0,b >0) B .a 2+b 2≥2ab (a >0,b >0)C.2aba +b≤ab (a >0,b >0) D.a +b 2≤a 2+b 22(a >0,b >0) 7.对任意实数x ,不等式(a -2)x 2+2(a -2)x -4<0恒成立,则a 的取值范围是( ) A .{a |-2<a ≤2} B .{a |-2≤a ≤2} C .{a |a <-2或a >2}D .{a |a ≤-2或a >2}8.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,则( )A .甲先到教室B .乙先到教室C .两人同时到教室D .谁先到教室不确定二、填空题 9.若a <b <0,则1a -b与1a 的大小关系为________. 10.已知x +mx -2(x >2)的最小值为6,则正数m 的值为________.11.关于x 的不等式ax -b >0的解集是{x |x >1},则关于x 的不等式(ax +b )(x -2)>0的解集是________.12.若m 2x -1mx +1<0(m ≠0)对一切x ≥4恒成立,则实数m 的取值范围是________.三、解答题13. 当x >3时,求2x 2x -3的取值范围.14.解关于x 的不等式56x 2+ax -a 2<0.15.已知a >0,b >0,1a +1b =1,求1a -1+9b -1的最小值.16. 国际上钻石的重量计量单位为克拉.已知某种钻石的价值(美元)与其重量(克拉)的平方成正比,且一颗重为3克拉的该钻石的价值为54 000美元.(1)写出钻石的价值y 关于钻石重量x 的关系式;(2)把一颗钻石切割成两颗钻石,若两颗钻石的重量分别为m 克拉和n 克拉, 试证明:当m =n 时,价值损失的百分率最大.(注:价值损失的百分率=原有价值-现有价值原有价值×100%;在切割过程中的重量损耗忽略不计)。
九年级数学培优第3讲:二次函数与一元二次方程及不等式

符合题意.
12.在直角坐标系中,抛物线 y=ax2+bx+c(a,b,c 是正整数)与 x 轴有两个不同的交点,若两交点
到原点的距离都小于 1,则 abc 的最小值是__25__,此时 a+b+c=__11__. 【解析】 设抛物线与 x 轴的交点坐标为(x1,0),(x2,0),且 x1<x2,则 x1,x2 是方程 ax2+bx+c
图 1-3-3
8.函数 y=x2+bx+c 与 y=x 的图象如图 1-3-4 所示,有以下结论:①b2-4c>0;②b+c+1=0; ③3b+c+6=0;④当 1<x<3 时,x2+(b-1)x+c<0.其中正确的个数是 (B)
图 1-3-4
A.1
B.2
C.3
D.4
9.已知二次函数 y=x2-2mx+m2+3(m 是常数).
证法二:因为 a=1>0,所以该函数的图象开口向上.
又因为 y=x2-2mx+m2+3=(x-m)2+3≥3.
所以该函数的图象在 x 轴的上方.
所以不论 m 为何值,该函数的图象与 x 轴没有公共点.
(2)y=x2-2mx+m2+3=(x-m)2+3,
把函数 y=(x-m)2+3 的图象沿 y 轴向下平移 3 个单位长度后,得到函数 y=(x-m)2 的图象,它
的顶点坐标是(m,0),因此这个函数的图象与 x 轴只有一个公共点.
所以把该函数的图象沿 y 轴向下平移 3 个单位长度后,得到的函数的图象与 x 轴只有一个公共点.
10.如图 1-3-5,已知抛物线 y=x2+bx+c 与 x 轴交于点 A,B,AB=2,与 y 轴交于点 C,对称
轴为直线 x=2.
(1)求证:不论 m 为何值,该函数的图象与 x 轴没有公共点;
2020-2021学年九年级数学中考复习知识点综合专题训练:二次函数与不等式2(附答案) (1)

2021年九年级数学中考复习知识点综合专题训练:二次函数与不等式2(附答案)1.二次函数y=ax2+bx+c的部分图象如图,图象过点A(3,0),对称轴为直线x=1,下列结论:①a﹣b+c=0;②2a+b=0;③4ac﹣b2>0;④a+b≥am2+bm(m为实数).其中正确的结论有()A.1个B.2个C.3个D.4个2.如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论:①abc>0;②4a﹣2b+c<0;③b2>4ac;④ax2+bx+c≥﹣6;⑤若点M(﹣2,m)与点N(﹣5,n)为抛物线上两点,则m>n;⑥关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1.其中正确结论有()A.5B.4C.3D.23.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点是A,对称轴是直线x =1,且抛物线与x轴的一个交点为B(4,0);直线AB的解析式为y2=mx+n(m≠0).下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=mx+n有两个不相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,则y1>y2,其中正确的是()A.①②B.①③⑤C.①④D.①④⑤4.如图所示,y=mx+n与y=ax2+k的图象交于(﹣2,b),(5,c)两点,则不等式mx+ax2+k <n的解集为()A.﹣2<x<5B.x<﹣2或x>5C.﹣5<x<2D.x<﹣5或x>2 5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①bc>0;②3a+c>0;③a+b+c≤ax2+bx+c;④a(k12+1)2+b(k12+1)>a(k12+2)2+b(k12+2).其中正确结论的个数是()A.1B.2C.3D.46.如图,直线y1=2x和抛物线y2=﹣x2+4x,当y1>y2时,x的取值范围是()A.0<x<2B.x<0或x>2C.x<0或x>4D.0<x<47.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标为B(﹣1,﹣3),与x轴的一个交点为A(﹣4,0).点A和点B均在直线y2=mx+n(m≠0)上.①2a+b=0;②abc<0;③抛物线与x轴的另一个交点是(4,0);④方程ax2+bx+c=﹣3有两个不相等的实数根;⑤a+b+c>﹣m+n;⑥不等式mx+n>ax2+bx+c的解集为﹣4<x<﹣1.其中结论正确的是()A.①④⑥B.②⑤⑥C.②③⑤D.①⑤⑥8.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表所示,下列结论,其中正确的个数为()x﹣1013y﹣1353①ac<0;②当x>1时,y的值随x值的增大而减小.③当﹣1<x<3时,ax2+(b﹣1)x+c>0;④对于任意实数m,4m(am+b)﹣6b<9a总成立.A.1个B.2个C.3个D.4个9.已知抛物线y=ax2+bx+c(a、b、c是常数,a<0)经过点A(﹣1,0)、B(3,0),顶点为C,则下列说法正确的个数是()①当﹣1<x<3时,ax2+bx+c>0;②当△ABC是直角三角形,则a=﹣;③若m≤x≤m+3时,二次函数y=ax2+bx+c的最大值为am2+bm+c,则m≥3.A.0B.1C.2D.310.如图,是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;m+n=3;②抛物线与x轴的另一个交点是(﹣1,0);③方程ax2+bx+c =3有两个相等的实数根;④当1<x<4时,有y2<y1;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=1.正确的个数为()A.①④⑤B.①③④C.①③⑤D.①②③11.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A (﹣2,6)和B(8,3),如图所示,则不等式ax2+bx+c>kx+m的取值范围是.12.若y=ax2+bx+c是关于x的二次函数且a为整数,不等式4x≤ax2+bx+c≤2(x2+1)在实数范围内恒成立,则二次函数的解析式为.13.如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是﹣或.其中正确的是.14.二次函数y=﹣x2+bx+c的部分图象如图所示,由图象可知,不等式﹣x2+bx+c<0的解集为.15.如图,函数y=ax2+c与y=mx+n的图象交于A(﹣1,p),B(3,q)两点,则关于x 的不等式ax2+mx+c>n的解集是.16.对于满足|x|≤2的所有实数x,使不等式p2+px+1>2p+x恒成立,则p的取值范围为.17.二次函数y=ax2+bx+c的图象如图,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a﹣b=0;④a﹣b+c>0;⑤9a﹣3b+c>0.其中正确的结论有.18.抛物线y=ax2+bx+c过点(﹣1,1),且对任意实数x,有4x﹣4≤ax2+bx+c≤2x2﹣4x+4恒成立,则抛物线的解析式为.19.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣1,x2=2,则二次函数y=x2+mx+n中,当y<0时,x的取值范围是.20.如图,抛物线y=ax2+bx+c与x轴的一个交点是A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),对称轴为x=1.给出下列结论,写出所有正确结论的序号为.①abc>0;②3a+b<0;③﹣1≤a≤﹣;④对于任意的实数x,a+b≥ax2+bx总成立.21.如图为抛物线y=ax2+bx+c在平面直角坐标系上的图象,回答下列问题:(1)关于x的方程ax2+bx+c=0的解是;(2)关于x的不等式ax2+bx+c<0的解集是;(3)若关于x的方程ax2+bx+c=k有实数根,则k的取值范围是.22.如图,已知直线y=﹣x+6的图象分别交x轴、y轴于点A、B.点P为二次函数y=(x ﹣b)2+4b+1的顶点.(1)若点P在直线y=﹣x+6上,求此时b的值;(2)若二次函数图象经过点B,且满足﹣x+6>(x﹣b)2+4b+1,求出x的取值范围;(3)若二次函数的图象与△OAB的三边恰好只有一个交点,求此时b的值.23.关于x的二次函数y1=kx2+(2k﹣1)x﹣2(k为常数)和一次函数y2=x+2.(1)求证:函数y1=kx2+(2k﹣1)x﹣2的图象与x轴有交点.(2)已知函数y1的图象与x轴的两个交点间的距离等于3,①试求此时k的值;②若y1>y2,试求x的取值范围.24.如图,在平面直角坐标系中,直线y=﹣5x+5与x轴、y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴交于另一点B.(1)求抛物线解析式及B点坐标;(2)x2+bx+c≤﹣5x+5的解集是;(3)若点M为抛物线上一动点,连接MA、MB,当点M运动到某一位置时,△ABM面积为△ABC的面积的倍,求此时点M的坐标.25.函数图象在探索函数的性质中有非常重要的作用,下面我们对函数y=x2+ax﹣4|x+b|+6(b>0)展开探索,请将以下探索过程补充完整:(1)下表给出了部分x、y的取值:x…﹣6﹣5﹣4﹣3﹣2﹣1012…y…2c﹣2﹣12﹣1﹣2﹣12…由上表可知,a=,b=,c=;(2)用你喜欢的方式在平面坐标系中画出函数y=x2+ax﹣4|x+b|+6的图象;(3)写出函数图象的一条性质:;(4)结合图象,请直接写出x2+ax﹣4|x+b|+6<x的解集:.26.小云在学习过程中遇到一个函数y=|x|(x2﹣x+1)(x≥﹣2).下面是小云对其探究的过程,请补充完整:(1)当﹣2≤x<0时,对于函数y1=|x|,即y1=﹣x,当﹣2≤x<0时,y1随x的增大而,且y1>0;对于函数y2=x2﹣x+1,当﹣2≤x<0时,y2随x的增大而,且y2>0;结合上述分析,进一步探究发现,对于函数y,当﹣2≤x<0时,y随x的增大而.(2)当x≥0时,对于函数y,当x≥0时,y与x的几组对应值如下表:x0123…y01…结合上表,进一步探究发现,当x≥0时,y随x的增大而增大.在平面直角坐标系xOy 中,画出当x≥0时的函数y的图象.(3)过点(0,m)(m>0)作平行于x轴的直线l,结合(1)(2)的分析,解决问题:(x≥﹣2)的图象有两个交点,则m的最大值是.若直线l与函数y=|x|(x2﹣x+1)27.已知函数y=a|x﹣2|﹣x+b(a、b为常数),当x=4时,y=﹣4;当x=﹣2时,y=0,请对该函数及其图象进行如下探究:(1)a=,b=.(2)请在给出的平面直角坐标系中画出该函数的图象;(3)已知函数y=x2﹣x的图象如图所示,结合你所画的函数图象,直接写出不等式a|x﹣2|﹣x+b≤x2﹣x的解.28.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)部分自变量和对应的函数值如下表:x…﹣2﹣1012…y1…01234…y2…0﹣1038…(1)求y2的表达式;(2)关于x的不等式ax2+bx+c>kx+m的解集是.参考答案1.解:∵二次函数y=ax2+bx+c的图象过点A(3,0),对称轴为直线x=1,∴当x=﹣1时,y=0,即a﹣b+c=0.