高一数学 必修一 第二章《一元二次函数、方程和不等式》训练题 (5)-200708(解析版)
高中数学必修一第二章一元二次函数方程和不等式典型例题(带答案)

高中数学必修一第二章一元二次函数方程和不等式典型例题单选题1、已知x >0,则下列说法正确的是( ) A .x +1x −2有最大值0B .x +1x −2有最小值为0 C .x +1x−2有最大值为-4D .x +1x−2有最小值为-4答案:B分析:由均值不等式可得x +1x ≥2√x ×1x =2,分析即得解 由题意,x >0,由均值不等式x +1x≥2√x ×1x=2,当且仅当x =1x,即x =1时等号成立故x +1x −2≥0,有最小值0 故选:B2、不等式x (2x +7)≥−3的解集为( ) A .(−∞,−3]∪[−12,+∞)B .[−3,−12] C .(−∞,−2]∪[−13,+∞)D .[−2,−13] 答案:A分析:解一元二次不等式即可.x (2x +7)≥−3可变形为2x 2+7x +3≥0, 令2x 2+7x +3=0,得x 1=−3,x 2=−12,所以x ≤−3或x ≥−12,即不等式的解集为(−∞,−3]∪[−12,+∞).故选:A.3、已知命题“∀x ∈R ,4x 2+(a −2)x +14>0”是假命题,则实数a 的取值范围为( ) A .(−∞,0]∪[4,+∞)B .[0,4] C .[4,+∞)D .(0,4)答案:A分析:先求出命题为真时实数a的取值范围,即可求出命题为假时实数a的取值范围.若“∀x∈R,4x2+(a−2)x+14>0”是真命题,即判别式Δ=(a−2)2−4×4×14<0,解得:0<a<4,所以命题“∀x∈R,4x2+(a−2)x+14>0”是假命题,则实数a的取值范围为:(−∞,0]∪[4,+∞).故选:A.4、设a>b>c>0,则2a2+1ab +1a(a−b)−10ac+25c2取得最小值时,a的值为()A.√2B.2C.4D.2√5答案:A解析:转化条件为原式=1ab +ab+1a(a−b)+a(a−b)+(a−5c)2,结合基本不等式即可得解.2a2+1ab+1a(a−b)−10ac+25c2=1ab+ab+1a(a−b)+a(a−b)−ab−a(a−b)+2a2−10ac+25c2 =1ab+ab+1a(a−b)+a(a−b)+a2−10ac+25c2=1ab+ab+1a(a−b)+a(a−b)+(a−5c)2≥2√1ab ⋅ab+2√1a(a−b)⋅a(a−b)+0=4,当且仅当{ab=1a(a−b)=1a=5c,即a=√2,b=√22,c=√25时,等号成立.故选:A.小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5、若“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,则实数m 的取值范围是( ) A .m ≥1B .m ≥2C .m ≥3D .m ≥4 答案:C分析:x 2+mx ﹣2m 2<0(m >0),解得﹣2m <x <m .根据“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,可得﹣2m ≤﹣2,3≤m ,m >0.解出即可得出. 解:x 2+mx ﹣2m 2<0(m >0),解得﹣2m <x <m .∵“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,∴﹣2m ≤﹣2,3≤m ,(两个等号不同时取)m >0. 解得m ≥3.则实数m 的取值范围是[3,+∞). 故选:C.6、关于x 的不等式ax 2−(a 2+1)x +a <0的解集为{x|x 1<x <x 2},且x 2−x 1=1,则a 2+a −2=( ) A .3B .32C .2D .23答案:A分析:根据一元二次不等式与解集之间的关系可得x 1+x 2=a +1a 、x 1x 2=1,结合 (x 2−x 1)2=(x 1+x 2)2−4x 1x 2计算即可.由不等式ax 2−(a 2+1)x +a <0的解集为{x |x 1<x <x 2}, 得a >0,不等式对应的一元二次方程为ax 2−(a 2+1)x +a =0, 方程的解为x 1、x 2,由韦达定理,得x 1+x 2=a 2+1a=a +1a ,x 1x 2=1,因为x 2−x 1=1,所以(x 2−x 1)2=(x 1+x 2)2−4x 1x 2=1, 即(a +1a )2−4=1,整理,得a 2+a −2=3. 故选:A7、已知关于x 的不等式ax 2+bx +c <0的解集为{x|x <−1或x >4},则下列说法正确的是( )A.a>0B.不等式ax2+cx+b>0的解集为{x|2−√7<x<2+√7}C.a+b+c<0D.不等式ax+b>0的解集为{x|x>3}答案:B分析:根据解集形式确定选项A错误;化不等式为x2−4x−3<0,即可判断选项B正确;设f(x)=ax2+ bx+c,则f(1)>0,判断选项C错误;解不等式可判断选项D错误.解:因为关于x的不等式ax2+bx+c<0的解集为{x|x<−1或x>4},所以a<0,所以选项A错误;由题得{a<0−1+4=−ba−1×4=ca,∴b=−3a,c=−4a,所以ax2+cx+b>0为x2−4x−3<0,∴2−√7<x<2+√7.所以选项B正确;设f(x)=ax2+bx+c,则f(1)=a+b+c>0,所以选项C错误;不等式ax+b>0为ax−3a>0,∴x<3,所以选项D错误.故选:B8、不等式1+x1−x≥0的解集为()A.{x|x≥1或x≤−1}B.{x∣−1≤x≤1} C.{x|x≥1或x<−1}D.{x|−1≤x<1}答案:D分析:不等式等价于x+1x−1≤0,即(x+1)(x−1)≤0,且x−1≠0,由此求得不等式的解集.不等式等价于x+1x−1≤0,即(x+1)(x−1)≤0,且x−1≠0,解得−1≤x<1,故不等式的解集为{x|−1≤x<1},故选:D.多选题9、已知关于x的不等式ax2+bx+c>0解集为{x|−2<x<3},则()A.a>0B.不等式ax+c>0的解集为{x|x<6}C.a+b+c>0D.不等式cx2−bx+a<0的解集为{x|−13<x<12}答案:BCD解析:根据已知条件得−2和3是方程ax2+bx+c=0的两个实根,且a<0,根据韦达定理可得b=−a,c=−6a,根据b=−a,c=−6a且a<0,对四个选项逐个求解或判断可得解.因为关于x的不等式ax2+bx+c>0解集为{x|−2<x<3},所以−2和3是方程ax2+bx+c=0的两个实根,且a<0,故A错误;所以−2+3=−ba ,−2×3=ca,所以b=−a,c=−6a,所以不等式ax+c>0可化为ax−6a>0,因为a<0,所以x<6,故B正确;因为a+b+c=a−a−6a=−6a,又a<0,所以a+b+c>0,故C正确;不等式cx2−bx+a<0可化为−6ax2+ax+a<0,又a<0,所以−6x2+x+1>0,即6x2−x−1<0,即(3x+1)(2x−1)<0,解得−13<x<12,故D正确.故选:BCD.小提示:利用一元二次不等式的解集求出参数a,b,c的关系是解题关键.本题根据韦达定理可得所要求的关系,属于中档题.10、设0<b<a<1,则下列不等式不成立的是()A.ab<b2<1B.√a<√b<1C.1<1a <1bD.a2<ab<1答案:ABD分析:对于ABD举例判断即可,对于C,利用不等式的性质判断对于A,取a=12,b=13,则ab=16>b2=19,所以A错误,对于B,取a=14,b=19,则√a=12>√b=13,所以B错误,对于C,因为0<b<a<1,所以1ab >0,所以b⋅1ab<a⋅1ab,即1a<1b,因为0<a<1,所以0<a⋅1a <1×1a,即1<1a,综上1<1a<1b,所以C正确,对于D,取a=12,b=13,则ab=16<a2=14,所以D错误,故选:ABD11、下面所给关于x的不等式,其中一定为一元二次不等式的是()A.3x+4<0B.x2+mx-1>0C.ax2+4x-7>0D.x2<0答案:BD分析:利用一元二次不等式的定义和特征对选项逐一判断即可.选项A是一元一次不等式,故错误;选项B,D,不等式的最高次是二次,二次项系数不为0,故正确;当a=0时,选项C是一元一次不等式,故不一定是一元二次不等式,即错误.故选:BD.填空题12、若x>0,y>0,xy=10,则2x +5y的最小值为_____.答案:2分析:化简2x +5y=2x+102y=2x+xy2y=2x+x2,结合基本不等式,即可求解.由x>0,y>0,xy=10,则2x +5y=2x+102y=2x+xy2y=2x+x2≥2√2x×x2=2,当且仅当x=2时取“=”,即2x +5y的最小值为2.所以答案是:2.13、已知x,y为正数,且12+x +4y=1,则x+y的最小值为________.答案:7解析:由题设等式有x+y+2=5+y2+x +4(x+2)y,利用基本不等式可求x+y+2的最小值,从而可得x+y的最小值.x+y+2=[(x+2)+y]×(1x+2+4y)=5+y2+x+4(x+2)y,由基本不等式有y2+x +4(x+2)y≥4,当且仅当x=1,y=6时等号成立,故x+y+2的最小值为9即x+y的最小值为7.所以答案是:7.小提示:应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.14、已知函数f(x)=√mx2+mx+1的定义域是R,则m的取值范围为______.答案:[0,4]分析:根据函数的定义域为R可得mx2+mx+1≥0对x∈R恒成立,对参数m的取值范围分类讨论,分别求出对应m 的范围,进而得出结果.因为函数f(x)=√mx2+mx+1的定义域为R,所以mx2+mx+1≥0对x∈R恒成立,当m=0时,mx2+mx+1=1>0,符合题意;当m>0时,由Δ=m2-4m≤0,解得0<m≤4;当m<0时,显然mx2+mx+1不恒大于或等于0.综上所述,m的取值范围是[0,4].所以答案是:[0,4].解答题15、设a,b,c∈R,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥√43.答案:(1)证明见解析(2)证明见解析.分析:(1)方法一:由(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=0结合不等式的性质,即可得出证明;(2)方法一:不妨设max{a,b,c}=a,因为a+b+c=0,abc=1,所以a>0,b<0,c<0,a=(−b)+(−c)≥2√bc=2√1a ,则a3≥4,a≥√43.故原不等式成立.(1)[方法一]【最优解】:通性通法∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=0,∴ab+bc+ca=−12(a2+b2+c2).∵abc=1,∴a,b,c均不为0,则a2+b2+c2>0,∴ab+bc+ca=−12(a2+b2+c2)<0.[方法二]:消元法由a+b+c=0得b=−(a+c),则ab+bc+ca=b(a+c)+ca=−(a+c)2+ac=−(a2+ac+c2)=−(a +c 2)2−34c 2≤0,当且仅当a =b =c =0时取等号,又abc =1,所以ab +bc +ca <0. [方法三]:放缩法方式1:由题意知a ≠0, a +b +c =0, a =−(c +b ), a 2=(c +b )2=c 2+b 2+2cb ≥4bc ,又ab +bc +ca =a (b +c )+bc =−a 2+bc ≤−a 2+a 24=−3a 24<0,故结论得证.