半导体物理综合练习题(3)参考答案

合集下载

半导体物理习题答案(1-3章)

半导体物理习题答案(1-3章)

第1章 半导体中的电子状态1. 设晶格常数为a 的一维晶格,导带极小值附近能量()c E k 和价带极大值附近能量()v E k 分别为2222100()()3c h k k h k E k m m -=+,22221003()6v h k h k E k m m =-0m 为电子惯性质量,112k a =, 0.314a =nm 。

试求:1) 禁带宽度;2) 导带底电子有效质量; 3) 价带顶电子有效质量;4) 价带顶电子跃迁到导带底时准动量的变化。

解:1) 禁带宽度g E ,根据22100()2()202c dE k h k k h k dk m m -=+=,可求出对应导带能量极小值min E 的k 值:m i n 134k k =, 由题目中()c E k 式可得:min 12min 3104()4c k k k h E E k k m ====; 根据20()60v dE k h k dk m =-=,可以看出,对应价带能量极大值max E 的k 值为:k max = 0;可得max 221max 00()6v k k h k E E k m ====,所以2221min max 2001248g h k h E E E m m a=-== 2) 导带底电子有效质量m n由于2222200022833c d E h h h dk m m m =+=,所以202238nc m h md E dk== 3) 价带顶电子有效质量vn m由于22206v d E h dk m =-,所以20226v nv m h m d E dk ==- 4) 准动量的改变量min max 133()48hh k h k k hk a∆=-==2. 晶格常数为0.25 nm 的一维晶格,当外加102V/m 、107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:设电场强度为E ,电子受到的力f 为dkf hqE dt==(E 取绝对值),可得h dt dk qE =, 所以12012ta h h t dt dk qE qE a===⎰⎰,代入数据得: 34619106.62108.310()1.6102(2.510)t s E E----⨯⨯==⨯⨯⨯⨯⨯ 当E = 102V/m 时,88.310t s -=⨯;当E = 107V/m 时,138.310t s -=⨯。

半导体物理试题及答案

半导体物理试题及答案

半导体物理试题及答案一、单项选择题(每题2分,共20分)1. 半导体材料的导电能力介于导体和绝缘体之间,这是由于()。

A. 半导体的原子结构B. 半导体的电子结构C. 半导体的能带结构D. 半导体的晶格结构答案:C2. 在半导体中,电子从价带跃迁到导带需要()。

A. 吸收能量B. 释放能量C. 吸收光子D. 释放光子答案:A3. PN结形成的基础是()。

A. 杂质掺杂B. 温度变化C. 压力变化D. 磁场变化答案:A4. 半导体器件中的载流子主要是指()。

A. 电子B. 空穴C. 电子和空穴D. 光子答案:C5. 半导体的掺杂浓度越高,其导电性能()。

A. 越好B. 越差C. 不变D. 先变好再变差答案:A二、填空题(每题2分,共20分)1. 半导体的导电性能可以通过改变其________来调节。

答案:掺杂浓度2. 半导体的能带结构中,价带和导带之间的能量差称为________。

答案:带隙3. 在半导体中,电子和空穴的复合现象称为________。

答案:复合4. 半导体器件中的二极管具有单向导电性,其导通方向是从________到________。

答案:阳极阴极5. 半导体的PN结在外加正向电压时,其内部电场会________。

答案:减弱三、简答题(每题10分,共30分)1. 简述半导体的掺杂原理。

答案:半导体的掺杂原理是指通过向半导体材料中掺入少量的杂质元素,改变其电子结构,从而调节其导电性能。

掺入的杂质元素可以是施主杂质(如磷、砷等),它们会向半导体中引入额外的电子,形成N型半导体;也可以是受主杂质(如硼、铝等),它们会在半导体中形成空穴,形成P型半导体。

2. 描述PN结的工作原理。

答案:PN结是由P型半导体和N型半导体结合而成的结构。

在PN结中,P型半导体的空穴会向N型半导体扩散,而N型半导体的电子会向P型半导体扩散。

由于扩散作用,会在PN结的交界面形成一个内建电场,该电场会阻止更多的载流子通过PN结。

半导体物理学习题答案

半导体物理学习题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ηηηηηηηη因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===ηsN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-==ηηηηη所以:准动量的定义:2. 晶格常数为的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆ηsat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππηη补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cmatom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-=η(, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π=(n=0,1,2…)进一步分析an k π)12(+= ,E (k )有极大值,222)ma k E MAXη=( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX η=-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -==ηη (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==η能带底部 an k π2=所以m m n 2*=(5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =第二章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