∴①正确;∵对称轴为直线x=1,∴﹣=1,∴b=﹣2a,∴2a+b=0,故②正确;∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,∴4ac﹣b2<0,故③错误;∵当x=1时,函数有最大值,∴a+b+c≥am2+bm+c,∴a+b≥am2+bm,故④正确.综上,正确的有①②④.故选:C.2.解:①∵抛物线开口向上,与y轴交于负半轴,∴a>0,b=6a>0,c<0,故abc<0,结论①错误;②从图象看,当x=﹣2时,y=ax2+bx+c=4a﹣2b+c<0,故②正确,符合题意;③从图象看,函数和x轴有两个交点,故b2>4ac,故③正确,符合题意;④从图象看,y≥﹣6,即ax2+bx+c≥﹣6,故④正确,符合题意;⑤∵抛物线的顶点坐标为(﹣3,﹣6),点M(﹣2,m)在抛物线上,∴点(﹣4,m)在抛物线上.∵在x<﹣3上,y随x值的增大而减小,点N(﹣5,n)在抛物线上,∴m<n,结论⑤错误;⑥∵抛物线y=ax2+bx+c经过点(﹣1,﹣4),抛物线的顶点坐标为(﹣3,﹣6),∴抛物线y=ax2+bx+c经过点(﹣5,﹣4),∴关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,结论⑥正确.故选:B.3.解:①因为抛物线对称轴是直线x=1,则﹣=1,2a+b=0,故①正确,符合题意;②∵抛物线开口向下,故a<0,∵对称轴在y轴右侧,故b>0,∵抛物线与y轴交于正半轴,故c>0,∴abc<0,故②错误,不符合题意;③从图象看,两个函数图象有两个交点,故方程ax2+bx+c=mx+n有两个不相等的实数根,正确,符合题意;④因为抛物线对称轴是:x=1,B(4,0),所以抛物线与x轴的另一个交点是(﹣2,0),故④错误,不符合题意;⑤由图象得:当1<x<4时,有y2<y1,故⑤正确,符合题意;故正确的有:①③⑤;故选:B.4.解:∵y=mx+n过(﹣2,b),(5,c)两点,∴b=﹣2m+n,c=5m+n,当x=2时,y=﹣mx+n=﹣2m+n=b,当x=﹣5时,y=﹣mx+n=5m+n=c,∴直线y=﹣mx+n过(2,b)和(﹣5,c)两点,∵y=mx+n与y=ax2+k的图象交于(﹣2,b),(5,c)两点,∴根据二次函数图象的对称性质可知,y=ax2+k的图象过(2,b)和(﹣5,c)两点,如图所示,y=﹣mx+n与y=ax2+k的图象交于(2,b)和(﹣5,c)两点,由图象可知,直线y=﹣mx+n在抛物线y=ax2+k上方时,x<﹣5或x>2,∴不等式ax2+k<﹣mx+n的解集为x<﹣5或x>2,即不等式mx+ax2+k<n的解集为x<﹣5或x>2,故选:D.5.解:①由图象可以看出,a<0,b>0,c>0,故bc>0,正确,符合题意;②函数的对称轴为x=1=﹣,即b=﹣2a,根据函数的对称性可知x=﹣1时,y<0,即a﹣b+c<0,故3a+c<0,故②错误,不符合题意;③抛物线在x=1时,取得最大值,即a+b+c≥ax2+bx+c,故③错误,不符合题意;④x=k2+1≥1,而在对称轴右侧,y随x增大而减小,∵+1<+2,∴a(k12+1)2+b(k12+1)+c>a(k12+2)2+b(k12+2)+c,故a(k12+1)2+b(k12+1)>a(k12+2)2+b(k12+2)正确,符合题意;故选:B.6.解:由,解得或,∴两函数图象交点坐标为(0,0),(2,4),由图可知,y1>y2时,x的取值范围是x<0或x>2.故选:B.7.解:∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,即2a﹣b=0,所以①错误;∵抛物线开口向上,∴a>0,∴b=2a0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以②正确;∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点为B(﹣4,0),∴抛物线与x轴的一个交点为(2,0),所以③错误;∵抛物线的顶点坐标为(﹣1,﹣3),∴抛物线与直线y=﹣3只有一个交点,∴方程ax2+bx+c=﹣3有两个相等的实数根,所以④错误;∵抛物线开口向上,对称轴为直线x=﹣1,﹣1<1,∴a+b+c>a﹣b+c,∵直线y2=mx+n(m≠0)经过抛物线的顶点坐标为B(﹣1,﹣3),∴a﹣b+c=﹣m+n,∴a+b+c>﹣m+n,所以⑤正确;∵当﹣4<x<﹣1时,y2>y1,∴不等式mx+n>ax2+bx+c的解集为﹣4<x<﹣1.所以⑥正确.故选:B.8.解:①由图表中数据可得出:x=1时,y=5,所以二次函数y=ax2+bx+c开口向下,a<0;又x=0时,y=3,所以c=3>0,所以ac<0,故①正确;②∵二次函数y=ax2+bx+c开口向下,且对称轴为x=1.5,∴当x≥1.5时,y的值随x值的增大而减小,故②错误;③∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,∴当﹣1<x<3时,ax2+(b﹣1)x+c>0,故③正确.④将x=﹣1、y=﹣1,x=0、y=3,x=1、y=5代入y=ax2+bx+c,得,解得:,∴y=﹣x2+3x+3=﹣(x﹣)2+,可知当x=时,y取得最大值,即当x=m时,am2+bm+c≤a+b+c,变形可得4m(am+b)﹣6b≤9a,故④错误;故选:B.9.解:∵抛物线y=ax2+bx+c(a、b、c是常数,a<0)经过点A(﹣1,0)、B(3,0),∴该抛物线开口向下,对称轴为x==1,抛物线与x轴的两个交点分别为点A和点B,∴①正确;∵点C为抛物线的顶点,∴当△ABC是直角三角形时,此三角形为等腰直角三角形,∴对称轴x=1与x轴的交点将△ABC分成两个全等的等腰直角三角形,其直角边长为=2,∴此时点C坐标为:(1,2).设y=ax2+bx+c=a(x﹣1)2+2,将A(﹣1,0)代入得:0=4a+2,∴a=﹣,故②正确;∵对称轴为x=1,a<0,∴当x≥1时,二次函数y=ax2+bx+c的函数值随着x的增大而减小,∴③中m≥1即可,故③错误.综上,正确的有①②.故选:C.10.解:①∵对称轴x=﹣=1,则2a+b=0,由点A、B的坐标得,直线AB的表达式为y=﹣x+4,即m=﹣1,n=4,故m+n=3,①正确,符合题意;②对称轴是直线x=1,与x轴的一个交点是(4,0),则与x轴的另一个交点是(﹣2,0),故②错误,不符合题意;③∵把抛物线y=ax2+bx+c向下平移3个单位,得到y=ax2+bx+c﹣3,∴顶点坐标A(1,3)变为(1,0),抛物线与x轴只有一个交点,∴方程ax2+bx+c=3有两个相等的实数根,③正确,符合题意;④当1<x<4时,由图象可知y2<y1,故④正确,符合题意;⑤若ax12+bx1=ax22+bx2,即ax12+bx1+c=ax22+bx2+c,即y1=y2,则x1、x2关于函数的对称轴对称,故(x1+x2)=1,故⑤错误,不符合题意;故选:B.11.解:当x<﹣2或x>8时,y1>y2,所以不等式ax2+bx+c>kx+m的解集为x<﹣2或x>8.故答案为x<﹣2或x>8.12.解:∵4x≤ax2+bx+c≤2(x2+1)在实数范围内恒成立,∴当x=1时,a+b+c=4成立当x=0时,有0≤c≤2由4x≤ax2+bx+c得:ax2+(b﹣4)x+c≥0在实数范围内恒成立∴(b﹣4)2﹣4ac≤0∵a+b+c=4∴b=4﹣a﹣c∴(4﹣a﹣c﹣4)2﹣4ac≤0∴(a﹣c)2≤0∴a=c.∵ax2+bx+c≤2(x2+1)∴(a﹣2)x2+bx+c﹣2≤0在实数范围内恒成立∴a﹣2<0,b2﹣4(a﹣2)(c﹣2)≤0∴(4﹣a﹣c)2﹣4(a﹣2)(c﹣2)≤0整理得:(a﹣c)2≤0∴a=c又∵0≤c≤2,且a为整数∴只能取a=1,c=1,b=2故答案为:y=x2+2x+1.13.解:当x>0时,一次函数图象位于二次函数上方,∴y2>y1故①错误;∵当x<0,两个函数的函数随着x的增大而增大,∴当x越大时,M越大,故②错误;函数y1=﹣2x2+2有最大值,最大值为y1=2,∴不存在使得M大于2的x的值,故③正确;令y1=1,即:﹣2x2+2=1.解得:x1=,x2=﹣不题意舍去)令y2=1,得:2x+2=1,解得:x=﹣.故④正确.故答案为:③④.14.解:抛物线的对称轴为直线x=2,而抛物线与x轴的一个交点坐标为(5,0),所以抛物线与x轴的另一个交点坐标为(﹣1,0),所以不等式﹣x2+bx+c<0的解集为x<﹣1或x>5.故答案为x<﹣1或x>5.15.解:∵抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,∴﹣m+n=p,3m+n=q,∴抛物线y=ax2+c与直线y=﹣mx+n交于P(1,p),Q(﹣3,q)两点,观察函数图象可知:当x<﹣3或x>1时,直线y=﹣mx+n在抛物线y=ax2+c的下方,∴不等式ax2+mx+c>n的解集为x<﹣3或x>1.故答案为:x<﹣3或x>1.16.解:∵p2+px+1>2p+x∴p2﹣2p+1>﹣px+x∴p2﹣2p+1>﹣(p﹣1)x∴当p≥1时,不等式两边同时除以(p﹣1)得:p﹣1>﹣x∵若满足|x|≤2的所有实数x,使不等式p2+px+1>2p+x恒成立,则p﹣1>2∴p>3;当p<1时,不等式两边同时除以(p﹣1)得:p﹣1<﹣x若满足|x|≤2的所有实数x,使不等式p2+px+1>2p+x恒成立,则p﹣1<﹣2∴p<﹣1综上所述,p>3或p<﹣1.故答案为:p>3或p<﹣1.17.解:由图象可知:a<0,c>0,又∵对称轴是直线x=﹣1,∴根据对称轴在y轴左侧,a,b同号,可得b<0,∴abc>0,故①正确;∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,∴4ac<b2,故②正确;∵对称轴是直线x=﹣1,∴﹣=﹣1,∴b=2a,∴2a﹣b=0,故③正确;∵当x=﹣1时,y>0,∴a﹣b+c>0,故④正确;∵对称轴是直线x=﹣1,且由图象可得:当x=1时,y<0,∴当x=﹣3时,y<0,∴9a﹣3b+c<0,故⑤错误.综上,正确的有①②③④.故答案为:①②③④.18.解:∵抛物线y=ax2+bx+c过点(﹣1,1)∴a﹣b+c=1∴b=1﹣a,c=2﹣2a而4x﹣4≤ax2+bx+c恒成立∴ax2+(b﹣4)x+c+4≥0,即ax2﹣(a+3)x+6﹣2a≥0恒成立∴△=(a+3)2﹣4a(6﹣2a)≤0即(a﹣1)2≤0∴a=1∴b=0,c=0又∵当a=1时,x2≤2x2﹣4x+4恒成立∴抛物线的解析式为y=x2.故答案为:y=x2.19.解:∵x2+mx+n=0的两个实数根分别为x1=﹣1,x2=2,∴二次函数y=x2+mx+n与x轴的两个交点坐标分别为(﹣1,0),(2,0),∵a=1>0,∴抛物线开口向上,∴y<0时,x的取值范围是:﹣1<x<2.故答案为:﹣1<x<2.20.解:∵抛物线开口向下,∴a<0,∵抛物线和y轴正半轴相交,∴c>0,∵对称轴和x正半轴相交,∴b>0,∴abc<0,故①错误而抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a<0,故②正确;∵2≤c≤3,把x=﹣1,y=0带入y=ax2+bx+c,得a﹣b+c=0,∴c=﹣3a,∴2≤﹣3a≤3,∴﹣1≤a≤﹣,故③正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,故④正确;∴所有正确结论的序号为②③④.故答案为:②③④.21.解:(1)∵抛物线与x轴的两个交点坐标为(0,0)和(2,0),∴方程ax2+bx+c=0的解为x=0或x=2,故答案为x=0或x=2;(2)由图象可知,不等式ax2+bx+c<0解集为0<x<2,故答案为0<x<2;(3)关于x的方程ax2+bx+c=k有实数根,相当于抛物线与y=k有一个或两个不同的交点,∴k≥﹣1,故答案为k≥﹣1.22.解:(1)∵P为二次函数y=(x﹣b)2+4b+1的顶点,∴顶点P(b,4b+1),把P(b,4b+1)代入y=﹣x+6,得4b+1=﹣b+6,解得b=1;(2)直线y=﹣x+6中,令x=0,则y=6,∴B(0,6),把B(0,6)代入y=(x﹣b)2+4b+1,解得b=﹣5或1,当b=﹣5时,联立,解得x=11或0,∴﹣11<x<0,当b=1时,联立,解得x=1或0,∴0<x<1;故x的取值范围为﹣11<x<0或0<x<1;(3)①由(2)可知,当b=﹣5时,二次函数图象经过点B,且恰好与△OAB的三边只有个交点,所以b=﹣5②当b=1时,联立,整理得x2﹣(2b﹣1)x+b2+4b﹣5=0,令△=0,则(2b﹣1)2﹣4(b2+4b﹣5)=0,解得b=,综上所述:b=或﹣5.23.解:(1)∵△=(2k﹣1)2+8k=4k2﹣4k+1+8k=4k2+4k+1=(2k+1)2≥0,∴函数y1=kx2+(2k﹣1)x﹣2的图象与x轴有交点;(2)①设kx2+(2k﹣1)x﹣2=0的两根为x1,x2,则,,∴,∵函数y1的图象与x轴的两个交点间的距离等于3,∴|x1﹣x2|=3,∴,解得,k=1或k=﹣;②当k=1时,y1=(x+2)(x﹣1),y2=x+2∵y1>y2,∴(x+2)(x﹣1)>x+2,即(x+2)(x﹣2)>0,解得:x<﹣2或x>2;当k=﹣时,∵y1>y2,∴﹣(x+2)(x+5)>x+2,即(x+2)(x+10)<0,解得:﹣10<x<﹣2.24.解:(1)因为直线y=﹣5x+5与x轴、y轴分别交于A,C两点,所以当x=0时,y=5,所以C(0,5)当y=0时,x=1,所以A(1,0)因为抛物线y=x2+bx+c经过A,C两点,所以c=5,1+b+5=0,解得b=﹣6,所以抛物线解析式为y=x2﹣6x+5.