方式2:因为a +b +c =0,所以0=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca=12[(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]+2ab +2bc +2ca ≥12(2ab +2bc +2ca )+2ab +2bc +2ca =3(ab +bc +ca ).即ab +bc +ca ≤0,当且仅当a =b =c =0时取等号, 又abc =1,所以ab +bc +ca <0. [方法四]:因为a +b +c =0,abc =1,所以a ,b ,c 必有两个负数和一个正数,不妨设a ≤b <0<c,则a =−(b +c ), ∴ab +bc +ca =bc +a (c +b )=bc −a 2<0. [方法五]:利用函数的性质方式1:6b =−(a +c ),令f (c )=ab +bc +ca =−c 2−ac −a 2, 二次函数对应的图像开口向下,又abc =1,所以a ≠0, 判别式Δ=a 2−4a 2=−3a 2<0,无根, 所以f (c )<0,即ab +bc +ca <0.方式2:设f (x )=(x −a )(x −b )(x −c )=x 3+(ab +bc +ca )x −1, 则f (x )有a ,b ,c 三个零点,若ab +bc +ca ≥0, 则f (x )为R 上的增函数,不可能有三个零点, 所以ab +bc +ca <0.(2)[方法一]【最优解】:通性通法不妨设max {a,b,c }=a ,因为a +b +c =0,abc =1,所以a >0, b <0, c <0, a =(−b )+(−c )≥2√bc =2√1a,则a 3≥4,a ≥√43.故原不等式成立. [方法二]:不妨设max {a,b,c }=a ,因为a +b +c =0,abc =1,所以a >0,且{b +c =−a,bc =1a , 则关于x 的方程x 2+ax +1a =0有两根,其判别式Δ=a 2−4a ≥0,即a ≥√43. 故原不等式成立. [方法三]:不妨设max {a,b,c }=a ,则a >0, b =−(a +c ), abc =1, −(a +c )ac =1, ac 2+a 2c +1=0,关于c 的方程有解,判别式Δ=(a 2)2−4a ≥0,则a 3≥4,a ≥√43.故原不等式成立. [方法四]:反证法假设max {a,b,c }<√43,不妨令a ≤b <0<√43,则ab =1c >√43,−a −b =c <√43,又√43>−a −b ≥2√ab >√√43=21−13=√43,矛盾,故假设不成立.即max {a,b,c }≥√43,命题得证.【整体点评】(1)方法一:利用三项平方和的展开公式结合非零平方为正数即可证出,证法常规,为本题的通性通法,也是最优解法;方法二:利用消元法结合一元二次函数的性质即可证出;方法三:利用放缩法证出;方法四:利用符号法则结合不等式性质即可证出;方法五:利用函数的性质证出. (2)方法一:利用基本不等式直接证出,是本题的通性通法,也是最优解;方法二:利用一元二次方程根与系数的关系以及方程有解的条件即可证出;方法三:利用消元法以及一元二次方程有解的条件即可证出;方法四:利用反证法以及基本不等式即可证出.。
高中数学必修一第二章 一元二次函数、方程和不等式 复习与测试(含答案)

高中数学必修一第二章一、单选题1.已知a≥0,b≥0,且a+b=2,则( )A.ab≤12B.ab≥12C.a2+b2≥2D.a2+b2≤32.已知正数x,y满足x+1y=1,则1x+4y的最小值为( )A.9B.10C.6D.83.在实数集上定义运算⊗:x⊗y=x(1﹣y),若不等式(x﹣a)⊗(x+a)<1对任意实数x都成立,则实数a的取值范围是( )A.(﹣1,1)B.(0,2)C.(―12,32)D.(―32,12)4.已知1≤a+b≤5,―1≤a―b≤3,则3a―2b的取值范围是( )A.[―6,14]B.[―2,14]C.[―2,10]D.[―6,10] 5.若关于x的不等式x2―4x―2―a>0在区间(1,4)内有解,则实数a的取值范围是( )A.a<―2B.a>―2C.a>―6D.a<―6 6.若x=5―2,y=2―3,则x,y满足( )A.x>y B.x≥y C.x<y D.x=y7.正数a,b满足9a +1b=2,若a+b≥x2+2x对任意正数a,b恒成立,则实数x的取值范围是( )A.[―4,2]B.[―2,4]C.(―∞,―4]∪[2,+∞)D.(―∞,―2]∪[4,+∞)8.设正数a,b满足b―a<2,若关于x的不等式(a2―4)x2+4bx―b2<0的解集中的整数解恰有4个,则a的取值范围是( )A.(2,3)B.(3,4)C.(2,4)D.(4,5)二、多选题9.下列函数最小值为2的是( )A.y=x2+1x2B.y=x2+3+1x2+3C.y=2x+12x D.y=x2+1x,x>010.已知a>0,b>0.若4a+b=1,则( )A.14a +1b的最小值为9B.1a+1b的最小值为9C.(4a+1)(b+1)的最大值为94D.(a+1)(b+1)的最大值为9411.已知a>0,b>0,则下列式子一定成立的有( )A.2aba+b ≤ab B.a2+b22≤a+b2C.1a +1b≤4a+bD.a2+b22≤a2+b2a+b12.已知正数a,b满足a(a+b)=1,下列结论中正确的是( )A.a2+b2的最小值为22―2B.2a+b的最小值为2C.1a +1b的最小值为332D.a―b的最大值为1三、填空题13.设一元二次不等式ax2+bx+1>0的解集为{x|―1<x<13},则ab的值是 .14.已知x,y为正实数,且x+4y=1x+1y=m,则m的最小值为 .15.已知实数a,b满足ab>0,则aa+b―aa+2b的最大值为 16.已知实数x,y,z满足:{x+y+z=3x2+y2+z2=36,则|x|+|y|+|z|的最大值为 .四、解答题17.已知集合A={x|―2<x<5},B={x|m+1≤x≤2m―1}.(1)当m=3时,求(∁R A)∩B;(2)若A∪B=A,求实数m的取值范围.18.求证下列问题:(1)已知a,b,c均为正数,求证:bca +acb+abc≥a+b+c.(2)已知xy>0,求证:1x>1y的充要条件是x<y.19.已知不等式组{―x<2,x2+7x―8<0的解集为A,集合B={x|a―5<x<3a―5}.(1)求A;(2)若A∪B=B,求a的取值范围.20.已知函数g(x)=k2x+k,ℎ(x)=x2―2(k2―k+1)x+4.(1)当k=1时,求函数y=ℎ(x)g(x),x∈(―∞,―1)的最大值;(2)令f(x)={g(x),x>0ℎ(x),x<0,求证:对任意给定的非零实数x1,存在惟一的实数x2(x1≠x2)使得f(x1)=f(x2)成立的充要条件是k=4.21.若函数f(x)=a x2―(2a+1)x+2.(1)讨论f(x)>0的解集;(2)若a=1时,总∃x∈[13,1],对∀m∈[1,4],使得f(1x)+3―2mx≤b2―2b―2恒成立,求实数b的取值范围.22.已知函数f(x)=2|x+1|―|x―a|(a∈R).(Ⅰ)当a=2时,求不等式f(x)⩾x+2的解集;(Ⅱ)设函数g(x)=f(x)+3|x―a|,当a=1时,函数g(x)的最小值为t,且2m +12n=t(m>0,n>0),求m+n的最小值.答案解析部分1.【答案】C 2.【答案】A 3.【答案】C 4.【答案】C 5.【答案】A 6.【答案】C 7.【答案】A 8.【答案】C 9.【答案】A,C 10.【答案】B,C 11.【答案】A,D 13.【答案】614.【答案】315.【答案】3―2216.【答案】1+22217.【答案】(1)解:∵集合A ={x|―2<x <5},B ={x|m +1≤x ≤2m ―1}.∴∁R A ={x|x ≤―2或x ≥5},m =3时,B ={x|4≤x ≤5},∴(∁R A )∩B ={5}(2)解:若A ∪B =A ,则B ⊆A ,当B =∅时,m +1>2m ―1,解得m <2,成立;当B ≠∅时,{m +1≤2m ―1m +1>―22m ―1<5,解得2≤m <3,综上实数m 的取值范围为(―∞,3)18.【答案】(1)证明:bc a +ac b +ab c =2bc a +2ac b +2ab c 2=bc a +ac b +bc a +ab c +ac b +ab c 2≥2bc a ⋅ac b+2bc a ⋅ab c+2ac b ⋅ab c=a +b +c ,当且仅当bc a =ac b ,bc a=ab c ,acb =abc ,即a =b =c 时等号成立.(2)证明:依题意xy >0,则{x >0y >0或{x <0y <0,所以:1x >1y ⇔1x ―1y =y ―x xy >0⇔y ―x >0⇔x <y ,所以:1x>1y 的充要条件是x <y .19.【答案】(1)解:由{―x <2x 2+7x ―8<0,得{x >―2―8<x <1,得―2<x <1,所以A ={x |―2<x <1}.(2)解:由A ∪B =B ,得A ⊆B ,所以{a ―5≤―23a ―5≥1,得2≤a ≤3,故a 的取值范围为[2,3].20.【答案】(1)解:当 k =1 时,函数 y =x 2―2x +4x +1, x ∈(―∞,―1) ,令 t =x +1<0 ,则 y =t +7t―4 ,此时 ―t >0 ,由 (―t )+(―7t )≥2(―t )×7―t =27 ,即 t +7t≤―27 ,当且仅当 t =―7 ,即 x =―7―1 时取等号,综上,当 x =―7―1 时, y 最大值是 ―27―4 .(2)解:充分性:当 k =4 时, f (x )={16x +4,x >0x 2―26x +4,x <0 , 当 x >0 时, y =16x +4 在 (0,+∞) 单调递增,且 y >4 ,当 x <0 时, y =x 2―26x +4 在 (―∞,0) 单调递减,且 y >4 ,若 x 1>0 ,则存在惟一的 x 2<0 ,使得 f (x 1)=f (x 2) ,同理 x 1<0 时也成立,必要性:当 x >0 时, y =k 2x +k ,当 k =0 时, f (x ) 在 (0,+∞) 上的值域为 {0} ,显然不符合题意,因此 k ≠0 ,当 x >0 时, f (x ) 在 f (x ) 的取值集合 A =(k ,+∞) ,x <0 , f (x )=x 2―2(k 2―k +1)x +4 的对称轴 x =k 2―k +1>0 , f (x ) 在 (―∞,0) 上递减, f (x )>f (0)=4 ,所以 f (x ) 的取值集合 B =(4,+∞) ,①若 x 1>0 , f (x ) 且在 (0,+∞) 上单调递增,要使 f (x 1)=f (x 2) ,则 x 2<0 ,且 A ⊆B ,有 k ≥4 .②若 x 1<0 , f (x ) 且在 (―∞,0) 上单调递减,要使 f (x 1)=f (x 2) ,则 x 2>0 ,且 B ⊆A ,有 k ≤4 .综上: k =4 .21.【答案】(1)已知f (x )=a x 2―(2a +1)x +2,①当a =0时,f (x )=―x +2>0时,即x <2;②当a ≠0时,f (x )=a (x ―1a )(x ―2),若a <0,f (x )>0,解得 1a <x <2,若0<a <12,f (x )>0,解得x <2或x >1a ,若a =12,f (x )>0,解得x ≠2,若a >12时,f (x )>0,解得x <1a 或x >2,综上所述:当a <0时,f (x )>0的解集为(1a ,2);当a =0时,f (x )>0的解集为(―∞,2);当0<a <12时,f (x )>0的解集为(―∞,2)∪(1a ,+∞);当a =12时,f (x )>0的解集为(―∞,2)∪(2,+∞);当a >12时,f (x )>0的解集为(―∞,1a )∪(2,+∞).