半导体物理学试题及答案

半导体物理学试题及答案

半导体物理学试题及答案半导体物理学试题及答案(一) 一、选择题1、如果半导体中电子浓度等于空穴浓度,则该半导体以( A )导电为主;如果半导体中电子浓度大于空穴浓度,则该半导体以( E )导电为主;如果半导体中电子浓度小于空穴浓度,则该半导体以( C )导电为主。

A、本征B、受主C、空穴D、施主E、电子2、受主杂质电离后向半导体提供( B ),施主杂质电离后向半导体提供( C ),本征激发向半导体提供( A )。

A、电子和空穴B、空穴C、电子3、电子是带( B )电的( E );空穴是带( A )电的( D )粒子。

A、正B、负C、零D、准粒子E、粒子4、当Au掺入Si中时,它是( B )能级,在半导体中起的是( D )的作用;当B掺入Si中时,它是( C )能级,在半导体中起的是( A )的作用。

A、受主B、深C、浅D、复合中心E、陷阱5、 MIS结构发生多子积累时,表面的导电类型与体材料的类型( A )。

A、相同B、不同C、无关6、杂质半导体中的载流子输运过程的散射机构中,当温度升高时,电离杂质散射的概率和晶格振动声子的散射概率的变化分别是( B )。

A、变大,变小 ;B、变小,变大;C、变小,变小;D、变大,变大。

7、砷有效的陷阱中心位置(B )A、靠近禁带中央B、靠近费米能级8、在热力学温度零度时,能量比EF小的量子态被电子占据的概率为( D ),当温度大于热力学温度零度时,能量比EF小的量子态被电子占据的概率为( A )。

A、大于1/2B、小于1/2C、等于1/2D、等于1E、等于09、如图所示的P型半导体MIS结构的C-V特性图中,AB段代表( A),CD段代表( B )。

A、多子积累B、多子耗尽C、少子反型D、平带状态10、金属和半导体接触分为:( B )。

A、整流的肖特基接触和整流的欧姆接触B、整流的肖特基接触和非整流的欧姆接触C、非整流的肖特基接触和整流的欧姆接触D、非整流的肖特基接触和非整流的欧姆接触11、一块半导体材料,光照在材料中会产生非平衡载流子,若光照忽然停止t??后,其中非平衡载流子将衰减为原来的( A )。