当y=0时,0=x2﹣6x+5.解得x1=1,x2=5.所以B点坐标为(5,0).答:抛物线解析式为y=x2﹣6x+5.B点坐标为(5,0);(2)观察图象可知:x2+bx+c≤﹣5x+5的解集是0≤x≤1.故答案为0≤x≤1.(3)设M(m,m2﹣6m+5)因为S△ABM=S△ABC=××4×5=8.所以×4•|m2﹣6m+5|=8所以|m2﹣6m+5|=±4.所以m2﹣6m+9=0或m2﹣6m+1=0解得m1=m2=3或m=3±2.所以M点的坐标为(3,﹣4)或(3+2,4)或(3﹣2,4).答:此时点M的坐标为(3,﹣4)或(3+2,4)或(3﹣2,4).25.解:(1)从表格取点(0,﹣2)、(1,﹣1)代入函数表达式得:,解得,故函数表达式为y=x2+4x﹣4|x+2|+6,当x=﹣5时,y=x2+4x﹣4|x+2|+6=﹣1=c,故答案为:4,2,﹣1;(2)描点连线作出如下图所示函数图象,(3)从图上看,函数关于x=﹣2对称(答案不唯一),故答案为:函数关于x=﹣2对称(答案不唯一);(4)在图上画出直线y=x,如图2,从图上看,两个函数的交点为(﹣1,﹣1)、(2,2),故x2+ax﹣4|x+b|+6<x的解集为:﹣1<x<2.26.解:(1)当﹣2≤x<0时,对于函数y1=|x|,即y1=﹣x,当﹣2≤x<0时,y1随x的增大而减小,且y1>0;对于函数y2=x2﹣x+1,当﹣2≤x<0时,y2随x的增大而减小,且y2>0;结合上述分析,进一步探究发现,对于函数y,当﹣2≤x<0时,y随x的增大而减小.故答案为:减小,减小,减小.(2)函数图象如图所示:(3)∵直线l与函数y=|x|(x2﹣x+1)(x≥﹣2)的图象有两个交点,观察图象可知,x=﹣2时,m的值最大,最大值m=×2×(4+2+1)=,故答案为27.解:(1)把x=4,y=﹣4和x=﹣2,y=0代入函数y=a|x﹣2|﹣x+b中,得:,解得:,故答案为:﹣,7;(2)当x≥2时,函数y=﹣(x﹣2)﹣x+7;当x<2时,函数y=﹣(2﹣x)﹣x+7,y与x的部分对应值如下表:根据表格数据,绘制如下函数图象:(3)从图象看,两个函数的交点横坐标为:﹣1和3,∴不等式a|x﹣2|﹣x+b≤x2﹣x的解是:x≤﹣1或x≥3.28.解:(1)根据题意设y2的表达式为:y2=a(x+1)2﹣1,把(0,0)代入得a=1,∴y2=x2+2x;(2)当x=﹣2时,y1=y2=0;当x=1时,y1=y2=3;∴直线与抛物线的交点为(﹣2,0)和(1,3),而x<﹣2或x>1时,y2>y1,∴不等式ax2+bx+c>kx+m的解集是x<﹣2或x>1.故答案为:x<﹣2或x>1。
九年级数学下册 2.5 二次函数与一元二次方程能力提升 (新版)北师大版

二次函数与一元二次方程能力提升1.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的取值范围是( )A.k<4B.k≤4C.k<4且k≠3D.k≤4且k≠32.(2015陕西中考)下列关于二次函数y=ax2-2ax+1(a>1)的图象与x轴交点的判断,正确的是( )A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧3.关于x的一元二次方程x2-x-n=0没有实数根,则抛物线y=x2-x-n的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限4.已知一元二次方程ax2+bx+c=0(a>0)的两个实数根x1,x2满足x1+x2=4和x1·x2=3,那么二次函数y=ax2+bx+c(a>0)的图象有可能是( )5.若抛物线y=x2-(2k+1)x+k2+2与x轴有两个交点,则整数k的最小值是.6.已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x 的一元二次方程x2-3x+m=0的两个实数根是.7.已知二次函数y=x2+ax+a-2.(1)求证:不论a为何实数,此函数图象与x轴总有两个交点.(2)设a<0,当此函数图象与x轴的两个交点的距离为时,求出此二次函数的解析式.(3)由(2)所得二次函数图象与x轴交于A,B两点,在函数图象上是否存在点P,使得△PAB的面积为?若存在,求出点P的坐标;若不存在,请说明理由.创新应用8.据统计,每年由于汽车超速行驶而造成的交通事故是造成人员伤亡的主要原因之一.行驶中的汽车,在刹车后由于惯性的原因,还要继续向前滑行一段距离才能停住,这段距离称为“刹车距离”.为了测定某种型号汽车的刹车性能(车速不超过140 km/h),对这种汽车的刹车距离进行测试,测得的数据如下表:(1)在如图的直角坐标系中以车速为x 轴,以刹车距离为y 轴,描出这些数据所表示的点,并用光滑的曲线连接这些点,得到某函数的大致图象.(2)观察图象估计函数的类型,并确定一个满足这些数据的函数解析式.(3)一辆该型号汽车在国道上发生了交通事故,现场测得刹车距离为46.5 m,请推测刹车时速度是多少?请问在事故发生时,汽车是否超速行驶?参考答案1.B 当函数y=(k-3)x 2+2x+1是二次函数时,图象与x 轴有交点,则解得∴k≤4且k≠3.当k=3时,函数y=2x+1,是一次函数,此时直线与x 轴有交点,综上可知,当k≤4时,函数y=(k-3)x 2+2x+1的图象与x 轴有交点.2.D y=ax 2-2ax+1=a(x-1)2-a+1.∵a>1,∴-a+1<0,∴抛物线y=ax 2-2ax+1的顶点在第四象限.又抛物线与y 轴交于点(0,1),且开口向上,∴抛物线与x 轴交点有两个,它们均位于y 轴右侧.3.A ∵一元二次方程x 2-x-n=0没有实数根,∴抛物线y=x 2-x-n 与x 轴没有交点,且开口向上,对称轴x=,在y 轴右侧, ∴抛物线顶点在第一象限.4.C 由x 1+x 2=4,x 1·x 2=3,知x 1,x 2都是正数,∴抛物线与x 轴相交于x 轴的正半轴.故选C.5.2 由题意,得[-(2k+1)]2-4(k 2+2)>0.解得k>,∴整数k 的最小值是2.6.x1=1,x2=2 ∵二次函数的解析式是y=x2-3x+m(m为常数),∴该抛物线的对称轴是x=.又二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),∴根据抛物线的对称性质知,该抛物线与x轴的另一个交点的坐标是(2,0).∴关于x的一元二次方程x2-3x+m=0的两个实数根分别是x1=1,x2=2.7.(1)证明:∵Δ=a2-4(a-2)=(a-2)2+4>0,∴不论a为何实数,此函数图象与x轴总有两个交点.(2)解:设x1,x2是x2+ax+a-2=0的两个根,则x1+x2=-a,x1·x2=a-2.∵两交点的距离是,∴|x1-x2|=,即(x1-x2)2=13,变形为(x1+x2)2-4x1·x2=13,∴(-a)2-4(a-2)=13.整理得(a-5)(a+1)=0,解得a=5或a=-1.∵a<0,∴a=-1.∴此二次函数的解析式为y=x2-x-3.(3)解:设点P的坐标为(x0,y),∵函数图象与x轴的两个交点间的距离等于,∴AB=.∴S△PAB =AB·|y|=,即,即|y0|=3,则y=±3.当y0=3时,-x-3=3,即(x-3)·(x+2)=0,解得x=-2或3.当y0=-3时,-x-3=-3,即x0(x-1)=0,解得x=0或1.综上所述,存在这样的点P,点P坐标是(-2,3)或(3,3)或(0,-3)或(1,-3).8.解:(1)描点,连线(画出函数图象如图).(2)根据图象可估计为抛物线.设y=ax2+bx+c.把表内前三对数代入函数解析式,可得解得∴y=0.002x2+0.01x.经检验,其他各数均满足这个函数.(3)当y=46.5 m时,即46.5=0.002x2+0.01x,整理可得x2+5x-23 250=0,解得x1=150,x2=-155(不符合题意,舍去).∴可以推测刹车时速度为150 km/h.∵150>140,∴汽车发生事故时超速行驶.。
二次函数与方程和不等式练习题

练习九二次函数与方程和不等式1、已知二次函数772--=x kx y 与x 轴有交点,则k 的取值范围是.2、关于x 的一元二次方程02=--n x x 没有实数根,则抛物线n x x y --=2的顶点在第_____象限;3、抛物线222++-=kx x y 与x 轴交点的个数为()A 、0B 、1C 、2D 、以上都不对4、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是()A 、0,0>∆>aB 、0,0<∆>aC 、0,0>∆<aD 、0,0<∆<a5、12++=kx x y 与k x x y --=2的图象相交,若有一个交点在x 轴上,则k 为()A 、0B 、-1C 、2D 、41 6、若方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线()A 、x =-3B 、x =-2C 、x =-1D 、x =17、已知二次函数2y x px q 的图象与x 轴只有一个公共点,坐标为1,0,求,p q 的值8、画出二次函数322--=x x y 的图象,并利用图象求方程0322=--x x 的解,说明x 在什么范围时0322≤--x x .9、如图:(1) 求该抛物线的解析式;(2) 根据图象回答:当x 为何范围时,该函数值大于0.10、二次函数c bx ax y ++=2的图象过A(-3,0),B(1,0),C(0,3),点D 在函数图象上,点C 、D 是二次函数图象上的一对对称点,一次函数图象过点B 、D ,求(1)一次函数和二次函数的解析式,(2)写出使一次函数值大于二次函数值的x 的取值范围.11、已知抛物线22y x mx m .(1)求证此抛物线与x 轴有两个不同的交点;(2)若m 是整数,抛物线22y x mx m 与x 轴交于整数点,求m 的值;(3)在(2)的条件下,设抛物线顶点为A ,抛物线与x 轴的两个交点中右侧交点为B. 若M 为坐标轴上一点,且MA=MB ,求点M 的坐标.。
2023年九年级数学中考专题训练二次函数与不等式含答案解析

中考专题训练——二次函数与不等式1.已知抛物线2y x bx c =++经过点(1,0)和点(0,3). (1)求此抛物线的解析式;(2)当自变量x 满足13x -≤≤时,求函数值y 的取值范围;(3)将此抛物线沿x 轴平移m 个单位长度后,当自变量x 满足15x ≤≤时,y 的最小值为5,求m 的值. 2.已知二次函数y =x 2﹣2x ﹣3.(1)用配方法将y =x 2﹣2x ﹣3化成y =a (x ﹣h )2+k 的形式.并写出对称轴和顶点坐标; (2)在平面直角坐标系中,画出这个二次函数的简图; (3)当y 随x 的增大而减小时,求x 的范围.3.如图,直线28y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线2y x bx c =++经过点A 和点B .(1)求抛物线的解析式;(2)结合图象直接写出不等式228x bx c x ++>-+的解集;(3)若点1(1,)C y ,2(,)D m y 都在抛物线上,当21y y >时,求m 的取值范围.4.如图,在平面直角坐标系中,直线y =x +2与坐标轴交于A ,B 两点,点A 在x 轴上,点B 在y 轴上,C 点的坐标为(1,0),抛物线y =ax 2+bx +c 经过点A ,B ,C .(1)求抛物线的解析式;(2)根据图象写出不等式ax 2+(b -1)x +c >2的解集;(3)点P 是抛物线上直线AB 上方的一动点,过点P 作直线AB 的垂线段,垂足为Q 点.当PQ P 点的坐标.5.在平面直角坐标系中,二次函数y =x 2+bx +c 的图象过(﹣2,0),(4,0). (1)求二次函数解析式;(2)求当﹣1≤x ≤5时函数值的取值范围;(3)一次函数y =(3+m )x +6+2m 的图象与y =x 2+bx +c 的交点的横坐标分别是x 1,x 2,且x 1<5<x 2,求m 的取值范围.6.在平面直角坐标系xOy 中,抛物线212y ax x c =-+与x 轴交于A ,()3,0B 两点,与直线AM :2y kx b=+交于点A 、()4,5M 两点.(1)求抛物线解析式及顶点C 的坐标.(2)求点A的坐标,并结合图象写出不等式22ax x c kx b-+>+的解集.(3)将直线AM向下平移,在平移过程中与抛物线BC部分图象有交点时(包含B,C端点),请直接写出b的取值范围.7.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在抛物线y=﹣x2+(2a﹣2)x﹣a2+2a上,其中x1<x2.(1)求抛物线的对称轴(用含a的式子表示);(2)①当x=a时,求y的值;①若y1=y2=0,求x1的值(用含a的式子表示).(3)若对于x1+x2<﹣4,都有y1<y2,求a的取值范围.8.如图二次函数2y x bx c=-++的图象与x轴交于点A(-3,0),B(1,0)两点,与y轴交于点C(0,3),点C,D是二次函数图象上的一对对称点,一次函数的图象经过B,D(1)求二次函数的解析式;(2)写出使一次函数值大于二次函数值的x的取值范围;(3)若直线BD与y轴的交点为E点,连结AD,AE,求ADE∆的面积9.