(2)若a =1,则f (x )=x 2―3x +2,∴f (1x )+3―2m x =1x 2―2m x +2,令t =1x ,原题等价于∃t ∈[1,3],对∀m ∈[1,4]使得t 2―2mt +2≤b 2―2b ―2恒成立,令g (m )=―2tm +t 2+2,∴g (m )是关于m 的减函数,∴对∀m ∈[1,4],g (m )≤b 2―2b ―2恒成立,即b 2―2b ―2≥g (m )max =g (1)=t 2―2t +2,又∃t ∈[1,3],b 2―2b ―2≥t 2―2t +2,即b 2―2b ―2≥(t 2―2t +2)min =12―2×1+2=1,故b 2―2b ―3=(b ―3)(b +1)≥0,解得b ≤―1或b ≥3.22.【答案】解:(Ⅰ)当 a =2 时, f (x )⩾x +2 化为 2|x +1|―|x ―2|≥x +2 ,当 x⩽―1 时,不等式化为 ―x ―4⩾x +2 ,解得 x⩽―3 ;当 ―1<x <2 时,不等式化为 3x⩾x +2 ,解得 1⩽x <2 ;当 x⩾2 时,不等式化为 x +4⩾x +2 ,解得 x⩾2 ,综上不等式 f (x )⩾x +2 的解集是 {x |x⩽―3或x⩾1}(Ⅱ)当 a =1 时, g (x )=2|x +1|+2|x ―1|⩾2|x +1+1―x |=4 ,当且仅当 (x +1)(x ―1)⩽0 ,即 ―1⩽x⩽1 时,等号成立.所以,函数 g (x ) 的最小值 t =4 ,所以 2m +12n =4 , 12m +18n=1 .m +n =(m +n )(12m +18n )=n 2m +m 8n +58⩾2n 2m ⋅m 8n +58=98 ,当且仅当 {12m +18n =1,n 2m =m 8n 即 {m =34,n =38时等号成立,所以 m +n 的最小值为 98.。
高中数学必修第一册第二章《一元二次函数、方程和不等式》测试卷

2020-2021学年高中数学必修第一册第二章《一元二次函数、方程和不等式》测试卷解析版一.选择题(共8小题)1.已知正实数a ,b 满足a +b =2,则√a +1+√b +1的最大值为( )A .2√2B .4C .4√2D .16解:因为(√a +1+√b +1)2=(a +1)(b +1)+2√a +1•√b +1≤(a +1)+(b +1)+(a +1)+(b +1)=2(a +b +2)=8,当且仅当a =b =1时取等号,由:(√a +1+√b +1)2最大值为8,所以√a +1+√b +1的最大值为2√2.故选:A .2.已知m =a +1a−2(a >2),n =4﹣b 2(b ≠0),则m ,n 之间的大小关系是( )A .m >nB .m <nC .m =nD .不确定 解:∵a >2,∴a ﹣2>0,∴m =a +1a−2=(a −2)+1a−2+2≥2√(a −2)⋅1a−2+2=4,由b ≠0得,b 2>0,∴n =4﹣b 2<4,∴m >n .故选:A .3.若a >0,b >0,a +2b =1,则2a +3a+1b 的最小值为( )A .8B .6C .12D .9 解:2a +3a+1b =2a+4b a +3a+a+2b b =4+4b a +4a b ≥4+2√4b a ×4a b =12.(当且仅当a =b时取“=”).故选:C .4.不等式ax 2+bx +c >0的解集为(﹣4,1),则不等式b (x 2+1)﹣a (x +3)+c >0的解集为( )A .(−43,1)B .(−1,43)C .(−∞,−43)∪(1,+∞)D .(−∞,−1)∪(43,+∞)解:不等式ax 2+bx +c >0的解集为(﹣4,1),则不等式对应方程的实数根为﹣4和1,且a <0;由根与系数的关系知,{−4+1=−b a −4×1=c a , ∴{b =3a c =−4a, ∴不等式b (x 2+1)﹣a (x +3)+c >0化为3a (x 2+1)﹣a (x +3)﹣4a >0,即3(x 2+1)﹣(x +3)﹣4<0,解得﹣1<x <43,∴该不等式的解集为(﹣1,43). 故选:B .5.已知函数f (x )=x 2+ax +b (a ,b ∈R )的最小值为0,若关于x 的不等式f (x )<c 的解集为(m ,m +4),则实数c 的值为( )A .9B .8C .6D .4解:f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),∴4b−a 24=0,∴b =a 24,∵f (x )<c 的解集为(m ,m +4),∴f (x )﹣c =0的根为m ,m +4,即x 2+ax +a 24−c =0的根为m ,m +4, ∵(m +4﹣m )2=(﹣a )2﹣4(a 24−c ),∴4c =16,c =4.故选:D . 6.已知正实数p ,q ,r 满足:(1+p )(1+q )=(1+r )2,a =√pq ,b =p+q 2,c =√p 2+q 22,则以下不等式正确的是( )A .r ≤aB .a ≤r ≤bC .b ≤r ≤cD .r ≥c。
人教版高中数学必修第一册第二章一元二次函数、方程和不等式单元测试卷

人教版高中数学必修第一册第二章一元二次函数、方程和不等式单元测试卷一、单选题 1.不等式(x +3)2<1的解集是( ) 2.A .{x |x >-2} B .{x |x <-4} C .{x |-4<x <-2}D .{x |-4≤x ≤-2}2.已知2t a b =+,21s a b =++ ,则t 和s 的大小关系为( ) A .t s > B .t s ≥ C .t s <D .t s ≤3.不等式220ax bx ++>的解集为{}12x x -<<,则a b +=( ) A .0B .1-C .1D .2-4.若不等式组2142x ax a ⎧->⎨-<⎩的解集非空,则实数a 的取值范围是( )A .()1,3-B .(,1)(3,)-∞-+∞C .()3,1-D .(,3)(1,)-∞-⋃+∞5.对x R ∀∈,不等式()()222240a x a x -+--<恒成立,则a 的取值范围是( ) A .22a -<≤B .22a -≤≤C .2a <-或2a ≥D .2a ≤-或2a ≥6.已知不等式()19a x y x y ⎛⎫++ ⎪⎝⎭≥对任意实数x 、y 恒成立,则实数a 的最小值为( )A .8B .6C .4D .27.已知1230m m m >>>,则使得()()211123i m x i -<=,,都成立的x 取值范围是( )A .110m ⎛⎫ ⎪⎝⎭,B .120m ⎛⎫ ⎪⎝⎭,C .310m ⎛⎫ ⎪⎝⎭,D .320m ⎛⎫ ⎪⎝⎭,8.如图,某汽车运输公司刚买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y(单位:10万元)与营运年数x (x∈N )为二次函数关系,若使营运的年平均利润最大,则每辆客车应营运( )A .3年B .4年C .5年D .6年9.若12a <<,13b -<<,则-a b 的值可能是( ) A .4B .2C .2-D .4-10.若0a <b <,则下列结论中不恒成立的是() A .a b > B .11a b> C .222a b ab +> D .a b +>-11.已知函数11y x x=++(0x <),则该函数的( ). A .最小值为3 B .最大值为3 C .没有最小值 D .最大值为1-二、多选题 12.已知,a b R +∈且1a b +=,那么下列不等式中,恒成立的有( ). 13.A .14abB .1174ab ab +C 2bD .11222a b+ 三、填空题 13.若关于x 的不等式2260tx x t -+<的解集为{|x x a <或1}x >,则=a _____,t =_____. 14.对于实数x ,当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,则关于x 的不等式4[x ]2-36[x ]+45<0的解集为________.15.当122x ≤≤时,函数2,()y x bx c b c R =++∈与21x x y x++'=在同一点取得相同的最小值,那么当122x ≤≤时,2y x bx c =++的最大值是______. 16.已知04x <<,则414x x+-的最小值为______.四、解答题 17.已知函数22y x x c =++的图象经过原点.求解不等式220x x c ++<.18.当,p q 都为正数且1p q +=时,试比较代数式2()px qy +与22+px qy 的大小.19.已知不等式组22430680x x x x ⎧-+<⎨-+<⎩的解集M 是不等式2290x x a -+<解集的子集,求实数a 的取值范围.20.()1已知3x >,求43y x x =+-的最小值,并求取到最小值时x 的值; ()2已知0x >,0y >,223x y +=,求xy 的最大值,并求取到最大值时x 、y 的值.21.已知a,b,c 均为正实数,且a+b+c=1,求证:(1a -1)(1b -1)(1c-1)≥8.22.已知0,0x y >>且191x y+=,求使不等式x y m +≥恒成立的实数m 的取值范围.参考答案:1.C 【解析】原不等式可化为x 2+6x +8<0,解得-4<x <-2.选C. 2.D 【解析】利用作差法,令s t -,结果配方,判断符号后得出结论. 【详解】2221(2)21(1)0s t a b a b b b b -=++-+=-+=-≥,故有s t ≥, 故选:D . 【点睛】本题考查用比较法证明不等式的方法,作差﹣﹣变形﹣﹣判断符号﹣﹣得出结论涉及完全平方公式的应用.属于基础题. 3.A 【解析】由不等式220ax bx ++>的解集为{}12x x -<<,得到1,2-是方程220ax bx ++=的两个根,由根与系数的关系求出,a b ,即可得到答案. 【详解】由题意,可得不等式220ax bx ++>的解集为{}12x x -<<, 所以1,2-是方程220ax bx ++=的两个根, 所以可得12ba-+=-,212a -⨯=,解得1a =-,1b =,所以0a b +=, 故选:A . 4.A 【解析】分别解出两个不等式的解,再根据集合交集的概念求解. 【详解】由题意124x a x a ⎧>+⎨<+⎩,∈2124a a +<+,即2230a a --<,解得13a -<<.故选:A . 【点睛】本题考查不等式组的解,考查集合的交集运算,属于基础题. 5.A 【解析】对a 讨论,结合二次函数的图象与性质,解不等式即可得到a 的取值范围. 【详解】不等式()()222240a x a x -+--<对一切x ∈R 恒成立,当20a -=,即2a =时,40-<恒成立,满足题意; 当20a -≠时,要使不等式恒成立,需200a -<⎧⎨∆<⎩,即有()()22421620a a a <⎧⎪⎨-+-<⎪⎩, 解得22a -<<.综上可得,a 的取值范围为(]2,2-. 故选:A. 6.C 【解析】由题意可知,()min 19a x y x y ⎡⎤⎛⎫++≥⎢⎥ ⎪⎝⎭⎣⎦,将代数式()1a x y x y ⎛⎫++ ⎪⎝⎭展开后利用基本不等式求出该代数式的最小值,可得出关于a 的不等式,解出即可. 【详解】()11a ax yx y a x y y x ⎛⎫++=+++⎪⎝⎭. 若0xy <,则0yx<,从而1ax y a y x +++无最小值,不合乎题意;若0xy >,则0yx>,0x y >.