如图,已知抛物线y1=ax2+c过点(﹣4,5),(1,54),直线y2=kx+2与y轴交于C点,与抛物线交于A,B两点,点B在点A的右侧.(1)求抛物线的解析式;(2)点P为第一象限抛物线上一个动点,以点P为圆心,PC为半径画圆,求证:x轴是①P的切线;(3)我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较大者为M;若y1=y2,记M=y1=y2.①k=2时,求使M>y2的x的取值范围;①当k=﹣1时,求使M=5的x的值.10.已知二次函数y=x2+mx+n的图象经过点A(1,0)和D(4,3),与x轴的另一个交点为B,与y轴交于点C.(1)求二次函数的表达式及顶点坐标;(2)将二次函数y=x2+mx+n的图象在点B、C之间的部分(包含点B、C)记为图象G.已知直线l:y=kx﹣2k+2总位于图象G的上方,请直接写出k的取值范围;(3)如果点P(x1,c)和点Q(x2,c)在函数y=x2+mx+n的图象上,且x1<x2,PQ=2a,求x12﹣ax2+6a+4的值.11.已知抛物线22=++-.y mx mx m234(1)该抛物线的对称轴为______;(2)若该抛物线的顶点在x 轴上,求抛物线的函数表达式;(3)设点()1,M n y 、()22,N y 在该抛物线上,若12y y >,求n 的取值范围.12.如图,抛物线2y x bx c =-++与y 轴交于点A (0,3),与x 轴交于B (-1,0),C 两点.(1)求抛物线的解析式;(2) 连接AB ,点P 为抛物线上一点,且ABP ∠45=︒,求点P 的坐标; (3)()11,M x y ,()22,N x y 是抛物线上两点,当11122m x m -≤≤+,22x ≥ 时,总有12y y ≥,请直接写出m 的取值范围.13.在初中阶段的函数学习中,我们经历了列表、描点、连线、画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数22y x x c =-+的过程.(1已知函数过点()1,4,则这个函数的解析式为:______.(2)在(1)的条件下,在平面直角坐标系中,若函数22y x x c =-+的图象与x 轴有两个交点,请画出该函数的图象,并写出函数图象的性质:_______(写出一条即可).(3)结合(2)中你所画的函数图象,求不等式221x x c x -+≥+的解集.14.在平面直角坐标系xOy 中,已知抛物线22y ax ax c =-+与直线=3y -有且只有一个公共点.(1)直接写出抛物线的顶点D 的坐标,并求出c 与a 的关系式;(2)若点(),P x y 为抛物线上一点,当1t x t ≤≤+时,y 均满足233y at -≤≤-,求t 的取值范围;(3)过抛物线上动点(),M x y (其中3x ≥)作x 轴的垂线l ,设l 与直线23y ax a =-+-交于点N ,若M 、N 两点间的距离恒大于等于1,求a 的取值范围.15.在平面直角坐标系中,已知抛物线C :y =ax 2+2x ﹣1(a ≠0)和直线l :y =kx +b ,点A (﹣3,﹣3),B (1,﹣1)均在直线l 上. (1)求出直线l 的解析式;(2)当a =﹣1,二次函数y =ax 2+2x ﹣1的自变量x 满足m ≤x ≤m +2时,函数y 的最大值为﹣4,求m 的值; (3)若抛物线C 与线段AB 有两个不同的交点,求a 的取值范围.16.根据我们学习函数的过程与方法,对函数y =x 2+bx +2﹣c |x ﹣1|的图像和性质进行探究,已知该函数图像经过(﹣1,﹣2)与(2,1)两点, (1)该函数的解析式为 ,补全下表:(2)描点、连线,在所给的平面直角坐标系中画出该函数的图象,写出这个函数的一条性质: . (3)结合你所画的图象与函数y =x 的图象,直接写出x 2+bx +2﹣c |x ﹣1|≤x 的解集 .17.已知抛物线243y x x =-+.(1)该抛物线的对称轴是______ ,顶点坐标______ ;(2)选取适当的数据填入如表,并在如图的直角坐标系内描点画出该抛物线的图象;(3)根据图象,直接写出当0y >时,x 的取值范围.18.在平面直角坐标系xOy 中,二次函数2224y x mx m =-++-与图象与x 轴交于A ,B 两点(点A 在点B 的左侧).(1)若点B 的坐标为(3,0), ①求此时二次函数的解析式;①当2x n ≤≤时,函数值y 的取值范围是13n y --≤≤,求n 的值;(2)将该二次函数图象在x 轴上方的部分沿x 轴翻折,其他部分保持不变,得到一个新的函数图象,若当21x -≤≤-时,这个新函数的函数值y 随x 的增大而增大,结合函数图象,求m 的取值范围.19.已知函数()()2110b y a x a =-++≠,某兴趣小组对其图像与性质进行了探究,请补充完整探究过程.(1)请根据给定条件直接写出,,a b m 的值;(2)如图已经画出了该函数的部分图像,请你根据上表中的数据在平面直角坐标系中描点、连线,补充该函数图像,并写出该函数的一条性质;(3)若()214ba x x x-+≥-,结合图像,直接写出x 的取值范围. 20.已知函数261y x =+,请根据已学知识探究该函数的图像和性质. (1)列表,写出表中a 、b 、c 的值:=a ______,b =______,c =______.(2)描点、连线,在下面的平面直角坐标系中画出该函数的图像,并写出该函数的一条性质:______. (3)已知函数2y x =+的图像如图所示,结合你所画的函数图像,直接写出不等式2621x x ≥++的解集:______.参考答案1.(1)243y x x =-+; (2)18y -≤≤;(3)m 的值为【分析】(1)利用待定系数法求解;(2)先求出x =-1及x =3时的函数值,结合函数的性质得到答案;(3)设此抛物线沿x 轴向右平移m 个单位后抛物线解析式为y = (x -2-m ) 2- l ,利用二次函数的性质,当2+m >5, 此时x =5时,y =5,即(5-2-m ) 2- 1=5,设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为y = (x - 2+m ) 2- 1,利用二次函数的性质得到2 - m <l ,此时x =1时,y =5,即(1-2-m ) 2- 1=5,然后分别解关于m 的方程即可. (1)解:①抛物线2y x bx c =++经过点(1,0)和点(0,3), ①103b c c ++=⎧⎨=⎩,解得43b c =-=⎧⎨⎩,①此抛物线的解析式为243y x x =-+; (2)当x =-1时,y =1+4+3=8, 当x =3时,y =9-12+3=0, ①()224321y x x x =-+=--, ①函数图象的顶点坐标为(2,-1),①当13x -≤≤时, y 的取值范围是18y -≤≤; (3)设此抛物线x 轴向右平移m 个单位后抛物线解析式为y = (x -2-m ) 2- 1, ①当自变量x 满足 1≤x ≤5时,y 的最小值为 5, ①2+m >5,即m >3,此时x =5时,y =5,即(5-2-m ) 2-1=5,解得m 1,m 2=3 (舍去); 设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为y = (x - 2+m ) 2- 1, ①当自变量x 满足1≤x ≤5时,y 的最小值为5, ①2-m <1,即m >1,此时x =1时,y =5, 即(1-2-m ) 2-1=5,解得m 1=-,m 2=-1 (舍去),综上所述,m 的值为.【点评】题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式,也考查了二次函数的性质. 2.(1)2(1)4y x =--,对称轴为直线x =1,顶点坐标为(1,﹣4); (2)见解析; (3)1x <【分析】(1)配方成顶点式可得;(2)先确定抛物线与x 和y 轴的交点坐标,再确定抛物线的顶点坐标,然后描点得到二次函数的图象; (3)利用函数图象可得; (1)223y x x =--()22113x x +=---()214x =--①对称轴为直线x =1,顶点坐标为(1,﹣4); (2)抛物线的顶点坐标为(1,﹣4),当x =0时,2233y x x =-=--,则抛物线与y 轴的交点坐标为(0,﹣3); 当y =0时,2230x x =--,解得x 1=﹣1,x 2=3, 则抛物线与x 轴的交点坐标为(﹣1,0),(3,0); 如图所示:(3)由题(2)图象知,当x <1时,y 随x 的增大而减小.【点评】本题考查二次函数的三种形式及二次函数的性质,熟练掌握二次函数的顶点式及函数性质是解题的关键.3.(1)268y x x =-+(2)0x <或>4x(3)1m <或5m >【分析】(1)先通过直线解析式得到A 、B 的坐标,再代入二次函数解析式进行求解即可;(2)根据图象解答即可;(3)先将1(1,)C y 代入抛物线解析式,得出1y 的值,再解出当13y =时,方程的解,结合图象,求解即可.(1)令0x =,则8y =(0,8)B ∴令0y =,则4x =(4,0)A ∴将A 、B 分别代入2y x bx c =++得80164c b c =⎧⎨=++⎩ 解得 68b c =-⎧⎨=⎩ ∴抛物线的解析式为268y x x =-+;(2)直线28y x =-+与抛物线268y x x =-+交于A 、B 两点0x ∴<或>4x 时,228x bx c x ++>-+;(3)将1(1,)C y 代入抛物线解析式,得 11683y =-+=21y y >23y ∴>将13y =代入抛物线解析式,得 2368x x =-+解得 121,8x x ==根据图象,当21y y >时,1m <或5m >.【点评】本题考查了一次函数与二次函数的综合问题,涉及一次函数图象与坐标轴的交点、待定系数法求二次函数解析式、图像法解一元一次不等式、图像法解一元二次不等式、解一元二次方程,熟练掌握知识点是解题的关键.4.(1)y =-x 2-x +2(2)-2<x <0(3)(-1,2)【分析】(1)先求出A 、B 两点坐标,再代入抛物线中即可求出解析式;(2)将不等式2(1)2ax b x c +-+>变形为22ax bx c x ++>+,进而得到二次函数图象在一次函数图象上方即可求解;(3)先证明①PDQ 为等腰直角三角形,利用勾股定理进而求出21PDPQ ,表示PD 的长度列方程求解即可.(1)解:当x =0,y =0+2=2,当y =0时,x +2=0,解得x =-2,①A (-2,0),B (0,2),把A (-2,0),C (1,0),B (0,2)代入抛物线解析式, 得42002a b c a b c c ++=⎧⎪++=⎨⎪=⎩,解得112a b c =-⎧⎪=-⎨⎪=⎩,①该抛物线的解析式为:y =-x 2-x +2;(2)解:由不等式()212ax b x c +-+>,得22ax bx c x ++>+,由图象可知,二次函数图象在一次函数图象上方,结合图象可得:不等式()212ax b x c +-+>的解集为20x -<<;(3)解:作PE ①x 轴于点E ,交AB 于点D ,作PQ ①AB 于Q ,在Rt①OAB中,①OA=OB=2,①①OAB=45°,①①PDQ=①ADE=45°,在Rt①PDQ中,①DPQ=①PDQ=45°,①PQ=DQ=,2①PD1=,设点P(x,-x2-x+2),则点D(x,x+2),①PD=-x2-x+2-(x+2)=-x2-2x,即-x2-2x=1,解得x=-1,①此时P点的坐标为(-1,2),【点评】本题考查了待定系数法求二次函数的解析式,图象法解不等式、点坐标表示线段以及等腰直角三角形的性质等,求出解析式是解题的关键.5.(1)y=x2﹣2x﹣8;(2)﹣9≤y≤7(3)m>﹣2【分析】(1)根据待定系数法即可求得;(2)求得抛物线的对称轴,根据图象即可得出当x=1,函数有最小值﹣9;当x=5时函数有最大值7,进而求得当﹣1≤x≤5时函数值的取值范围;(3)由题意得x2﹣2x﹣8=(3+m)x+6+2m,整理得x2﹣(m+5)x﹣2(m+7)=0,解方程求得x1=﹣2,x2=m+7,根据题意得到m+7>5,解得m>﹣2.(1)解:∵二次函数y=x2+bx+c的图象过(﹣2,0),(4,0).∴4201640b c b c -+=⎧⎨++=⎩, 解得:28b c =-⎧⎨=-⎩, ∴二次函数解析式为y =x 2﹣2x ﹣8;(2)∵y =x 2﹣2x ﹣8=(x ﹣1)2﹣9,∴抛物线开口向上,当x =1时,函数有最小值﹣9,把x =5代入y =x 2﹣2x ﹣8得,y =25﹣10﹣8=7,∴当﹣1≤x ≤5时函数值的取值范围为﹣9≤y ≤7;(3)∵一次函数y =(3+m )x +6+2m 的图象与y =x 2﹣2x ﹣8的交点的横坐标分别是x 1,x 2,∴x 2﹣2x ﹣8=(3+m )x +6+2m ,整理得x 2﹣(m +5)x ﹣2(m +7)=0,解得:x 1=﹣2,x 2=m +7,∵x 1<5<x 2,∴m +7>5,解得m >﹣2,即m 的取值范围是m >﹣2.【点评】本题考查了待定系数法求二次函数解析式,二次函数化为顶点式,根据自变量的取值范围求得函数值的范围,一次函数与二次函数交点问题,解一元二次方程,掌握二次函数图象与性质是解题的关键. 6.(1)2223(1)4y x x x =--=--,C 的坐标为()1,4-;(2)点()1,0A -,1x <-或>4x ; (3)2134b -≤≤-【分析】(1)根据待定系数法求得二次函数的解析式,把一般式化成顶点式,即可求得顶点C 的坐标;(2)利用抛物线的解析式求得A 的坐标,然后根据图象即可求得;(3)先利用待定系数法求得直线AM 的解析式,即可得到平移后的解析式为y x b =+,分别代入B 、C 点的坐标,求得b 的值,求得平移后的直线与抛物线有一个交点时的b 的值,结合图象即可求得.(1) 点30B (,)、M (4,5)是抛物线图象上的点,9601685a c a c -+=⎧∴⎨-+=⎩解得13a c =⎧⎨=-⎩∴抛物线解析式为222314y x x x =--=--(),∴抛物线顶点C 的坐标为14-(,); (2)对于抛物线2=23y x x --,当0y =时,即2230x x --=,解得1213x x =-=,,∴点A (-1,0)观察函数图象可知,不等式22ax x c kx b -+>+的解集为1x <-或>4x ;(3)点A (-1,0)和点M (4,5)在直线AM :2y kx b =+的图象上,045k b k b -+=⎧∴⎨+=⎩解得11k b =⎧⎨=⎩, ∴直线AM 的解析式为21y x =+.当直线AM 向下平移经过点30B (,)时,直线AM 的解析式为'y x b =+,则3十'0b =,解得'3b =-,当直线AM 平移经过点C (1,-4)时,则1''4b +=- 解得''5b =-,当直线AM 平移后与抛物线2=23y x x --有一个交点时,联立223y x b y x x =+⎧⎨=--⎩化简得2330x x b ---=则94(3)0m ∆=---= 解得214b =-, b ∴的取值范围是2134b -≤≤-. 【点评】本题考查了待定系数法求二次函数的解析式,求一次函数的解析式,二次函数图象与几何变换,函数与不等式的关系,抛物线与x 轴的交点,二次函数图象上点的坐标特征,数形结合是解题的关键.7.(1)对称轴为直线x =a ﹣1(2)①y =0;①x 1=a ﹣2(3)a ≥﹣1【分析】(1)根据抛物线的对称轴x =﹣2b a求解即可; (2)①将x =a 代入y =﹣x 2+(2a ﹣2)x ﹣a 2+2a 求解即可;①若y 1=y 2=0,则﹣x 2+(2a ﹣2)x ﹣a 2+2a =0,解方程并根据x 1<x 2,求出x 1的值.(3)由题意得出x 1<﹣2,则只需讨论x 1<a ﹣1的情况,分两种情况:①当a ≥﹣1时,又有两种情况:x 1<x 2<a ﹣1,x 1<a ﹣1<x 2,分别结合二次函数的性质及x 1+x 2<﹣4计算即可;①当a <﹣1时,令x 1=a ﹣1,x 2=﹣2,此时x 1+x 2<﹣4,但y 1>y 2,不符合题意.【解析】(1)解:抛物线的对称轴为直线x =﹣2(1)2a --=a ﹣1; (2)解:①当x =a 时,y =﹣a 2+(2a ﹣2)a ﹣a 2+2a=﹣a 2+2a 2﹣2a ﹣a 2+2a=0;①当y 1=y 2=0时,﹣x 2+(2a ﹣2)x ﹣a 2+2a =0,①x 2﹣(2a ﹣2)x +a 2﹣2a =0,①(x ﹣a +2)(x ﹣a )=0,①x 1<x 2,①x 1=a ﹣2;(3)解:①当a ≥﹣1时,①x 1<x 2,x 1+x 2<﹣4,①x 1<﹣2,只需讨论x 1<a ﹣1的情况.若x 1<x 2<a ﹣1,①x <a ﹣1时,y 随着x 的增大而增大,①y 1<y 2,符合题意;若x 1<a ﹣1<x 2,①a ﹣1≥﹣2,①2(a ﹣1)≥﹣4,①x 1+x 2<﹣4,①x 1+x 2<2(a ﹣1).①x 1<2(a ﹣1)﹣x 2.①x =2(a ﹣1)﹣x 2时,y 1=y 2,x <a ﹣1时,y 随着x 的增大而增大,①y 1<y 2,符合题意.①当a <﹣1时,令x 1=a ﹣1,x 2=﹣2,此时x 1+x 2<﹣4,但y 1>y 2,不符合题意;综上所述,a 的取值范围是a ≥﹣1.【点评】本题属于二次函数的综合题,涉及二次函数的性质、求函数值、运用二次函数求不等式等知识点,灵活运用二次函数的性质成为解答本题的关键.8.(1)223y x x =--+(2)<2x -或1x >(3)4【分析】(1)根据题意可以设出二次函数解析式,根据函数过点A 、B 、C ,即可解答本题;(2)根据题意可以求得点D 的坐标,再根据函数图象即可解答本题;(3)根据题意作出辅助线,即可求得①ADE 的面积.【解析】(1)①二次函数 2y x bx c =-++过(1,0)B ,(0,3)C①103b c c -++=⎧⎨=⎩解得23b c =-⎧⎨=⎩所以解析式为:223y x x =--+(2)223y x x =--+①该函数的对称轴是直线x =-1,①点C (0,3),点C 、D 是二次函数图象上的一对对称点,①点D (-2,3),①一次函数值大于二次函数值的x 的取值范围是x <-2或x >1(3)连结AE ,设直线BD :y =mx +n ,代入B (1,0),D (−2,3)得023m n m n +=⎧⎨-+=⎩, 解得:11m n =-⎧⎨=⎩, 故直线BD 的解析式为:y =−x +1把x =0代入y =−x +1得,y =1,所以E (0,1),①OE =1,又①AB =4114341422ADB S ∆=⨯⨯-⨯⨯=∴ 【点评】本题考查待定系数法求二次函数解析式、抛物线与x 轴的交点,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.9.(1)y 214x =+1 (2)见解析(3)①x <4﹣x >4+①﹣3或4【分析】(1)利用待定系数法将已知点的坐标代入解析式求得a ,c 的值即可得出结论;(2)过点P 作PE ①x 中于点E ,PD ①y 轴于点D ,利用到圆心的距离等于半径的直线是圆的切线,证明PE =PC即可;设P (t ,14t 2+1),利用勾股定理求出线段PC 的长即可; (3)①当k =2时,将两个解析式联立求出交点坐标,利用函数图象判定出使M >y 2的值即为y 1>y 2的取值范围;①将两个解析式联立求出交点坐标,利用函数图象利用分类讨论的方法得到M 与x 的关系式,将M =5代入解析式即可求得结论.(1)解:①抛物线y 1=ax 2+c 过点(﹣4,5),(1,54), ①16554a c a c +=⎧⎪⎨+=⎪⎩,解得:141a c ⎧=⎪⎨⎪=⎩. ①抛物线的解析式为:y 214x =+1. (2)解:过点P 作PE ①x 中于点E ,PD ①y 轴于点D ,如图,①直线y 2=kx +2与y 轴交于C 点,令x =0,则y =2,①C (0,2).①OC =2.①点P 为第一象限抛物线上一个动点,①P (t ,14t 2+1), ①PE =OD 2114t =+,PD =t , ①CD =OD ﹣OC 2114t =-. ①PC 214t ====+1. ①PE =PC .①PE ①x 轴,①x 轴是①P 的切线.(3)解:①当k =2时,直线y 2=2x +2.①222114y x y x =+⎧⎪⎨=+⎪⎩.解得:11410x y ⎧=+⎪⎨=+⎪⎩22410x y ⎧=-⎪⎨=-⎪⎩ ①y 214x =+1与y =2x +2的交点为(4+10+4﹣10﹣. 由图象可知:当x <4﹣x >4+y 1>y 2.①M >y 2,①y 1>y 2.①使M >y 2的x 的取值范围为x <4﹣x >4+①当k =﹣1时,y =﹣x +2.①21142y x y x ⎧=+⎪⎨⎪=-+⎩.解得:1124x y ⎧=-+⎪⎨=-⎪⎩2224x y ⎧=--⎪⎨=+⎪⎩ 结合图象可知:当﹣2+x ≤﹣2﹣M =﹣x +2;当x >﹣2+x <﹣2﹣M 2114x =+. ①M =5,①﹣x +2=5,①x =﹣3.①21154x +=, ①x =±4(﹣4不合题意,舍去).综上,使M =5的x 的值为﹣3或4.【点评】本题主要考查了二次函数的图象的性质,待定系数法求函数的关系式,二次函数与一次函数图象上点的坐标的特征,利用数形结合法判定函数值的大小,利用交点坐标结合图象判定函数值的大小是解题的关键.10.(1)y =x 2﹣4x +3,(2,﹣1);(2)﹣2<k <﹣12;(3)8.【分析】(1)代入点A (1,0)和D (4,3),可求得m 、n 的值,从而可得二次函数的表达式,将表达式化为顶点式,即可求得顶点坐标.(2)由l ;y =kx −2k +2=k (x −2)+2可得,过定点(2,2),再分别代入点B 、C 的坐标,可求得k 的值,要使直线l ;y =kx −2k +2总位于图象G 的上方,则k 的取值范围,即为分别代入点B 、C 的坐标所求得的k 的值之间的部分.(3)由二次函数243y x x =-+的对称轴是直线x=2,点P (x 1,c)和点Q (x 2,c)在函数2y x mx n =++的图象上,且x 1<x 2,可得x 1=2−a ,x 2=2+a ,代入21264a a x x +++即可求解.【解析】解:(1)根据题意得:1413m n m n +=-⎧⎨+=-⎩,解得43m n =-⎧⎨=⎩. 故二次函数的表达式为y =x 2﹣4x +3,则函数的对称轴为x =﹣2b a=2, 当x =2时,y =x 2﹣4x +3=﹣1,故顶点坐标为:(2,﹣1);(2)在y =x 2﹣4x +3中,令x =0,解得y =3,令y =x 2﹣4x +3=0,解得x =1或3,则C 的坐标是(0,3),点B (3,0),①y =kx ﹣2k +2=k (x ﹣2)+2,即直线故点(2,2),设该点为M ,当直线过点C 、M 或过B 、M 时,都符合要求,将点C 的坐标代入y =kx ﹣2k +2,即3=﹣2k +2,解得k =﹣12;将点B 的坐标代入3=kx ﹣2k +2,即0=3k ﹣2k +2,解得k =﹣2;故﹣2<k <﹣12,故答案为:﹣2<k <﹣12;(3)①P (x 1,c )和点Q (x 2,c )在函数y =x 2﹣4x +3的图象上, ①PQ //x 轴,①二次函数y =x 2﹣4x +3的对称轴是直线x =2, 又①x 1<x 2,PQ =2a , ①x 1=2﹣a ,x 2=2+a ,①x 12﹣2x 2+6a +4=(2﹣a )2﹣a (2+a )+6a +4=8.【点评】本题考查二次函数的图像和性质,解题的关键是熟练掌握二次函数的性质. 11.(1)直线=1x -;(2)221y x x =---或2484333y x x =++;(3)当0a >时,4n <-或2n >;当a<0时,42n -<<.【分析】(1)利用二次函数的对称轴公式即可求得.(2)根据题意可知顶点坐标,再利用待定系数法即可求出二次函数解析式. (3)分类讨论当m >0时和m <0时二次函数的性质,即可求出n 的取值范围. 【解析】解:(1)利用二次函数的对称轴公式可知对称轴212mx m=-=-. 故答案为:=1x -.(2)①抛物线顶点在x 轴上,对称轴为=1x -, ①顶点坐标为(-1,0).将顶点坐标代入二次函数解析式得:()()22012134m m m =-+⨯-+-, 整理得:(1)(34)0m m +-=, 解得:1m =-或43m =.①抛物线解析式为221y x x =---或2484333y x x =++; (3)①对称轴为直线=1x -,①点()22,N y 关于直线=1x -的对称点为()24,N y '-, 根据二次函数的性质分类讨论.(①)当m >0时,抛物线开口向上,若y 1>y 2,即点M 在点N 或N '的上方,两点NN′外侧,则4n <-或2n >; (①)当m <0时,抛物线开口向下,若y 1>y 2,即点M 在点N 或N '的上方,两点内部,则42n -<<. 【点评】本题为二次函数综合题,二次函数对称轴,待定系数法求二次函数解析式,比较函数值大小,掌握二次函数的性质是解答本题的关键.12.(1)y =-x 2+2x +3;(2)点P 坐标为(52,74);(3)m 的取值范围为1322m ≤≤.【分析】(1)将点A (0,3)、B (-1,0)代入抛物线y =-x 2+bx +c 中即可求得b 、c 的值,进而得到解析式;(2)过点A 作AM ①BP 于点M ,过点M 作MN ①y 轴于点N ,构造等腰直角三角形,利用“一线三垂直模型”证明①ABO ①①MAN .继而得到点M 坐标,求出直线BM 解析式,联立BM 解析式与抛物线解析式即可得交点P 的坐标;(3)结合抛物线图象,可直观看到当x 2≥2时,y 2≤3.要使y 1≥y 2恒成立,则y 1≥3,得0≤x 1≤2,从而0≤m −12≤x 1≤m +12≤2,解不等式组即可.【解析】解:(1)将点A (0,3)、B (-1,0)代入抛物线y =-x 2+bx +c 中,得:310c b c =⎧⎨--+=⎩,解得:23b c =⎧⎨=⎩, ①该抛物线解析式为:y =-x 2+2x +3;(2)过点A 作AM ①AB 交BP 于点M ,过点M 作MN ①y 轴于点N .又①ABP =45°,则①ABM 为等腰直角三角形,AM =AB ,①①BAO +①P AO =①BAM =90°,①MAO +①AMN =90°, ①①BAO =①AMN , 在①ABO 和①MAN 中, 90BAO AMN AOB MNA AB AM ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ①①ABO ①①MAN (AAS ),①AN =BO =1,ON =OA -AN =3-1=2,MN =AO =3, ①点M 坐标为(3,2). 