∈当0a <时,1ax ya y x+++无最小值,不合乎题意;………内∈当0a =时,111ax y y a y x x +++=+>,则()19a x y x y ⎛⎫++ ⎪⎝⎭≥不恒成立; ∈当0a >时,())211111a ax y x y a a a x y y x ⎛⎫++=+++≥+=+= ⎪⎝⎭,当且仅当=y 时,等号成立. 所以,)219≥,解得4a ≥,因此,实数a 的最小值为4.故选:C. 【点睛】本题考查基本不等式恒成立问题,一般转化为与最值相关的不等式求解,考查运算求解能力,属于中等题. 7.B 【解析】先解出不等式()()211123i m x i -<=,,的解集,得到当123i =,,时,不等式的解集,最后求出它们的交集即可. 【详解】因为1230m m m >>>,所以()()()22111230123i im x i x i m -<=⇒<<=,,,,, 因为1230m m m >>>,所以123222m m m <<,要想使得()()211123i m x i -<=,,都成立,所以x 取值范围是120m ⎛⎫⎪⎝⎭,,故本题选B.【点睛】本题考查了一元二次不等式的解法,考查了不等式的性质应用,考查了数学运算能力. 8.C 【解析】可设y=a(x -6)2+11,又曲线过(4,7),∈7=a(4-6)2+11 ∈a=-1. 即y=-x 2+12x -25,∈=12-(x+)≤12-2=2,当且仅当x=5时取等号. 故选C .9.B 【解析】运用不等式的性质求出-a b 的范围即可.【详解】因为12a <<,13b -<<,所以31b -<< 所以23a b -<-< 故选:B 【点睛】本题考查的是不等式的性质,较简单. 10.D 【解析】将0a <b <,转化为0->->a b ,利用不等式的基本性质判断A ,B 的正误,利用重要不等式判断C 的正误,利用特殊值判断D 的正误. 【详解】因为0a <b <,所以0->->a b 所以a b >,11a b -<-即11a b>,故A ,B 正确. 因为()20a b -≥,所以222a b ab +≥,所以222a b ab +>故C 正确. 当 2,1a b =-=-时, +<-a b D 错误. 故选:D 【点睛】本题主要考查不等式的基本性质,基本不等式,还考查了理解辨析的能力,属于基础题. 11.D 【解析】先由基本不等式得到12x x--≥,再转化得到111y x x =++≤-(0x <),最后判断选项即可. 【详解】解:因为0x <,所以0x ->,10x->, 由基本不等式:1()()2x x -+-≥=,当且仅当1x x-=-即1x =-时,取等号.所以12x x--≥,即12x x +≤-,所以111y x x =++≤-(0x <),当且仅当1x x-=-即1x =-时,取等号.故该函数的最大值为:1- 故选:D 【点睛】本题考查利用基本不等式求最值,是基础题. 12.ABC 【解析】利用基本不等式,逐个进行验证,即可得到结论. 【详解】,,1a b R a b +∈+=,2124a b ab +⎛⎫∴= ⎪⎝⎭(当且仅当12a b ==时取得等号).所以选项A 正确 由选项A 有14ab ≤,设1y x x =+,则1y x x =+在104⎛⎤⎥⎝⎦,上单调递减. 所以1117444ab ab +≥+=,所以选项B 正确 2(2a b a b ab a b a b +=+++++=(当且仅当12a b ==时取得等号), 2b .所以选项C 正确.113332222222a b a b b a b a b a b a b a +++=+=+++=+222a b =时等号成立),所以选项D 不正确. 故A ,B ,C 正确 故选:ABC 【点睛】本题考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题 13. 3- 3- 【解析】由不等式的解集可确定对应二次函数图像的开口和对应二次方程的两根,由根与系数关系即可求得a 和t 的值. 【详解】由不等式2260tx x t -+<的解集为{xx a <∣或1}x >, 可知不等式对应二次函数图像开口向下即0t <,且1,a 是方程2260tx x t -+=的两根,由根与系数的关系可得61,,a t a t ⎧+=⎪⎨⎪=⎩解得2,2a t =⎧⎨=⎩或3,3.a t =-⎧⎨=-⎩ 0t <,3,3a t ∴=-=-, 故答案为:-3,-3 【点睛】本题考查一元二次不等式与二次函数图像,二次方程之间关系的应用,属于基础题. 14.{x |2≤x <8} 【解析】求解不等式4[x ]2-36[x ]+45<0,得出32<[x ]<152,根据题意,进而得出x 的范围.【详解】由4[x ]2-36[x ]+45<0,得32<[x ]<152,又当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,所以[x ]=2,3,4,5,6,7,所以所求不等式的解集为{x |2≤x <8}. 故答案为:{x |2≤x <8} 【点睛】本题考查了二次不等式求解问题,考查了阅读能力、逻辑推理能力和数学运算能力,属于一般题目. 15.4. 【解析】先利用基本不等式求得21x x y x ++'=图象的最低点坐标,根据二次函数的性质求得b 和c ,最后根据x 的范围求得2y x bx c =++的最大值.【详解】21113x x y x x x '++==++≥(当且仅当1x =时取等号)所以当1x =时,y '取得最小值3,所以函数2,()y x bx c b c R =++∈在122x ⎡⎤∈⎢⎥⎣⎦,时,当1x =时有最小值3. 所以二次函数2y x bx c =++的顶点坐标为()1,3 2(1)3y x ∴=-+.∴当2x =时,max 4y =.故答案为:4 【点睛】本题主要考查了二次函数的性质,基本不等式的应用.考查了学生对二次函数图象的理解和灵活运用,属于中档题. 16.94.【解析】用“1”的代换法配凑出定值,然后用基本不等式得最小值. 【详解】4144114(4)95444444x x x x x x x x x x +--⎛⎫⎛⎫⎛⎫+=+=++ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭,当且仅当4(4)4x x x x -=-,解得1288,3x x ==,又因为04x <<,所以83x =时等号成立.故答案为:94.【点睛】本题考查用基本不等式求最值,解题关键是要配凑出定值,“1”的代换是常用方法.用基本不等式求最值时一定要注意等号成立的条件是否能满足. 17.{}20x x -<<. 【解析】待定系数法求c ,再解一元二次不等式即可. 【详解】 解:22y x x c =++的图象经过原点,0c ∴=.即求解220x x +<,解得20x -<<,即不等式的解集为{}20x x -<<.【点睛】本题考查一元二次不等式的解法,是基础题. 18.222()px qy px qy +≤+ 【解析】用作差的方法,因式分解,利用1p q +=,化简可得2)0(pq x y --≤,进而得出结果.【详解】22222()(1)(1)2()px qy px qy p p x q q y pqxy +-+=-+-+因为1p q +=,所以1,1p q q p -=--=-因此222222()()(2)()+-+=-+-=--px qy px qy pq x y xy py x y 因为,p q 为正数,所以2)0(pq x y --≤因此222()()+≤+px qy px qy ,当且仅当x y =时等号成立 【点睛】本题考查了用作差的方法比较大小,考查了运算求解能力,属于中档题目. 19.(,9]-∞ 【解析】首先解一元二次不等式求出解集M ,由M 是2290x x a -+<解集的子集知,2290x x a -+<在{}|23x x <<上恒成立. 令229y x x a =-+,则函数在()2,3上的最大值不超过0,即可求出参数的取值范围; 【详解】解:{}22(1)(3)013430|23(2)(4)024680x x x x x x x x x x x x x ⎧⎧--<<<-+<⎧⎪⇒⇒⇒∈<<⎨⎨⎨--<<<-+<⎩⎪⎩⎩. 所以{}|23M x x =<<,由M 是2290x x a -+<解集的子集知,2290x x a -+<在{}|23x x <<上恒成立. 令229y x x a =-+,只需该函数在{}|23x x <<上的最大值不超过0即可. 因该函数的对称轴为94x =,所以max 9y a =-+,所以90a -+≤,解得9a ≤. 故实数a 的取值范围是(,9]-∞. 【点睛】本题考查一元二次不等式的解法,不等式恒成立问题,属于中档题.20.()1当5x =时,y 的最小值为7.()2 2x =,3y =时,xy 的最大值为6. 【解析】()1直接利用基本不等式的关系式的变换求出结果.()2直接利用基本不等式的关系式的变换求出结果. 【详解】 ()1已知3x >, 则:30x ->, 故:44333733y x x x x =+=-++≥=--, 当且仅当:433x x -=-, 解得:5x =, 即:当5x =时,y 的最小值为7. ()2已知0x >,0y >,223x y +=, 则:23x y +≥ 解得:6xy ≤, 即:123x y ==, 解得:2x =,3y =时,xy 的最大值为6. 【点睛】 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误. 21.证明见解析 【解析】 主要考查不等关系与基本不等式. 证明:因为a, b, c (0,),∈+∞且a+b+c=1,所以111(1)(1)(1)()()()8.a b c a a b c b a b c c a b c a b c b c a c b a a a b b c c ++-++-++----=⋅⋅=+++≥⨯=. 22.16m . 【解析】要使不等式x y m +≥恒成立,只需求x y +的最小值,将19()x y x y x y ⎛⎫+=++ ⎪⎝⎭展开利用基本不等式可求解. 【详解】 由191x y +=,则19()x y x y x y ⎛⎫+=++ ⎪⎝⎭910x y y x =++910216y +=. 当且仅当169x y x y y x +=⎧⎪⎨=⎪⎩即412x y =⎧⎨=⎩时取到最小值16. 若x y m +恒成立,则16m . 【点睛】 本题考查不等式恒成立问题,考查利用基本不等式求最值问题,属于基础题.。
高中数学必修一第二章 一元二次函数、方程和不等式 单元测试(含答案)

高中数学必修一第二章一、单选题1.已知a>b>0,c>d,下列不等式中必成立的一个是( )A.a c>bdB.ad<bc C.a+c>b+d D.a―c>b―d2.已知x,y均为正实数,且1x+2+4y+3=12,则x+y的最小值为( )A.10B.11C.12D.133.若两个正实数x,y满足2x+1y=1,且x+2y>m2+2m恒成立,则实数m的取值范围是( )A.(―∞,―2)∪[4,+∞)B.(―∞,―4)∪[2,+∞)C.(―2,4)D.(―4,2)4.若x,y∈R+,且x+3y=5xy,则3x+4y的最小值是( )A.5B.245C.235D.1955.小明从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则( )A.a<v<ab B.v=ab C.ab<v<a+b2D.v=a+b26.已知a>0,b>0,若不等式m3a+b ―3a―1b≤0恒成立,则m的最大值为( )A.4B.16C.9D.37.已知x,y∈(―2,2),且xy=1,则22―x2+44―y2的最小值是( )A.207B.127C.16+427D.16―4278.已知函数f(x)=2x|2x―a|,若0≤x≤1时f(x)≤1,则实数a的取值范围为( )A.[74,2]B.[53,2]C.[32,2]D.[32,53]二、多选题9.已知a>b>c>0,则( )A.a+c>b+c B.ac>bc C.aa+c>bb+cD.a x<b c10.已知a>0,b>0,且a+b=ab,则( )A.(a―1)(b―1)=1B.ab的最大值为4C.a+4b的最小值为9D.1a2+2b2的最小值为2311.已知a,b∈R∗,a+2b=1,则b2a +12b+12ab的值可能为( )A.6B.315C.132D.5212. 现有图形如图所示,C 为线段AB 上的点,且AC =a ,BC =b ,O 为AB 的中点,以AB 为直径作半圆.过点.C 作AB 的垂线交半圆于点D ,连结OD ,AD ,BD ,过点C 作OD 的垂线,垂足为E.则该图形可以完成的无字证明有( )A .a +b 2≥ab (a >0,b >0)B .a 2+b 2≥2ab (a >0,b >0)C .a 2+b 22≥a +b2(a ≥0,b >0)D .ab ≥21a+1b(a >0,b >0)三、填空题13.已知不等式|x ―1|+|x +2|≥5的解集为 .14. 已知实数x ,y 满足―1≤x +y ≤4且2≤x ―y ≤3,则x +3y 的取值范围是 .15.若关于x 的不等式x 2+mx ―2<0在区间[1,2]上有解,则实数m 的取值范围为 .16.设正实数x ,y ,z 满足x 2―3xy +4y 2―z =0,则当xyZ 取得最大值时,2x+1y ―2z的最大值为 .四、解答题17.U =R ,非空集合 A ={x |x 2―5x +6<0} ,集合 B ={x |(x ―a )(x ―a 2―2)<0} .(1)a =12时,求 (∁ U B )∩A ;(2)若 x ∈B 是 x ∈A 的必要条件,求实数 a 的取值范围.18.已知 p :|1―x ―13|≤2 , q :x 2―2x +1―m 2≤0(m >0) ,若 ¬p 是 ¬q 的充分而不必要条件,求实数m 的取值范围.19.求解不等式x 2―a ≥|x ―1|―120.已知a ,b ,c 都为正实数,满足abc (a +b +c )=1(1)求S =(a +c )(b +c )的最小值(2)当S 取最小值时,求c 的最大值.21.某项研究表明;在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位;辆∕时)与车流速度v (假设车辆以相同速度v 行驶,单位米∕秒)、平均车长l (单位:米)的值有关,其公式为F =76000νv 2+18v +20l(1)如果不限定车型,l =6.05,则最大车流量为多少.(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加多少.22.已知a ,b ,c 为实数且a +2b +5c =10.(1)若a ,b ,c 均为正数,当2ab +5ac +10bc =10时,求a +b +c 的值;(2)证明:(2b +5c )2+(a +b +5c )2+(a +2b +4c )2≥4903.答案解析部分1.C已知a>b>0,c>d,由不等式的同向相加的性质得到a+c>b+d正确;当a=2,b=1,c=-1,d=-2时,a c<bd, ,a―c=b―d A,D不正确;c=2,d=1时,ad=bc,B不正确. 2.D解:因为x,y>0,且1x+2+4y+3=12,则x+y=(x+2)+(y+3)―5=2(1x+2+4y+3)[(x+2)+(y+3)]―5=2(5+y+3x+2+4(x+2)y+3)―5≥2(5+2y+3x+2⋅4(x+2)y+3―5=13,当且仅当y+3x+2=4(x+2)y+3,即x=4,y=9时等号成立,则x+y的最小值为13.3.D由基本不等式得x+2y=(x+2y)(2x +1y)=4yx+xy+4≥24yx⋅xy+4=8,当且仅当4yx=xy,由于x>0,y>0,即当x=2y时,等号成立,所以,x+2y的最小值为8,由题意可得m2+2m<8,即m2+2m―8<0,解得―4<m<2,因此,实数m的取值范围是(―4,2),4.A从题设可得15y+35x=1,则3x+4y=15(3x+4y)(1y+3x)=15(3x y+12yx+13)≥15(12+13)=5,5.A6.B7.C8.C不等式f(x)≤1可化为|2x―a|≤2―x,有―2―x≤a―2x≤2―x,有2x―2―x≤a≤2x+2―x,当0≤x≤1时,2x+2―x≥22x×2―x=2(当且仅当x=0时取等号),2x―2―x≤2―12=32,故有32≤a≤2。
高中数学必修一第二章一元二次函数方程和不等式经典大题例题(带答案)

高中数学必修一第二章一元二次函数方程和不等式经典大题例题单选题1、实数a,b满足a>b,则下列不等式成立的是()A.a+b<ab B.a2>b2C.a3>b3D.√a2+b2<a+b答案:C分析:利用不等式的性质逐一判断即可.A,若a=1,b=0,则a+b>ab,故A错误;B,若a=1,b=−2,则a2<b2,故B错误;C,若a>b,则a3−b3=(a−b)(a2+ab+b2)=(a−b)[(a+b2)2+3b24]>0,所以a3>b3,故C正确;D,若a=1,b=−2,则√a2+b2>a+b,故D错误.故选:C2、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a(元/个)的取值范围应是()A.90<a<100B.90<a<110C.100<a<110D.80<a<100答案:A分析:首先设每个涨价x元,涨价后的利润与原利润之差为y元,结合条件列式,根据y>0,求x的取值范围,即可得到a的取值范围.设每个涨价x元,涨价后的利润与原利润之差为y元,则a=x+90,y=(10+x)⋅(400−20x)−10×400=−20x2+200x.要使商家利润有所增加,则必须使y>0,即x2−10x<0,得0<x<10,∴90<x+90<100,所以a的取值为90<a<100.故选:A3、已知y=(x−m)(x−n)+2022(n>m),且α,β(α<β)是方程y=0的两实数根,则α,β,m,n的大小关系是()A.α<m<n<βB.m<α<n<βC.m<α<β<n D.α<m<β<n答案:C分析:根据二次函数图像特点,结合图像平移变换即可得到答案.∵α,β为方程y=0的两实数根,∴α,β为函数y=(x−m)(x−n)+2022的图像与x轴交点的横坐标,令y1=(x−m)(x−n),∴m,n为函数y1=(x−m)(x−n)的图像与x轴交点的横坐标,易知函数y= (x−m)(x−n)+2022的图像可由y1=(x−m)(x−n)的图像向上平移2022个单位长度得到,所以m<α<β<n.故选:C.4、关于x的不等式ax2−|x|+2a≥0的解集是(−∞,+∞),则实数a的取值范围为()A.[√24,+∞)B.(−∞,√24]C.[−√24,√24]D.(−∞,−√24]∪[√24,+∞)答案:A分析:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,分x=0和a≠0两种情况讨论,结合基本不等式即可得出答案.解:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,当x=0时,a≥0,当a≠0时,a≥|x|x2+2=1|x|+2|x|,因为1|x|+2|x|≤2√|x|⋅2|x|=√24,所以a≥√24,综上所述a∈[√24,+∞). 故选:A.5、不等式1+5x −6x 2>0的解集为( )A .{x|x >1或x <−16}B .{x |−16<x <1 }C .{x|x >1或x <−3}D .{x |−3<x <2 } 答案:B分析:解一元二次不等式,首先确保二次项系数为正,两边同时乘−1,再利用十字相乘法,可得答案, 法一:原不等式即为6x 2−5x −1<0,即(6x +1)(x −1)<0,解得−16<x <1,故原不等式的解集为{x |−16<x <1 }.法二:当x =2时,不等式不成立,排除A ,C ;当x =1时,不等式不成立,排除D . 故选:B .6、已知正实数a ,b 满足a +1b=2,则2ab +1a的最小值是( )A .52B .3C .92D .2√2+1 答案:A分析:由已知得, a =2−1b 代入得2ab +1a =2(2b −1)+b2b−1,令2b −1=t ,根据基本不等式可求得答案. 解:因为a +1b=2,所以a =2−1b>0,所以0<b <2 ,所以2ab +1a =2(2−1b )b +b 2b−1=2(2b −1)+b2b−1, 令2b −1=t ,则b =t +12,且−1<t <3 ,所以2ab +1a =2t +t +12t=2t +12t +12≥2√2t ⋅12t +12=52,当且仅当2t =12t ,即t =12,b =34,a =23时,取等号,所以2ab +1a 的最小值是52. 故选:A.7、已知−1≤x +y ≤1,1≤x −y ≤5,则3x −2y 的取值范围是( ) A .[2,13]B .[3,13]C .[2,10]D .[5,10] 答案:A分析:设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,求出m,n 的值,根据x +y,x −y 的范围,即可求出答案.设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,所以{m −n =3m +n =−2,解得:{m =12n =−52,3x −2y =12(x +y )+52(x −y ), , 因为−1≤x +y ≤1,1≤x −y ≤5,所以3x −2y =12(x +y )+52(x −y )∈[2,13], 故选:A.8、已知a >b >0,下列不等式中正确的是( ) A .ca >cb B .ab <b 2C .a −b +1a−b ≥2D .1a−1<1b−1 答案:C分析:由a >b >0,结合不等式的性质及基本不等式即可判断出结论. 解:对于选项A ,因为a >b >0,0<1a<1b,而c 的正负不确定,故A 错误;对于选项B ,因为a >b >0,所以ab >b 2,故B 错误;对于选项C ,依题意a >b >0,所以a −b >0,1a−b >0,所以a −b +1a−b ≥2√(a −b )×1a−b =2,故C 正确; 对于选项D ,因为a >b >0,a −1>b −1>−1,1a−1与1b−1正负不确定,故大小不确定,故D 错误;故选:C. 多选题9、已知函数y =ax 2+bx -3,则下列结论正确的是( ) A .关于x 的不等式ax 2+bx -3<0的解集可以是{x |x >3 } B .关于x 的不等式ax 2+bx -3>0的解集可以是∅C .函数y =ax 2+bx -3的图象与x 轴正半轴可以有两个交点D .“关于x 的方程ax 2+bx -3=0有一个正根和一个负根”的充要条件是“a >0” 答案:BCD分析:根据不等式的解集求出a 、b ,再解不等式ax 2+bx -3<0可判断A ;取a =-1,b =0,解不等式-x 2-3>0可判断B ;取a =-1,b =4可判断C ;根据根的分布、充要条件的定义可判断D . 若不等式ax 2+bx -3<0的解集是{x |x >3},则a =0且3b -3=0,得b =1,而当a =0,b =1时,不等式ax 2+bx -3<0,即x -3<0,得x <3,与x >3矛盾,故A 错误; 取a =-1,b =0,此时不等式-x 2-3>0的解集为∅,故B 正确;函数y =ax 2+bx -3的图象与x 轴正半轴可以有两个交点,即ax 2+bx -3=0可以有2个正根,取a =-1,b =4,则由y =-x 2+4x -3=0,得x =1或3,故C 正确;若关于x 的方程ax 2+bx -3=0有一个正根和一个负根,则{a ≠0,−3a<0,得a >0,若a >0,则Δ=b 2+12a >0,故关于x 的方程ax 2+bx -3=0有两个不等的实根x 1,x 2, 且x 1x 2=-3a <0,即关于x 的方程ax 2+bx -3=0有一个正根和一个负根.因此“关于x 的方程ax 2+bx -3=0有一个正根和一个负根”的充要条件是“a >0”,故D 正确. 故选:BCD .10、已知x ,y 是正实数,则下列选项正确的是( ) A .若x +y =2,则1x+1y 有最小值2B .若x +y =3,则x(y +1)有最大值5C .若4x +y =1,则2√x +√y 有最大值√2D .x4+y 2x+1y有最小值94答案:AC分析:将已知转化,再利用基本不等式可判断ABC 选项;利用特值法判断选项D 。