设直线BM 解析式为y =kx +n , 代入点B (-1,0)、M (3,2)得: 032k n k n -+=⎧⎨+=⎩,解得:1212k n ⎧=⎪⎪⎨⎪=⎪⎩. 故直线BM 解析式为y =12x +12.解方程12x +12=-x 2+2x +3得:12512x x =-=,,当52x =时,y =1522⨯+12=74, 故点P 坐标为(52,74);(3)由图可知,当x =2时,y =-x 2+2x +3=-4+4+3=3,当x 2≥2时,y 2≤3.要使y 1≥y 2恒成立,则y 1≥3,即-x 2+2x +3≥3, 解得:0≤x ≤2,即0≤x 1≤2, ①0≤m −12≤x 1≤m +12≤2,解不等式0≤m −12得:12m ≥,解不等式m +12≤2得:32m ≤,①m 的取值范围为1322m ≤≤. 【点评】本题是二次函数综合题,考查了待定系数法求解析式、全等三角形判定与性质、解不等式组等知识,根据题意作出合理辅助线以及数形结合思考问题是解题的关键.13.(1)225y x x =-+或223y x x =--;(2)图见解析,性质:(写出一条即可)①关于1x =对称;①=1x -或3x =时有最小值为0;①1x ≤-,13x ≤≤,y 随x 的增大而减小;3x ≥,11x -≤≤,y 随x 的增大而增大;(3)4x ≥或2x ≤【分析】(1)由函数过点()1,4,代入124c -+=,求出5c =或3c =-,可得函数;(2)用描点法画图,列表、描点、连线,性质:①关于1x =对称;①=1x -或3x =时有最小值为0;①1x ≤-,13x ≤≤,y 随x 的增大而减小;3x ≥,11x -≤≤,y 随x 的增大而增大,(3)利用图像解法不等式221x x c x -+≥+在图像上表现为225y x x =-+永远在1y x =+图像上方,或223y x x =--图像在1y x =+图像上方;由交点(2,3)的左侧和交点(4,5)的右侧即可得出答案【解析】解:(1)①函数过点()1,4,124c -+= ①14c -=,①14c -=±, ①5c =或3c =-,①225y x x =-+或223y x x =--;故答案为:225y x x =-+或223y x x =--;(2)列表描点连线性质:(写出一条即可) ①关于1x =对称;①=1x -或3x =时有最小值为0;①1x ≤-,13x ≤≤,y 随x 的增大而减小;3x ≥,11x -≤≤,y 随x 的增大而增大,故答案为①关于1x =对称;①=1x -或3x =时有最小值为0;①1x ≤-,13x ≤≤,y 随x 的增大而减小;3x ≥,11x -≤≤,y 随x 的增大而增大;(3)2251x x x -+=+,()2251x x x -+=±+,22340,60x x x x -+=-+=,都无解,或2231x x x --=+,()2231x x x --=±+,2340x x --=或220x x --=,解得x=-1,x=2,x=4,不等式221x x c x -+≥+在图像上表现为225y x x =-+永远在1y x =+图像上方,或223y x x =--图像在1y x =+图像上方;由交点(2,3)的左侧和交点(4,5)的右侧,即不等式2251x x x -+≥+或2251x x x -+≥+的解集为4x ≥或2x ≤..【点评】本题考查待定系数法求函数解析式,用描点法画函数解析式,观察函数图像写函数性质,利用函数图像求不等式的解集,掌握待定系数法求函数解析式,用描点法画函数解析式,观察函数图像写函数性质,利用函数图像求不等式的解集是解题关键. 14.(1)()1,3-,3c a =-;(2)12t ≥;(3)15a ≤-或15a ≥ 【分析】(1)由题意可得D 在直线y =-3上且D 在二次数对称轴上,由此可以得到D 点坐标并求出c 与a 的关系式;(2)分a >0与a <0两种情况,根据二次函数的增减性进行求解;(3)把MN 用a 表示出来可以得到关于a 的不等式,解不等式即可得到a 的取值范围. 【解析】解:(1)由题意得D 在直线y =-3上且D 在二次数对称轴x 222b aa a-=-=-=1上, ①D (1-3),将其代入22y ax ax c =-+得-3=a -2a +c ,化简得c =a -3; (2)当a >0时,二次函数图象开口向上, 如图,抛物线的开口向上,当11t +≤,即0t ≤,此时:当1x t =+时,满足3y -≤,当x t =时,函数值最大,则22233,at at a at -+-≤- 解得:12t ≥,不合题意,舍去 当0<t <12时,则1<1t +<32,如图,此时:当1x t =+时,满足3y -≤,当x t =时,函数值最大,则22233,at at a at -+-≤- 解得:12t ≥,不合题意,舍去 当12t ≥时,则321t ≤+,如图,此时:当x t =时,满足3y -≤, 当+1x t =时,函数值最大,则()()22112133t y a t a t a at +=+-++-=- ∴ ()()2212133a t a t a at +-++-≤-恒成立, 1.2t ∴≥当a <0时,二次函数图象开口向下,此时函数有最大值3-,不满足233y at -≤≤-,此情况不存在; 综上12t ≥; (3)|MN |≥1即()223231ax ax a ax a -+---+-≥,即21ax ax a --≥①21ax ax a --≥(x ≥3恒成立要求a >0,其对称轴为x 1222b a a a -=-=-=, 只需要求x =3时21ax ax a --≥即9a -3a -a ≥1,解得15a ≥;①21ax ax a --≤-(x ≥3恒成立要求a ﹤0), 只需要求x =3时21ax ax a --≤-即9a -3a -a ≤-1, 解得15a ≤-.【点评】本题考查二次函数的综合应用,熟练掌握二次函数的图象与性质及二次函数、一次函数与不等式的关系是解题关键. 15.(1)1322y x =-;(2)m =-3或m =3;(3)49≤a <98或a ≤-2; 【分析】(1)用待定系数法直接将点A 和B 代入直线l 中然后得到关于k 和b 的二元一次方程没然后解方程即可得到k 和b 的值,然后得到l 的解析式;(2)根据题意可得,y =-x 2+2x -1,当y =-4时,有-x 2+2x -1=-4,x =-1或x =3; ①在x =1左侧,y 随x 的增大而增大,x =m +2=-1时,y 有最大值-4,m =-3; ①在对称轴x =1右侧,y 随x 增大而减小,x =m =3时,y 有最大值-4; (3)①a <0时,x =1时,y ≤-1,即a ≤-2;①a >0时,x =-3时,y ≥-3,即a ≥49,直线AB 的解析式为y =12x -32,抛物线与直线联立:ax 2+2x -1=x -32,①=94-2a >0,则a <98,即可求a 的范围; 【解析】解:(1)点A (-3,-3),B (1,-1)代入y =kx +b 可得:3=31k b k b --+⎧⎨-=+⎩解得:1232k b ⎧=⎪⎪⎨⎪=-⎪⎩①l 的解析式为:1322y x =-; (2)根据题意可得,y =-x 2+2x -1, ①a <0,①抛物线开口向下,对称轴为直线x =1, ①m ≤x ≤m +2时,y 有最大值-4, ①当y =-4时,有-x 2+2x -1=-4, ①x =-1或x =3,①在对称轴直线x =1左侧,y 随x 的增大而增大, ①x =m +2=-1时,y 有最大值-4, ①m =-3;①在对称轴直线x =1右侧,y 随x 增大而减小, ①x =m =3时,y 有最大值-4; 综上所述:m =-3或m =3; (3)①a <0时,x =1时,y ≤-1, 即a ≤-2;①a >0时,x =-3时,y ≥-3, 即a ≥49,直线AB 的解析式为y=12x -32,抛物线与直线联立:ax 2+2x -1=12x -32,①ax 2+32x +12=0,①=94-2a >0,①a <98,①a 的取值范围为49≤a <98或a ≤-2.【点评】本题考查二次函数的图象及性质,一次函数的图象及性质;熟练掌握待定系数法求解析式,数形结合,分类讨论函数在给定范围内的最大值是解题的关键.16.(1) y =x 2﹣x +2﹣3|x ﹣1|,补全表格见解析,(2) 函数图像见解析,当x =-1时,函数有最小值,最小值为-2;(3)x x 【分析】(1)将点(﹣1,﹣2)与(2,1)代入解析式即可; (2)画出函数图象,观察图象得到一条性质即可(3)根据图象,求出两个函数图象的交点坐标,通过观察可确定解解集. 【解析】解:(1)∵该函数图象经过(﹣1,﹣2)与(2,1)两点,∴12224221b c b c -+-=-⎧⎨++-=⎩,∴13b c =-⎧⎨=⎩, ∴y =x 2﹣x +2﹣3|x ﹣1|, 故答案为:y =x 2﹣x +2﹣3|x ﹣1|; 当x =-4时,y =7;当x =0时,y =-1; 补全表格如图,(2)函数图像如图所示,当x =-1时,函数有最小值,最小值为-2; (3)当x ≥1时,x 2﹣x +2﹣3x +3=x ,解得,1x =2x x 当x <1时,x 2﹣x +2+3x ﹣3=x ,解得,3x ,4x =x∴不等式x 2+bx +2﹣c |x ﹣1|≤x x x【点评】本题考查二次函数与不等式的关系;掌握描点法画函数图象,利用数形结合解不等式是解题的关键.17.(1)x =2,(2,-1);(2)答案见解析;(3)x <1或x >3【分析】(1)根据对称轴是2b x a =-,顶点坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭,可得答案;(2)根据对称轴,可在对称轴的左边选两个,右边选两个,它们要关于对称轴对称,可填上表格,根据描点法,可得函数图象;(3)根据函数与不等式的关系,可得答案. 【解析】解:(1)抛物线243y xx =-+的对称轴是4222b x a -=-=-=, 4222b x a -=-=-=,()224344144ac b y a ⨯---===-①顶点坐标是(2,-1), 故答案为x =2,(2,-1); (2)列表:连线:(3)观察图象,函数图象在x 轴上方的部分的相应的自变量的取值范围为x <1或x >3, 即当x <1或x >3时,0y >.【点评】本题考查了二次函数图象与性质,函数与不等式的关系.熟悉掌握二次函数()20y ax bx c a =++≠的对称轴是2bx a =-,顶点坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭是解(1)题的关键,会用描点法画函数图象是解(2)题的关键;了解函数与不等式的关系是解(3)题的关键.18.(1)①223y x x =-++,①4n =;(2)32m -≤≤-或m 1≥【分析】(1)①令x =3,则y=−x 2+2mx+4−m 2=0,解方程即可得到m 的值,从而得到二次函数的解析式;①由①可得二次函数的对称轴为x=1,然后根据二次函数的增减性可以得解;(2)令y =0,可以得到二次函数图象与x 轴交点,然后根据二次函数的增减性可以得解.【解析】(1)①二次函数为2()4y x m =--+,对称轴为x m =.令3x =有:2(3)40m --+=,解得:1m =或5m =.①(3,0)B 为该二次函数图象与x 轴靠右侧的交点,①点B 在对称轴右侧,①3m <,故1m =.①二次函数解析式为223y x x =-++.①由于二次函数开口向下,且对称轴为1x =.①2x n ≤≤时,函数值y 随x 的增大而减小;①当2x =时,函数取得最大值3;当x n =时,函数取得最小值2231n n n -++=--,①在2n >范围内解得4n =.(2)令0y =,得2()40x m --+=,解得12x m =-,2x m 2=+,将函数图象在x 轴上方的部分向下翻折后,新的函数图象增减性情况为:当2x m ≤-时,y 随x 的增大而增大,当2m x m -≤≤时,y 随x 的增大而减小,当2m x m ≤≤+时,y 随ⅹ的增大而增大,当2x m ≥+时,y 随x 的增大而减小.因此,若当21x -≤≤-时,y 随x 的增大而增大,结合图象有:①12m -≤-,即m 1≥时符合题意;①2m ≤-且12m -≤+,即32m -≤≤-时符合题意.综上,m 的取值范围是32m -≤≤-或m 1≥.【点评】本题考查二次函数的综合应用,熟练掌握二次函数解析式的求法、二次函数的对称轴与增减性是解题关键 .19.(1)12a =-,3b =-,174m =-;(2)见解析;(3)x 的取值范围是:-3≤x <0或1≤x≤2. 【分析】(1)先将(-1,2)和(1,-2)代入函数y=a (x -1)2+b x+1中,列方程组解出可得a 和b 的值,写出函数解析式,计算当x=4时m 的值即可;(2)描点并连线画图,根据图象写出一条性质即可;(3)画y=x -3的图象,根据图象可得结论.。
人教版九年级数学上册 22.2 二次函数与一元一次方程 暑假提高训练

人教版 2020-2021 学年九年级数学上册 22.2 二次函数与一元一次方程 暑假提高训练-答案
一、选择题(本大题共 6 道小题) 1. 【答案】C [解析] 当 x=0 时,y=-x2+4x-4=-4,则抛物线与 y 轴的交 点坐标为(0,-4); 当 y=0 时,-x2+4x-4=0,解得 x1=x2=2,则抛物线与 x 轴的交点坐标为(2, 0), 所以抛物线与坐标轴有 2 个交点. 故选 C.