人教A版(2019)数学必修第一册第二章一元二次函数、方程和不等式单元测试

人教A版(2019)数学必修第一册第二章一元二次函数、方程和不等式单元测试一、单选题(共15题;共30分)1.(2分)不等式(12−x)(x−13)>0的解集为()A.{x|13<x<12}B.{x|x>12}C.{x|x<13}D.{x|x<13或 x>12}2.(2分)已知t=a+4b,s=a+b2+4,则t和s的大小关系是()A.t>s B.t≥s C.t<s D.t≤s 3.(2分)如果a<0,b>0,那么下列不等式中正确的是()A.1a<1bB.√−a<√b C.a2<b2D.|a|>|b|4.(2分)若a>b,x>y,则下列不等式正确的是()A.a+x>b+y B.a-x>b-y C.ax>by D.x a>yb5.(2分)若x>0,y>0,且2x+8y=1,则xy有()A.最大值64B.最小值C.最小值D.最小值646.(2分)记min{a,b,c}为a,b,c中的最小值,若x,y为任意正实数,则M=min{2x,1y,y+1x}的最大值是()A.B.2C.D.7.(2分)下列说法正确的是()A.若,则B.若,则C.若,则D.若,则8.(2分)若0<a<1,则不等式(x−a)(x−1a)>0的解集是()A.B.C.{x|x<a或x>1a}D.{x|x<1a或x>a}9.(2分)已知a,b∈R,且P=a+b2,Q=√a2+b22,则P,Q的关系是()A.P≥Q B.P>Q C.P≤Q D.P<Q10.(2分)已知a>0,b>0,则(a+b)(4a +16b)的最小值为()A.32B.36C.39D.4511.(2分)已知x>0,y>0,x+3y+xy=9,则x+3y的最小值为()A.8B.6C.4D.212.(2分)若关于x的不等式x2−ax+2>0在区间[1,5]上有解,则a的取值范围是()A.(2√2,+∞)B.(−∞,2√2)C.(−∞,3)D.(−∞,275)13.(2分)设正实数x,y满足x>12,y>1,不等式4x2y−1+y22x−1≥m恒成立,则m的最大值为()A.2√2B.4√2C.8D.1614.(2分)若a,b,c>0且,则2a+b+c的最小值为()A.B.C.D.15.(2分)已知一元二次不等式f(x)≤0的解集为{x|x≤12,或x≥3},则f(e x)>0的解集为()A.{x|x<−ln2,或x>ln3}B.{x|ln2<x<ln3}C.{x|x<ln3}D.{x|−ln2<x<ln3}二、填空题(共7题;共7分)16.(1分)关于x的不等式−x2+x+42>0的解集为17.(1分)不等式4−xx+2≥0的解集是.18.(1分)设a=√7+√10,b=√3+√14,则a与b的大小关系是.19.(1分)若点A(a,b)(a>0,b>0)在直线2x+y−1=0上,则1a+2b的最小值是.20.(1分)函数f(x)=6x1+x2在区间[0,3]的最大值为21.(1分)使不等式a2+b2+2>λ(a+b)对任意的正数a,b恒成立的实数λ的取值范围是.22.(1分)已知矩形ABCD(AB>AD)的周长为12,若将它关于对角线AC折起后,使边AB与CD交于点P(如图所示),则△ADP面积的最大值为.三、解答题(共4题;共35分)23.(5分)已知不等式ax2﹣bx﹣1≥0的解集是[ −12,−13],求不等式x2﹣bx﹣a<0的解集.24.(10分)(1)(5分)设a=3x2−x+1,b=2x2+x,试比较a与b的大小;(2)(5分)已知0<a<b且a+b=1,试比较a2+b2与b的大小. 25.(10分)(1)(5分)已知x>3,求y=x+4x−3的最小值,并求取到最小值时x的值;(2)(5分)已知x>0,y>0,x2+y3=2,求xy的最大值,并求取到最大值时x、y的值.26.(10分)已知函数f(x)=x2+ax+3.(1)(5分)若a=−4,求不等式f(x)≤0的解集;(2)(5分)若不等式f(x)>0的解集为R,求实数a的取值范围.答案解析部分1.【答案】A【解析】【解答】∵(12−x)(x −13)>0∴(x −12)(x −13)<0解得: 13<x <12 ,即不等式 (12−x)(x −13)>0 的解集为 {x|13<x <12}故答案为:A【分析】由已知利用一元二次不等式的解法,即可求出不等式的解集.2.【答案】D【解析】【解答】 t −s =4b −b 2−4=−(b −2)2≤0 ,故 t ≤s .故答案为:D.【分析】采用作差法,结合完全平方公式,即可比较二者大小.3.【答案】A【解析】【解答】A 、如果a <0,b >0,那么1a <0,1b>0 ,∴1a <1b ,A 符合题意; B 、取a =﹣2,b =1,可得 √−a >√b ,B 不符合题意; C 、取a =﹣2,b =1,可得a 2>b 2,C 不符合题意; D 、取a =−12 ,b =1,可得|a|<|b|,D 不符合题意;故答案为:A .【分析】利用不等式的性质找出正确的不等式。
人教版高一数学必修一第二单元《一元二次函数、方程和不等式》单元练习题(含答案)

人教版高一数学必修一第二单元《一元二次函数、方程和不等式》单元练习题(含答案)一、单选题 1.已知1x >,则91x x +-的最小值为( ) A .4B .6C .7D .102.某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(=新工件的体积材料利用率原工件的体积)( )A .89πB .169πC .321)πD .321)π3.已知正项等比数列{}n a 满足:7652a a a =+,若存在两项,m n a a ,使得2116m n a a a =,则14m n +的最小值为( ) A . 43B .9C .32D .不存在4.对任意0,6x π⎡⎤∈⎢⎥⎣⎦任意()0,y ∈+∞,不等式292cos sin 4y x a x y -≥-恒成立,则实数a 的取值范围是 A .(],3-∞B .22,3⎡⎤-⎣⎦C .22,22-⎡⎣D .[]3,3-5.下列函数中,y 的最小值为2的是( )A .1y xx=+B .2y =C .x x y e e -=+D .1sin 0sin 2y x x x π⎛⎫=+<< ⎪⎝⎭6.关于x 的不等式22280(0)x ax a a --<>的解集为12(,)x x ,且:2115x x -=,则a =( ) A .52B .72C .154D .1527.若,a b 为正实数,且1a b +=,则122a b+的最小值为 A .5 B .4C .92D .38.不等式102xx -≥+的解集为( ). A .[]2,1- B .(]2,1-C .[)2,1-D .(][),21,-∞-+∞9.如果不等式ax 2+bx+c<0 (a≠0)的解集是空集,那么 ( ) A .a<0,且b 2-4ac>0 B .a<0且b 2-4ac≤0 C .a>0且b 2-4ac≤0 D .a>0且b 2-4ac>010.若直线1(00)x ya b a b+=>>,过点()1,2,则2a b +的最小值为( )A .6B .4+C .8D .911.已知0a b <<,则( ) A .11a b< B .2a ab <C .22a b <D .11a b a<- 12.若0x >,则1x x -+的最小值为( )A .12B .1CD .2第II 卷(非选择题)二、填空题13.若13a b -<+<,24a b <-<,则b 的取值范围___________.14.已知等差数列{}n a 的公差为d ,关于x 的不等式2120dx a x +≥的解集为[]0,9,则使数列{}n a 的前n 项和n S 取最大值的正整数n 的值是______.15.设0,0a b >>.若2是2a 与2b 的等比中项,则11a b+的最小值为 . 16.已知p :2230x x --<,若1a x a -<-<是p 的一个必要不充分条件,则实数a 的取值范围是_________.三、解答题17.解不等式2024x x <--<18.不等式2260(0)kx x k k -+->≠(1)若不等式的解集为{|3x x <-或}2x >-,求k 的值 (2)若不等式的解集为R ,求k 的取值范围19.已知对于正数a 、b ,存在一些特殊的形式,如:22a b a b ++、222a b +、2a b +等. (1)判断上述三者的大小关系,并证明;(2)定义:间距22221||2a b a b a b ++∆=-+,间距222||22a b a b++∆=-,判断两者的大小关系,并证明.20.已知a,b,c 为互不相等的非负数,求证:a 2+b 2+c 2>(++).21.已知函数()222y ax a x =-++,a R ∈(1)32y x <-恒成立,求实数a 的取值范围; (2)当0a >时,求不等式0y ≥的解集;(3)若存在0m >使关于x 的方程()21221ax a x m m-++=++有四个不同的实根,求实数a 的取值.22.如图所示,设矩形()ABCD AB BC >的周长为24,把它沿AC 翻折,翻折AB '后交DC 于点P ,设AB x =.(1)用x 表示DP ,并求出x 的取值范围; (2)求ADP △面积的最大值及此时x 的值.23.证明下列不等式:(167225; (2)如果0a >,0b >,则lg lg lg 22a b a b++≥24.某农贸公司按每担200元的价格收购某农产品,并按每100元纳税10元(又称征税率为10个百分点)进行纳税,计划可收购a 万担,政府为了鼓励收购公司多收购这种农产品,决定将征税降低x (0x >)个百分点,预测收购量可增加2x 个百分点. (1)写出税收y (万元)与x 的函数关系式;(2)要使此项税收在税率调整后不少于原计划税收的83.2%,试确定x 的取值范围25.在一个限速40km /h 的弯道上,甲.乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事发后现场测得甲车的刹车距离略超过12m ,乙车的刹车距离略超过10m .又知甲,乙两种车型的刹车距离s m 与车速x km /h 之间分别有如下关系:20.10.01s x x =+甲,20.050.005s x x =+乙.问超速行驶谁应负主要责任?参考答案1.C2.A3.C4.A5.C6.A7.C8.B9.C10.C11.D12.D 13.51,22⎛⎫- ⎪⎝⎭14.5 15.4 16.2a >17.{x|21x -<<-或23}x <<18.(1)25k =-;(2),⎛-∞ ⎝⎭19.(1)222a b a ba b++≥≥+;证明见解析;(2)12∆≥∆,证明见解析. 20.见解析21.(1)(4,0]-;(2)当02a <<时,不等式的解集为 {|1x x ≤或2}x a≥;当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a≤或1}x ≥;(3)(,4-∞--22.(1)()7212612DP x x=-<<;(2)当x =108-. 23.(1)见解析;(2)见解析 24.(1)1(50)?(10)(010)25y a x x x =+-<<;(2){|02}.x x <≤. 25.乙应负主要责任.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修一第二章《一元二次函数、方程和不等式》训练题 (5)一、选择题(本大题共11小题,共55.0分)1.已知命题p:复数z=2−i的虚部是−i;命题q:ax2+ax+1>0恒成立,则a∈(0,4).下列命题为真命题的是()A. p∧qB. p∨qC. ¬p∧qD. ¬p∧¬q2.二次不等式ax2+bx+1>0的解集为{x|−1<x<13},则ab的值为()A. −6B. 6C. −5D. 53.设a,b,c为锐角△ABC内角A,B,C的对边,且满足cosAa +cosBb=2√3sinC3a,若b=2,则△ABC面积的最大值为A. √3B. 2√3C. 2√33D. 124.已知集合M={x|x(x−2)<0},N={−2,−1,0,1,2},则M⋂N=A. {0,1}B. {−2,−1}C. {1}D. {0,1,2}5.如果f(x)=ax2−(2−a)x+1在区间(−∞,12]上为减函数,则a的取值范围是()A. (0,1]B. [0,1)C. [0,1]D. (0,1)6.设a>0,b>0,lg√2是lg4a与lg2b的等差中项,则2a +1b的最小值为()A. 2√2B. 3C. 4D. 97.已知三棱锥A−BCD的所有顶点都在球O的球面上,AD⊥平面ABC,∠BAC=90°,AD=2,若球O的表面积为29π,则三棱锥A−BCD的侧面积的最大值为()A. 5√2+254B. 5√2+5√414C. 6√3+272D. 10√2+2528.已知P是椭圆x24+y2=1上一动点,A(−2,1),B(2,1),则cos⟨PA⃗⃗⃗⃗⃗ ,PB⃗⃗⃗⃗⃗ ⟩的最大值是()A. √6−√24B. √1717C. √17−√76D. √14149.若关于x的不等式ax+6+|x2−ax−6|⩾4恒成立,则实数a的取值范围是()A. (−∞,1]B. [−1,1]C. [−1,+∞)D. (−∞,−1]∪[1,+∞)10.若∃x0∈[12,2],使得2x02−λx0+1<0成立是假命题,则实数λ的取值范围是()A. (−∞,2√2]B. (2√2,3]C. [2√2,92] D. {3}11.已知函数f(x)是定义域为R的偶函数,当x>0时,f(x)=ln(1+x2)+x,则不等式f(3x+2)>1+ln2的解集为()A. (−13,+∞) B. (−∞,1)C. (−∞,−1)⋃(−13,+∞) D. (−∞,13)⋃(1,+∞)二、不定项选择题(本大题共1小题,共4.0分)12.下列说法中正确命题为()A. 函数f(x)=x−1与g(x)=x的图象没有公共点x+1B. 若定义在R上的函数f(x)满足,则函数f(x)周期为6C. 若对于任意x∈(1,3),不等式x2−ax+2<0恒成立,则a>113D. 函数的值域为R,则三、填空题(本大题共4小题,共20.0分)13.不等式[b−(a−2)]2+[lnb−(a−1)]2≥m2−m对任意b>0,a∈R恒成立,则实数m的取值范围是_________.14.设a<0,则关于x的不等式42x2+ax−a2<0的解集为____.15.已知向量a⃗=(1,2),平面向量b⃗ 满足 (2a⃗+b⃗ )·a⃗=√5|b⃗ |,则 (b⃗ −4a⃗ )·b⃗ 的最小值等于________..下列命题中:①0<a<1,②1<b<3,16.已知实数a、b、c满足a<b<c,{a+b+c=6ab+bc+ca=9③3<c<4,④(b−5)(c−5)的最小值是15,所有真命题为________.4四、解答题(本大题共4小题,共48.0分)17.已知x,y满足2x−y−1=0,求xy+4y的最大值。
(x+1)218.若存在实数x,使不等式ae2x+2e x−1≥0成立,则实数a的取值范围是多少?19.某地开发一片荒地,如图,荒地的边界是以C为圆心,半径为1千米的圆周.已有两条互相垂直的道路OE,OF,分别与荒地的边界有且仅有一个接触点A,B.现规划修建一条新路(由线段MP,PQ⌢,线段QN三段组成),其中点M,N分别在OE,OF上,且使得MP,QN所在直线分.记∠PCA=2θ(道路宽度均忽别与荒地的边界有且仅有一个接触点P,Q,PQ⌢所对的圆心角为π6略不计).(1)若θ=5π,求QN的长度;12(2)求新路总长度的最小值.20.已知▵ABC中,内角A,B,C所对的边分别是a,b,c,且acos B=bcos A,BC边上的中线AD的长为4.(1)若A=π,求c;6(2)求a+√2c的最大值.-------- 答案与解析 --------1.答案:D解析:【分析】本题考查含逻辑联结词的命题真假的判断,复合(或、且、非)命题的判定,属于基础题. 先判断p ,q 的真假,再由复合命题的真值表判断即可. 【解答】解:命题p :复数z =2−i 的虚部是−1,故p 是假命题; 命题q :ax 2+ax +1>0恒成立,则 (1)a =0时,不等式成立,(2){a >0Δ=a 2−4a <0,解得0<a <4,则a ∈[0,4),故q 是假命题, 即p ,q 均为假命题, 则均为真命题,则p ∧q ,p ∨q ,¬p ∧q 都是假命题,¬p ∧¬q 是真命题, 故选D . 2.答案:B解析:【分析】本题考查一元二次不等式的解法,属基础题.根据一元二次不等式ax 2+bx +1>0的解集为{x |−1<x <13}可得方程ax 2+bx +1=0的解为−1,13利用韦达定理即可解答本题. 【解答】解:∵一元二次不等式ax 2+bx +1>0的解集为{x {x |−1<x <13} ∴方程ax 2+bx +1=0的解为−1,13, ∴−1+13=−23=−ba ,(−1)×13=−13=1a , ∴a =−3,b =−2, ∴ab =6, 故选B .3.答案:A解析:【分析】本题考查了正弦定理、余弦定理、三角形面积公式和基本不等式,属于中档题. 由正弦定理得cosA sinA+cosB sinB=2√3sinC3sinA,可得B =π3,再由余弦定理和基本不等式可得ac ≤4,即可得出△ABC 面积的最大值. 【解答】 解:由cosA a+cosB b=2√3sinC 3a, 根据正弦定理得cosA sinA+cosB sinB=2√3sinC 3sinA,即cosAsinB+sinAcosBsinAsinB=sin(A+B)sinAsinB=sinCsinAsinB =2√3sinC3sinA, 可得sinB =√32,又,B =π3,由余弦定理得b 2=a 2+c 2−2accosB =a 2+c 2−ac ⩾2ac −ac =ac ,所以ac ≤4, 当且仅当a =c 等号成立,则△ABC 面积的最大值为12acsinB ⩽12×4×√32=√3.故选A . 4.答案:C解析:【分析】本题考查集合的交集及其运算,首先根据一元二次不等式化简集合M ,然后求出交集即可,是容易题. 【解答】解:集合M ={x|x(x −2)<0}={x |0<x <2}, 因N = {−2,−1,0,1,2}, 则M⋂N = {1}, 故选C . 5.答案:C解析:【分析】本题主要考查二次函数的性质,体现了分类讨论以及转化的数学思想,属于基础题.当a =0时,f(x)=1−2x ,满足条件.当a ≠0时,由题意可得{a >02−a 2a≥12,求得a 的范围.综合可得a 的取值范围. 【解答】解:当a =0时,f(x)=1−2x ,满足在区间(−∞,12)上为减函数. 当a ≠0时,由于f(x)=ax 2−(2−a)x +1的图象对称轴为x =2−a2a,且函数在区间(−∞,12)上为减函数, ∴{a >02−a 2a ≥12,求得0<a ≤1.综上可得,0≤a≤1,故选:C.6.答案:D解析:【分析】本题主要考查基本不等式的应用,利用等差中项的定义建立a,b的关系是解决本题的关键.根据等差中项的定义建立a,b的关系,然后利用基本不等式进行求解即可.【解答】解:是lg4a与lg2b的等差中项,∴2lg√2=lg4a+lg2b,即lg2=lg(4a·2b),∴4a·2b=22a+b=2,即2a+b=1.∵2a+1b=(2a+1b)×1=(2a+1b)(2a+b)=4+1+2ba +2ab,又∵a>0,b>0,∴2a +1b≥5+2√2ba⋅2ab=9,当且仅当2ba =2ab即a=b=13时取等号,∴2a +1b的最小值为9.故选:D.7.答案:A解析:【分析】本题考查三棱锥的外接球、三棱锥的侧面积、基本不等式等基础知识,考查空间想象能力、逻辑思维能力、运算求解能力,考查转化与数形结合的思想方法,是中档题.由题意画出图形,设球O的半径为R,AB=x,AC=y,由球O的表面积为29π,可得x2+y2=25,写出侧面积,再由基本不等式求最值.【解答】解:设球O的半径为R,AB=x,AC=y,由4πR2=29π,得4R2=29.可将三棱锥补成一个长方体,∴x 2+y 2+22=(2R)2,∴x 2+y 2=25.三棱锥A −BCD 的侧面积S =S △ABD +S △ACD +S △ABC =12⋅2x +12⋅2y +12xy =x +y +12xy . 由x 2+y 2≥2xy ,得xy ≤252,当且仅当x =y =5√22时取等号, 由(x +y)2=x 2+2xy +y 2≤2(x 2+y 2),得x +y ≤5√2,当且仅当x =y =5√22时取等号, ∴S ≤5√2+12×252=5√2+254,当且仅当x =y =5√22时取等号, ∴三棱锥A −BCD 的侧面积的最大值为5√2+254.故选:A . 8.答案:A解析:【分析】本题考查直线与椭圆的位置关系,考查两角和的正切公式以及基本不等式求最值的问题,题目较难. 设∠APB =θ,∠APC =α,∠BPD =β,P(x,y).tanθ=4(1−y)(1−y)2−4y 2.然后利用换元法和基本不等式求出tanθ的最小值,计算出此时θ=75°,并由此得到cos ⟨PA ⃗⃗⃗⃗⃗ ,PB ⃗⃗⃗⃗⃗ ⟩的最大值. 【解答】 解: 如图:如图,设∠APB =θ,∠APC =α,∠BPD =β. 则tanθ=−tan(α+β)=tanα+tanβtanαtanβ−1. 设P(x,y),因为A(−2,1),B(2,1). 所以tanα=1−y x+2,tanβ=1−y 2−x ,且x 24+y 2=1.所以tanθ=1−y 2+x +1−y2−x 1−y 2+x ·1−y2−x−1=4(1−y)(1−y)2−(4−x 2)=4(1−y)(1−y)2−4y 2.令1−y =t ,则y =1−t,t ∈[0,2]. 所以tanθ=4tt 2−4(1−t)2=4t−3t 2+8t−4=48−(3t+4t)⩾48−4√3=2+√3,当且仅当3t =4t 即t =2√33时,取等号.由tanθ⩾2+√3知,.所以tanθ有最小值2+√3,此时θ=75°. 因此cosθ有最大值,且最大值为cos75°=√6−√24.故选A . 9.答案:B解析:【分析】本题考查了不等式恒成立应用问题,也考查了含有绝对值的不等式解法问题,是较难题.由绝对值的定义知问题等价于x 2−ax −6≥4−ax −6①,或x 2−ax −6≤−4+ax +6②;求出①的解集,得出②的解集情况,由此得出不等式组,从而求出a 的取值范围. 