12. (1)请在如图所示的直角坐标系中画出二次函数 y=x2-2x 的大致图象; (2)根据方程的根与函数图象的关系,将方程 x2-2x=1 的根在图上表示出来; (3)观察图象,直接写出方程 x2-2x=1 的根(精确到 0.1).
2/7
13. 已知函数 y=(m-1)x2+4x+2. (1)当 m 为何值时,函数图象与 x 轴有两个公共点? (2)当 m 为何值时,函数图象与 x 轴只有一个公共点? 14. 在平面直角坐标系中,设二次函数 y1=(x+a)(x-a-1),其中 a≠0. (1)若函数 y1 的图象经过点(1,-2),求函数 y1 的表达式; (2)若一次函数 y2=ax+b 的图象与 y1 的图象经过 x 轴上同一点,探究实数 a,b 满足的关系式; (3)已知点 P(x0,m)和 Q(1,n)在函数 y1 的图象上.若 m<n,求 x0 的取值范围.
8. 【答案】x1=-2,x2=1 [解析] 方程 ax2=bx+c 的解即抛物线 y=ax2 与直线 y=bx+c 交点的横坐标.∵交点是 A(-2,4),B(1,1),∴方程 ax2=bx+c 的 解是 x1=-2,x2=1.
9. 【答案】-4 【解析】由题意可知,x1,x2 为方程 2x2-4x-1=0 的两根,所 以 x1+x2=2,x1x2=-12,则x11+x12=x1x+1xx2 2=-212=-4.
二次函数章节分类综合提高练习2021—2022学年北师大版数学九年级下册

一.二次函数的图象(共1小题)1.函数y=|ax2+bx|(a<0)的图象如图所示,下列说法正确的是()A.方程|ax2+bx|=k有四个不等的实数根B.a+b>1C.2a+b>0D.5a+3b<1二.二次函数的性质(共7小题)2.已知抛物线y=x2﹣(1+m)x+m与直线y=﹣x两个交点的横坐标是x1,x2,并且x12+mx2=2,则m的值为()A.﹣1B.1C.2D.﹣1或23.已知两点A(﹣5,y1),B(﹣1,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点,若y1>y2≥y0,则x0的取值范围是()A.x0>﹣5B.x0>﹣1C.x0>﹣3D.﹣5<x0<﹣14.已知二次函数y=x2﹣2bx+5(b为常数),当x≥﹣1时,y的最小值为1,则b的值为()A.−52B.2或﹣2C.2或﹣2或−52D.2或−525.已知二次函数y=ax2+bx+c(a,b,c是实数,且a≠0)的图象的对称轴是直线x=2,点A(x1,y1)和点B(x2,y2)为其图象上的两点,且y1<y2,()A.若x1﹣x2<0,则x1+x2﹣4<0B.若x1﹣x2<0,则x1+x2﹣4>0C.若x1﹣x2>0,则a(x1+x2﹣4)>0D.若x1﹣x2>0,则a(x1+x2﹣4)<06.已知关于x的二次函数y=﹣(x﹣k)2+11,当1≤x≤4时,函数有最小值2k,则k的值为.7.已知抛物线的解析式为y=x2+2x﹣3.关于x的一次函数y=kx+3k的图象与抛物线交点的横坐标分别为x1和x2,且x1<x2<1.则k的取值范围为.8.已知二次函数y=﹣x2+4x﹣3.(1)若﹣3≤x≤3,则y的取值范围为(直接写出结果);(2)若﹣8≤y≤﹣3,则x的取值范围为(直接写出结果);(3)若A(m,y1),B(m+1,y2)两点都在该函数的图象上,试比较y1与y2的大小.三.二次函数图象与系数的关系(共14小题)9.已知二次函数y=ax2+bx+c的图象如图所示,则点(ac,bc)在()A.第一象限B.第二象限C.第三象限D.第四象限10.已知抛物线y=ax2+bx+c(a,b,c为常数且a≠0)经过P1(1,y1),P2(2,y2),P3(3,y3),P4(4,y4)四点,若y3<y2<y4,则下列说法中正确的是()A.抛物线开口向下B.对称轴可能为直线x=3C.y1>y4D.5a+b>011.二次函数y=ax2+bx+c(a、b、c为常数,a≠0)中的x与y的部分对应值如表:x﹣103y n33当n<0时,下列结论中一定正确的有()个.①abc<0;②若点(﹣2,y1),D(π,y2)在该抛物线上,则y1<y2;③n<4a;④对于任意实数t,总有4(at2+bt)≤9a+6b.A.1B.2C.3D.412.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,其对称轴为x=1,过(﹣2,0),则下列结论:①ab2c3>0;②b+2a=0;③方程ax2+bx+c=0的两根为x1=﹣2,x2=4;④9a+c>3b,其中正确的结论有()A.1个B.2个C.3个D.4个13.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根,其中正确结论的个数为个.14.抛物线y=ax2+bx+c(a<0,a,b,c为常数)的部分图象如图所示,其顶点坐标为(﹣1,n),且与x轴的一个交点在点(﹣3,0)和(﹣2,0)之间.则下列结论:①a+b+c<0;②2a﹣b=0;③一元二次方程ax2+(b+n2)x+c−n2=0的两根为x1,x2,则|x1﹣x2|=2;④对于任意实数m,不等式a(m2﹣1)+(m+1)b≤0恒成立.则上述说法正确的是.(填序号)15.已知关于x的二次函数y=ax2+bx+c,下列结论中一定正确的是.(填序号即可)①若抛物线与x轴有两个不同交点,则方程cx2+bx+a=0必有两个不等实数根;②若对任意实数t都有at2+bt≤a ﹣b(a<0),则b=2a;③若(am2+bm+c)(an2+bn+c)<0(m<n),则方程ax2+bx+c=0有一个根α,且m<α<n;④若a2m2+bam+ac<0,则方程ax2+bx+c=0必有两个实数根.16.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=12,且经过点(﹣1,0).下列说法:①abc>0;②﹣2b+c=0;③点(t−32,y1),(t+32,y2)在抛物线上,则当t>13时,y1>y2;④14b+c≤m(am+b)+c(m为任意实数).其中一定正确的是.17.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠c),且a﹣b+c=0.下列四个结论:①若b=﹣2a,则抛物线经过点(3,0);②抛物线与x轴一定有两个不同的公共点;③一元二次方程﹣a(x﹣2)2+bx=2b+c有一个根x=﹣1;④点A(x1,y1),B(x2,y2)在抛物线上,若当x1>x2>2时,总有y1>y2,则5a+c≥0.其中正确的是.(填写序号)18.抛物线y=ax2+bx+c经过点(﹣2,0),且对称轴为直线x=1,其部分图象如图所示.对于此抛物线有如下四个结论:①b=﹣2a;②4a+2b+c>0;③若n>m>0,则x=1+m时的函数值小于x=1﹣n时的函数值;④点(−c2a,0)一定在此抛物线上.其中正确的结论是.19.已知二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象开口向下,对称轴为直线x=1,且与x轴的一个交点在点(﹣1,0),(0,0)之间,下列结论正确的是(填写序号).①abc>0;②a﹣b+c<0;③a+b≥m(am+b)(m是一个常数);④若方程ax2+bx+c=mx﹣2m(m是一个常数)的根为x1,x2,则(x1﹣2)(x2﹣2)<0.20.已知二次函数y=ax2+bx+c(a,b,c为常数,a≠0,c>0)上有五点(﹣1,p)、(0,t)、(1,n)、(2,t)、(3,0),有下列结论:①b>0;②关于x的方程ax2+bx+c=0的两个根是﹣1和3;③p+2t<0;④m(am+b)≤﹣4a ﹣c(m为任意实数).其中正确的结论(填序号即可).21.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴交于点A,对称轴为直线x=1.下面结论:①abc<0;②2a+b=0;③3a+c>0;④方程ax2+bx+c=0(a≠0)必有一个根大于﹣1且小于0.其中正确的是.(只填序号)22.已知抛物线y=x2﹣2(m﹣1)x+m2与x轴分别交于(x1,0),(x2,0)两点.(1)求m 的取值范围.(2)若x 1,x 2满足(x 1+2)(x 2+2)=5,求m 的值.(3)点(a ,y 1),(b ,y 2),(−12,y 3)均在抛物线上,若−13<a <b ,请直接写出y 1,y 2,y 3的大小关系(用“<”连接).四.二次函数图象上点的坐标特征(共6小题)23.已知点(﹣4,y 1)、(﹣1,y 2)、(53,y 3)都在函数y =﹣x 2﹣4x +5的图象上,则y 1、y 2、y 3的大小关系为( )A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 2>y 1>y 3D .y 3>y 1>y 224.二次函数y =x 2﹣2x +c 的图象经过A (﹣3,y 1),B (﹣1,y 2),C (2,y 3),D (4,y 4)四个点,下列说法一定正确的是( ) A .若y 1>0,则y 2y 3<0 B .若y 2>0,则y 1y 4<0 C .若y 3<0,则y 1y 2>0D .若y 4<0,则y 2y 3>025.如图,二次函数y =ax 2+bx +c 的图象经过点A (﹣1,0),点B (3,0),交y 轴于点C ,给出下列结论:①a :b :c =﹣1:2:3;②若0<x <4,则5a <y <﹣3a ;③对于任意实数m ,一定有am 2+bm +a ≤0;④一元二次方程cx 2+bx +a =0的两根为﹣1和13,其中正确的结论是( )A .①②③④B .①③C .①③④D .②③④26.若点A (﹣3,y 1),B (1,y 2),C (m ,y 3)在抛物线y =ax 2+4ax +c 上,且y 1<y 3<y 2,则m 的取值范围是( ) A .﹣3<m <1 B .﹣5<m <﹣1或﹣3<m <1C .m <﹣3或m >1D .﹣5<m <﹣3或﹣1<m <127.抛物线y =﹣x 2+2x +6在直线y =﹣9上截得的线段长度为( ) A .6B .7C .8D .928.点P 1(﹣1,y 1),P 2(2,y 2),P 3(5,y 3)均在二次函数y =﹣x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是.五.二次函数图象与几何变换(共4小题)29.将二次函数y=x2+1的图象绕点(1,﹣1)旋转180°,得到的图象的解析式为()A.y=﹣(x﹣2)2﹣3B.y=(x﹣2)2﹣3C.y=﹣(x﹣3)2﹣2D.y=﹣(x+2)2﹣330.要将抛物线y=2x2平移后得到抛物线y=2x2+4x+5,下列平移方法正确的是()A.向左平移1个单位,再向上平移3个单位B.向左平移1个单位,再向下平移3个单位C.向右平移1个单位,再向上平移3个单位D.向右平移1个单位,再向下平移3个单位31.将抛物线y=2x2平移到抛物线y=2x2﹣4x﹣1,正确的平移方法是()A.向左平移1个单位长度,向上平移3个单位长度B.向左平移1个单位长度,向下平移3个单位长度C.向右平移1个单位长度,向上平移3个单位长度D.向右平移1个单位长度,向下平移3个单位长度32.在平面直角坐标系中,抛物线y=x2+4x经变换后得到抛物线y=x2﹣4x,则这个变换可以是()A.向左平移4个单位B.向右平移4个单位C.向左平移8个单位D.向右平移8个单位六.二次函数的最值(共1小题)33.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.−74B.√3或−√3C.2或−√3D.2或√3或−74七.抛物线与x轴的交点(共11小题)34.如图,抛物线C1:y=x2﹣2x(0≤x≤2)交x轴于O,A两点;将C1绕点A旋转180°得到抛物线C2,交x 轴于A1;将C2绕点A1旋转180°得到抛物线C3,交x轴于A2,…,如此进行下去,则抛物线C10的解析式是()A.y=﹣x2+38x﹣360B.y=﹣x2+34x﹣288C.y=x2﹣36x+288D.y=﹣x2+38x+36035.方程ax2+bx+c=0(a<0)有两个不相等的实数根,则抛物线y=ax2+bx+c的顶点一定在()A.在x轴上方B.在x轴下方C.在y轴右侧D.在y轴左侧36.抛物线y=x2+ax+3的对称轴为直线x=1.若关于x的方程x2+ax+3﹣t=0(t为实数)在﹣2<x<3的范围内有实数根,则t的取值范围是()A.6<t<11B.t≥2C.2≤t<11D.2≤t<637.已知二次函数y=ax2+bx+c(a≠0)的图象经过(﹣1,0)与(3,0)两点,关于x的方程ax2+bx+c+p=0(p >0)有两个不同的实数根,其中一个根是x=m(m<﹣1).如果关于x的方程ax2+bx+c+q=0(q<0)有两个不同的整数根,则这两个整数根是()A.x1=0,x2=﹣2B.x1=2,x2=0C.x1=﹣2,x2=4D.x1=﹣3,x2=538.已知y=x2+mx+n与x轴交于点(1,0)、(﹣3,0),则分解因式x2+mx+n=.39.已知抛物线y=ax2+bx+c(a,b,c是常数)的图象经过(﹣1,0),对称轴在y轴的右侧.下列四个结论:①abc>0;②b2﹣4ac>0;③若A(x1,n),B(x2,n)是抛物线上两点,当x=x1+x2时,则y=c.其中正确的是.(填写序号)40.关于抛物线y=ax2﹣2x+1(a≠0),给出下列结论:①当a<0时,抛物线与直线y=2x+2没有交点;②若抛物线与x轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;③若抛物线的顶点在点(0,0),(2,0),(0,2)围成的三角形区域内(包括边界),则a≥1.其中正确结论的序号是.41.在平面直角坐标系中,已知二次函数解析式为y=x2﹣2x﹣3.(1)完成表格,根据数据在平面直角坐标系中画出二次函数的图象;x…﹣10123…y……(2)当x满足时,函数值大于0;(3)当﹣2<x<2时,y的取值范围是.42.如图,利用函数y=x2﹣4x+3的图象,直接回答:(1)方程x2﹣4x+3=0的解是.(2)当x满足时,y随x的增大而增大.(3)当x满足时,函数值大于0.(4)当0<x<5时,y的取值范围是.43.已知二次函数y=x2﹣6x+5,请回答下列问题:(1)其图象与x轴的交点坐标为;(2)当x满足时,y<0;(3)当﹣1≤x≤4时,函数y的取值范围是.44.在平面直角坐标系中,已知二次函数解析式为y=x2﹣4x+3.(1)完成表格,根据数据在平面直角坐标系中画出二次函数的图象:x…01234…y……(2)当x满足时,函数值大于0;(3)当1<x<4时,y的取值范围是.八.二次函数与不等式(组)(共4小题)45.如图,二次函数y=ax2+bx+c的图象过点A(3,0),对称轴为直线x=1.给出以下结论:①abc>0;②2a+b+c ≥ax2+bx+c;③若M(n2+1,y1),N(n2+2,y2)为函数图象上的两点,则y1>y2;④若关于x的一元二次方程ax2+bx+c=p(p>0)有整数根,则对于a的每一个值,对应的p值有2个.其中正确的有.(写出所有正确结论的序号)46.如图所示,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C.对称轴为直线x=1,直线y =﹣x+c与抛物线交于C,D两点,D点在x轴下方且横坐标小于3,现有下列结论:①2a+b+c>0;②a﹣b+c <0;③x(ax+b)<a+b;④a<﹣1.其中正确的结论是(只填写序号).47.如图,抛物线y=﹣x2+bx+c图象经过(﹣1,0)和(3,0).(1)求出抛物线的解析式;(2)直接写出x满足什么条件时,y随x的增大而减小;(3)直接写出不等式﹣x2+bx+c>0的解集;(4)当0<x<3时,直接写出y的取值范围.48.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=1,图象交x轴于A(3,0)、B(﹣1,0)两点,交y轴于点C(0,3),根据图象解答下列问题:(1)直接写出方程ax2+bx+c=0的两个根;(2)直接写出不等式ax2+bx+c>0的解集;(3)直接写出不等式ax2+bx+c<3的解集.九.二次函数的应用(共12小题)49.从底面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式是:h=30t ﹣5t2,这个函数图象如图所示,则小球从第3s到第5s的下降的高度为()A.15m B.20m C.25m D.30m50.如图是抛物线形的拱桥,当水面宽4m时,顶点离水面2m,当水面宽度增加到6m时,水面下降()A.1m B.1.5m C.2.5m D.2m51.一座拱桥的轮廓是抛物线型(如图所示),桥高为8米,拱高6米,跨度20米.相邻两支柱间的距离均为5米,则支柱MN的高度为米.52.如图,要修建一个圆形喷水池,在池中心竖直安装一根长度为3.2m水管AB,在水管的顶端A点处安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离BC=3m处达到最高,水柱落地处离池中心距离BD=8m,则抛物线形水柱的最高点到地面的距离EC是m.53.把一个物体从地面以10m/s速度竖直上抛,那么物体经过x(s)时,离地面高度为h(m),h与x的函数关系为h=10x﹣4.9x2,则物体回到地面的时间为s.54.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=﹣0.2x2+1.5x﹣2,则最佳加工时间为min.55.如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=−112x2+23x+53.则他将铅球推出的距离是m.56.某超市销售一种成本为30元/千克的食品,设第x天的销售量为n千克,销售价格为y元/千克,现已知以下条件:①y与x满足一次函数关系,且当x=10时,y=50;当x=20时,y=45;②n与x的关系式为n=6x+60.(1)直接写出y与x的函数关系式;(2)设每天的销售利润为W元,在整个销售过程中,第几天的销售利润最大?最大利润是多少?(3)如果该超市把销售价格在当天的基础提高a元/千克(a为整数),那么在前30天(包含第30天)每天的销售利润随x的增大而增大,求a的最小值.57.某商场要求所有商家商品的利润率不得超过40%,一商家以每件16元的价格购进一批商品.该商品每件售价定为x元,每天可卖出(170﹣5x)件,每天销售该商品所获得的利润为y元.(1)求y与x的函数关系式;(2)若每天销售该商品要获得280元的利润,每件商品的售价应定为多少元?(3)请直接写出这个商家每天销售该商品可获得的最大利润为元.58.某医疗器械商店经营销售A,B两种型号的医疗器械,该店5月从厂家购进A,B型号器械各10台,共用去1100万元;6月购进5台A型、8台B型器械,共用去700万元.根据器械的特点和使用要求,A,B两种型号器械需搭配销售,且每月A的销售数量与B的销售数量须满足1:2的关系.据统计,该商店每月A型器械的销量n A(台)与售价x(万元)有如下关系:n A=﹣x+100;B型器械的销量n B(台)与售价y(万元)有如下关系:n B=﹣2y+150.(1)试求A,B两种器械每台的进货价格;(2)若该店今年7月销售A,B两种型号器械的利润恰好相同(利润不为0),试求本月A型器械的销售数量;(3)在A,B两种器械货源充足的情况下,试计算该店每月销售这两种器械能获得的最大利润.59.农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如表:3035404550销售价格x元(元/千克)6004503001500日销售量p(千克)(1)请直接写出p与x之间的函数关系式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.60.某公司经过市场调查,整理出某种商品在某个月的第x天的售价与销量的相关信息如下表:第x天售价(元/件)日销售量(件)1≤x≤30x+60300﹣10x已知该商品的进价为40元/件,设销售该商品的日销售利润为y元.(1)求y与x的函数关系式;(2)问销售该商品第几天时,日销售利润最大?最大日销售利润为多少元?(3)问在当月有多少天的日销售利润不低于5440元,请直接写出结果.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8讲 二次函数的与方程和不等式
函数的各种交点
1、求抛物线12222+-=x x y 与坐标轴的交点坐标。
2、求抛物线132
--=x x y 与直线3=y 的交点坐标。
3、求抛物线132--=x x y 与直线3=x 的交点坐标。
4、求抛物线222--=x x y 与直线2+=x y 的交点坐标。
5、小兰画了一个函数b ax x y ++=2
的图象如图,则关
于x 的方程02=++b ax x 的解是_______________。
6、【三种方法】已知二次函数y=x 2-3x+m (m 为常数)的图象与x 轴的一个交点为(1,0),求关于x 的一元二次方程x 2-3x+m=0的两实数根。
7、二次函数y=ax 2+bx 的图象如图,若一元二次方程ax 2+bx+m=0有实数根,求m 的取值范围。
8、若二次函数y=ax 2-2ax+c 的图象经过点(-1,0),则方程ax 2-2ax+c=0的解为_______________________。
9、二次函数y=x 2+bx 的图象如图,对称轴为直线x=1,若关于x 的一元二次方程x 2+bx-t=0(t 为实数)在-1<x <4的范围内有解,则t 的取值范围是___________。
10、已知正比例函数x y =与二次函数c bx ax y ++=2的图象如图所示,则二次函数c x b ax y +-+=)1(2的图象可能是( )
A B C D
11、不解方程组,判断函数322+-=x x y 与函数
12-=x y 的交点个数。
12、已知二次函数m x x y ++-=22的部分图象如图所示,求关于x
的一元二次方程
2
2
=
+
+-m x x 的解。
13、若二次函数1422--=x x y 的图象与x 轴交于
)0,(a A ,)0,(b B 两点,则
b
a 1
1+的值为______。
参考答案 1、)1,0( ),0,2
2
(
2、)3,4( ),3,1(-
3、)1,3(-
4、)6,4( ),1,1(-
5、x=-1或x=4
6、x 1=1,x 2=2
7、3≤m
8、x 1=-1,x 2=3
9、-1≤t <8 10、C 11、两函数有1个交点 12、x=-1或x=3 13、-4
二次函数与不等式
1、c bx ax y ++=2中,0<a ,抛物线与x 轴有两个
交点A (2,0)B (-1,0),则02
>++c bx ax 的解集是______________;02
<++c bx ax 的解集是______________
2、如图是二次函数c bx ax y ++=21和一次函数
n mx y +=2的图像,观察图像写出12y y ≥时,x 的取
值范围___________.
3、已知函数y 1=x 2与函数y 2=-
1
2
x +3的图象大致如图,若y 1<y 2,则自变量x 的取值范围是
A .-
3
2
<x <2 B .x >2或x <-
32 C .-2<x <3
2
D . x <-2或x >
3
2
4、如图,是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为A (3,0),则由图象可知,不等式ax 2+bx+c <0的解集是__________.
5、如图,抛物线与两坐标轴的交点分别为(-1,0),(2,0),(0,2),则当y >2时,自变量x 的取值范围是_____________。
6、【复习】如图,抛物线221+-=x y 向右平移1个单位得到抛物线2y 。
回答下列问题:
(1)抛物线2y 的解析式是____________,顶点坐标为______;
(2)图中阴影部分的面积S=____________; (3)若再将抛物线2y 绕原点O 旋转180°得到抛物线
3y ,则抛物线3y 的解析式为_______________,开口方向________,顶点坐标为____________.
参考答案
1、21<<-x ;1-<x 或2>x
2、12≤≤-x
3、C
4、31<<-x
5、10<<x
6、(1)2)1(22+--=x y ;
)2,1(;(2)2;(3)2)1
(2
3-
+=x y ;向上;)2,1(--。