【解答】解:关于x 的不等式ax +6+|x 2−ax −6|≥4恒成立,等价于x 2−ax −6≥4−ax −6①,或x 2−ax −6≤−4+ax +6②; 解①得,x ≥2或x ≤−2;化简②式,得x 2−2ax −8≤0,设该不等式的解集为C , 由题意知,(−2,2)⊆C ; 设f(x)=x 2−2ax −8,则{f(−2)≤0f(2)≤0,即{4+4a −8≤04−4a −8≤0, 解得−1≤a ≤1.所以实数a 的取值范围是[−1,1]. 故选B . 10.答案:A解析:【分析】本题以命题的真假判断与应用为载体,考查了特称命题,不等式恒成立问题,对勾函数性质求最值,考查分析能力和运用能力,属于中档题.若“∃x 0∈[12,2],使得2x 02−λx 0+1<0成立”是假命题,即“∃x 0∈[12,2],使得λ>2x 0+1x 0成立”是假命题,即等价于“∀x ∈[12,2],使得λ≤2x +1x 成立”是真命题,再结合对勾函数性质,求出x ∈[12,2]时,2x +1x 的最值,可得实数λ的取值范围. 【解答】解:∵若“∃x 0∈[12,2],使得2x 02−λx 0+1<0成立”是假命题, 即“∃x 0∈[12,2],使得λ>2x 0+1x 0成立”是假命题,即等价于“∀x∈[12,2],使得λ≤2x+1x成立”是真命题,令f(x)=2x+1x ,x∈[12,2],由对勾函数易知当x∈[12,2]时,f(x)在[12,√22]上单调递减,在(√22,2]上单调递增,∴当x=√22时,函数f(x)取最小值,即f(x)min=f(√22)=2√2,∴λ≤f(x)min=2√2,故实数λ的取值范围为(−∞,2√2],故选A.11.答案:C解析:【分析】本题考查函数的奇偶性与单调性、不等式的解法,借助偶函数性质把不等式具体化是解决本题的关键,属于基础题.根据题意得出当x>0时,f(x)为增函数,由偶函数性质得:f(−x)=f(x),不等式f(3x+2)>1+ ln 2可化为f(|3x+2|)>f(1),求出x的范围即可.【解答】解:∵当x>0时,f(x)=ln (1+x2)+x,∴当x>0时,f(x)为增函数,∵函数f(x)是定义域为R的偶函数,且f(1)=1+ln2,∴不等式f(3x+2)>1+ln 2可化为f(|3x+2|)>f(1),∴|3x+2|>1,解得3x+2>1或3x+2<−1,即x>−13或x<−1,∴不等式f(3x+2)>1+ln 2的解集为.故选C.12.答案:AB解析:【分析】本题综合考查了函数的性质,涉及交点、周期、恒成立和值域问题,考查推理能力和计算能力,属于中档题.A考查方程f(x)=g(x)解的个数;B推导f(x+6)=f(x);C转化为a>x+2x 在(1,3)上恒成立,根据对勾函数的性质可求x+2x<113,故可求a的取值范围;D:x2−ax−a可取所有正数,则Δ=a2+4a≥0,解之即可.【解答】解:令f(x)=g(x)⇒x−1x+1=x,去分母得x2=−1,可得方程无解即图象无交点,A正确;由f(x+2)=−f(x−1),将x换成x+1可得f(x+3)=−f(x)①,再将此式中x换成x+3,得f(x+6)=−f(x+3)②,由①②得f(x+6)=f(x),从而可得函数的周期为6,B正确;由任意x∈(1,3),不等式x2−ax+2<0恒成立⇒a>x+2x在(1,3)上恒成立,函数f(x)=x+2x 在(1,√2)上单调递减,在(√2,3)上单调递增,f(1)=3,f(3)=113,f(3)>f(1),∴a⩾113,“=”可以取到,故C错误;函数y=log2(x2−ax−a)的值域为R,即x2−ax−a可取(0,+∞)之间的一切值,∴Δ=a2+4a≥0,解得a∈[0,+∞)∪(−∞,−4],∴a∈(−4,0)不正确,故D错误.故选AB.13.答案:[−1,2]解析:【分析】本题考查导数的几何意义的应用,考查学生的推理能力与计算求解能力,属于中档题.设P(b,lnb),Q(a−2,a−1),可得|PQ|2≥m2−m,又P,Q分别在曲线f(x)=lnx及直线l:y=x+1上,计算可得f(x)在点P(1,0)处的切线与直线l平行,求出点P到直线l的距离d,即|PQ|最小值为d,进而解不等式m2−m≤2即可.【解答】解:由题意,设P(b,lnb),Q(a−2,a−1),则|PQ|2=[b−(a−2)]2+[lnb−(a−1)],即|PQ|2≥m2−m,又P,Q分别在曲线f(x)=lnx及直线l:y=x+1上,且f′(x)=1x,令1x=1,解得x=1,且f(1)=0,所以f(x)在点P(1,0)处的切线与直线l平行,又点P到直线l的距离为d=√2=√2,所以|PQ|最小值为√2,所以m2−m≤2,解得−1≤m≤2.故答案为:[−1,2].14.答案:(a7,−a6)解析:【分析】本题考查了含参数的一元二次不等式求解集的方法,是一道基础题.先求出对应方程的解,根据a小于0判断出两解的大小,即可写出原不等式的解集.【解答】解:不等式42x2+ax−a2<0,即(6x+a)(7x−a)<0,对应方程的实数根为x1=−a6,x2=a7,因为a<0,所以−a6>a7,所以关于x的不等式42x2+ax−a2<0的解集为:(a7,−a6).故答案为(a7,−a6).15.答案:20解析:【分析】本题考查向量数量积的应用,二次函数求最值,属于基础题型.由已知条件变形可得a⃗⋅b⃗ =√5|b⃗ |−10,再利用数量积的公式,将(b⃗ −4a⃗ )·b⃗ 变形为关于|b⃗ |的二次函数求最小值.【解答】解:(2a⃗+b⃗ )⋅a⃗=2a⃗2+a⃗⋅b⃗ =√5|b⃗ |即10+a⃗⋅b⃗ =√5|b⃗ |,即a⃗⋅b⃗ =√5|b⃗ |−10,(b⃗ −4a⃗ )⋅b⃗ =b⃗ 2−4a⃗⋅b⃗ =|b⃗ |2−4√5|b⃗ |+40=(|b⃗ |−2√5)2+20,当|b⃗ |=2√5时,可得(b⃗ −4a⃗ )⋅b⃗ 的最小值是20.故答案为2016.答案:①②③④解析:【分析】本题考查了不等式的性质、一元二次方程的根与系数的关系、一元二次不等式的解法,属于较难题.构造函数f(x)=(x−a)(x−b)(x−c),求函数的导数,利用导数函数的单调性以及最值,结合不等式的性质进行判断即可.【解答】解:由a+b+c=6,可得b+c=6−a,由ab+bc+ac=9,可得bc=9−a(b+c)=9−a(6−a)=a2−6a+9,∴(b−5)(c−5)=bc−5(b+c)+25=a2−6a+9−5(6−a)+25=a2−a+4=(a−12)2+15 4≥154,当a=12,b=11−√214,c=11+√214时,取等号,故④正确,由a <b <c ,a +b +c =6,可得6>3a ,∴2>a .因为:b +c =6−a ,bc =a 2−6a +9,则b ,c 为方程x 2−(6−a)x +(a 2−6a +9)=0的两个实数根,△>0,及a <2,解得0<a <2. ∴x =(6−a)±√12a−3a 22, 由a <b <c ,取b =(6−a)−√12a−3a 22, 则(6−a)−√12a−3a 22>a ,化为a 2−4a +3>0, 又0<a <2,解得0<a <1.因此①正确;②由a <b <c ,0<a <1,a +b +c =6,可得b ≥1,可得:a +c =6−b ,ac =b 2−6b +9, 则a ,c 为方程x 2−(6−b)x +(b 2−6b +9)=0的两个实数根, △>0,及1≤b ,解得1≤b <4.解得x =(6−b)±√12b−3b 22,取c =(6−b)+√12b−3b 22, 由b <c ,化为b 2−4b +3<0,解得1<b <3, 综上可得:1<b <3,因此②正确.③类比①②可知:③正确.综上,所有真命题为①②③④.故答案为①②③④.17.答案:解:因为2x −y −1=0,所以可得, =2+3x−6(x+1)2=f(x),令x −2=t ,若t <0,则f(x)<2,t =0,f(x)=2,若t >0,则f(x)=g(t)=2+3t (t+3)2=2+3t+9t +6⩽2+6+2√t×t =94 等号当且仅当t =3,x =5,y =9时取得,所以xy+4y (x+1)2的最大值为94.解析:本题考查了函数的最值,先由题意对xy+4y (x+1)2进行化简为2x 2+7x−4(x+1)2,分离得到2+3x−6(x+1)2,换元x −2=t ,化为2+3t (t+3)2=2+3t+9t +6再由基本不等式求最值,属中档题.18.答案:解:∵ae 2x +2e x −1⩾0,∴a ≥1−2e xe ⇔a ≥e −2x −2e −x ,令t =e −x >0,所以a ≥t 2−2t =(t −1)2−1,∵t >0,∴(t −1)2−1≥−1.∴a ≥−1.故实数a 的取值范围是[−1,+∞).解析:本题主要考查不等式的恒成立问题,考查特称命题的性质,考查学生的思维能力,属基础题. 通过分离参数转化为求函数最值解决.19.答案:解:(1)因为PQ ⏜所对的圆心角为π6,θ=5π12, 所以∠PCQ =π6,∠PCA =2θ=5π6,连接BC , 则∠BCA =π2,所以∠BCQ =2π−5π6−π2−π6=π2,所以四边形BCQN 中,∠BCQ =∠CBN =∠CQN =π2,所以BCQN 是矩形,从而QN =CB =1.答:QN 的长为1千米.(2)PM =tan∠PCA 2=tanθ,∠BCQ =4π3−2θ, NQ =tan ∠BCQ 2=tan(2π3−θ),PQ ⏜长为π6, 从而PM +NQ =tanθ+tan(2π3−θ)=tanθ+tan 2π3−tanθ1+tan 2π3tanθ=tanθ+√3−tanθ1−√3tanθ, 即PM +NQ =tanθ+√3+tanθ√3tanθ−1=tanθ1+√33tanθtanθ−√33. 其中θ∈(π6,π2),tanθ∈(√33,+∞),tanθ−√33∈(0,+∞), 所以PM +NQ =(tanθ−√33)43tanθ−√33+2√33 ≥2√(tan θ−√33)43tan θ−√332√33=2√3, 当且仅当tanθ−√33=43tanθ−√33,又θ∈(π6,π2),即当且仅当θ=π3时取等号, 答:当∠PCA =2π3时,新路总长度的最小值为2√3+π6千米.解析:本题考查了三角函数模型的应用和基本不等式的实际应用,属于中档题.(1)先求得∠BCQ =∠CBN =∠CQN =π2,可得BCQN 是矩形,故可得答案;(2)求得PM +NQ =(tanθ−√33)43tanθ−√332√33,再结合基本不等式可得答案. 20.答案:解:(1) 由acosB =bcosA 及正弦定理得sinAcosB =sinBcosA ,所以sin(A −B)=0,因为A ,B 为▵ABC 的内角,故B ,所以a =b , 由正弦定理得a sinA =c sinC ,即 c =√3a ,在三角形ABD 中,由余弦定理得,, 解得a =8√77,∴c =8√217. (2)在三角形ADC 中,由余弦定理得a 2=a 24+16−2·a 2·4·cos∠ADC 在三角形ADB 中,由余弦定理得 c 2=a 24+16−2·a 2·4·cos∠ADB 所以a 2+2c 2=64,∴a +√2c ≤√2(a 2+2c 2)=8√2,当且仅当a =√2c ,即a =4√2,c =4时,“=”成立, 所以a +√2c 最大值8√2.解析:本题考查正弦定理,余弦定理在解三角形中的应用,考查计算能力,属中档题.(1) 由acosB =bcosA 及正弦定理得sinAcosB =sinBcosA ,解得sin(A −B)=0,可得,解得c =√3a ,由余弦定理即可解得c 的值.(2) 在三角形ADC 中,由余弦定理得a 2=a 24+16−2·a 2·4·cos∠ADC ,在三角形ADB 中,由余弦定理得c 2=a 24+16−2·a 2·4·cos∠ADB ,联立利用基本不等式解得a +√2c 最大值8√2.。