半导体物理习题答案

半导体物理习题答案

半导体物理习题答案半导体物理是固体物理的一个重要分支,它研究的是半导体材料的物理性质及其在电子器件中的应用。

以下是一些常见的半导体物理习题及其答案。

习题一:半导体的能带结构问题:简述半导体的能带结构,并解释价带、导带和禁带的概念。

答案:半导体的能带结构由价带和导带组成,两者之间存在一个能量间隔,称为禁带。

价带是半导体中电子能量最低的能带,当电子处于价带时,它们是被束缚在原子周围的。

导带是电子能量最高的能带,电子在导带中可以自由移动。

禁带是价带顶部和导带底部之间的能量区间,在这个区间内不存在允许电子存在的能级。

半导体的导电性能介于导体和绝缘体之间,主要因为其禁带宽度较小,电子容易从价带激发到导带。

习题二:PN结的形成与特性问题:解释PN结的形成过程,并描述其正向和反向偏置特性。

答案:PN结是由P型半导体和N型半导体接触形成的结构。

P型半导体中存在空穴,而N型半导体中存在自由电子。

当P型和N型半导体接触时,由于扩散作用,P型中的空穴会向N型扩散,而N型中的电子会向P型扩散。

这种扩散导致在接触区域形成一个耗尽层,其中电子和空穴复合,留下固定电荷,形成内建电场。

正向偏置时,外加电压使内建电场减弱,允许更多的电子和空穴通过PN结,从而增加电流。

反向偏置时,外加电压增强了内建电场,阻碍了电子和空穴的流动,导致电流非常小。

习题三:霍尔效应问题:描述霍尔效应的基本原理,并解释霍尔电压的产生。

答案:霍尔效应是指在垂直于电流方向的磁场作用下,载流子受到洛伦兹力的作用,导致电荷在样品一侧积累,从而在垂直于电流和磁场方向上产生一个横向电压差,即霍尔电压。

霍尔效应的发现为研究材料的载流子类型和浓度提供了一种有效的方法。

霍尔电压的大小与电流、磁场强度以及材料的载流子浓度有关。

习题四:半导体的掺杂问题:解释半导体掺杂的目的和方法,并举例说明。

答案:半导体掺杂的目的是为了改变半导体的导电性能。

通过在纯净的半导体中掺入微量的杂质原子,可以增加或减少半导体中的载流子数量。

半导体物理学第三章习题和答案

半导体物理学第三章习题和答案

时 Eg=0.76eV。求这两个温度时锗的本征载流子浓度。②77K 时,锗的电子浓度为 1017cm-3 ,假定受主浓度为零,而 Ec-ED=0.01eV,求锗中施主浓度 ED 为多少?
3 k 0Tmn ) 2 2 2
7 ( .1 )根据N c 2( N v 2( k 0Tm p 2
' ' N( C 77 K) 3 T N( T C 300 K) ' NC NC (
77 3 77 3 ) 1.05 1019 ( ) 1.37 1018 / cm 3 300 300
' NV NV (
77 3 77 3 ) 3.9 1018 ( ) 5.08 1017 / cm 3 300 300
5. 利用表 3-2 中的 m*n,m*p 数值,计算硅、锗、砷化镓在室温下的 NC , NV 以及本征载
流子的浓度。
3 2koTmn 2 N 2 ( ) C 2 h 2koTm p 32 5 N v 2( ) h2 Eg 1 2 koT 2 n i ( N c N v ) e Ge : mn 0.56m0 ; m p o.37 m0 ; E g 0.67ev si : mn 1.08m0 ; m p o.59m0 ; E g 1.12ev Ga As : mn 0.068m0 ; m p o.47 m0 ; E g 1.428ev
0.037
nD ND
30%不成立
80%10%不成立 0.023 1 0.026 1 e 2 ' (2) 求出硅中施主在室温下全部电离的上限 2N E D ( D )e D (未电离施主占总电离杂质数的百分比) NC koT 10% 0.1N C 0.026 2 N D 0.05 e , ND e 2.5 1017 / cm 3 N C 0.026 2

半导体物理学期末复习试题及答案三

半导体物理学期末复习试题及答案三

一、选择题。

1. 电离后向半导体提供空穴的杂质是( A ),电离后向半导体提供电子的杂质是( B )。

A. 受主杂质B. 施主杂质C. 中性杂质2. 在室温下,半导体Si 中掺入浓度为31410-cm 的磷杂质后,半导体中多数载流子是( C ),多子浓度为( D ),费米能级的位置( G );一段时间后,再一次向半导体中掺入浓度为315101.1-⨯cm 的硼杂质,半导体中多数载流子是( B ),多子浓度为( E ),费米能级的位置( H );如果,此时温度从室温升高至K 550,则杂质半导体费米能级的位置( I )。

(已知:室温下,31010-=cm n i ;K 550时,31710-=cm n i )A. 电子和空穴B. 空穴C. 电子D. 31410-cmE. 31510-cmF. 315101.1-⨯cmG. 高于i E H. 低于i E I. 等于i E3. 在室温下,对于n 型硅材料,如果掺杂浓度增加,将导致禁带宽度( B ),电子浓度和空穴浓度的乘积00p n ( D )2i n ,功函数( C )。

如果有光注入的情况下,电子浓度和空穴浓度的乘积np ( E )2i n 。

A. 增加B. 不变C. 减小D. 等于E. 不等于F. 不确定4. 导带底的电子是( C )。

A. 带正电的有效质量为正的粒子B. 带正电的有效质量为负的准粒子C. 带负电的有效质量为正的粒子D. 带负电的有效质量为负的准粒子5. P 型半导体MIS 结构中发生少子反型时,表面的导电类型与体材料的类型( B )。

在如图所示MIS 结构的C-V 特性图中,代表去强反型的( G )。

A. 相同B. 不同C. 无关D. AB 段E. CD 段F. DE 段G. EF 和GH 段6. P 型半导体发生强反型的条件( B )。

A. ⎪⎪⎭⎫ ⎝⎛=i A S n N q T k V ln 0 B. ⎪⎪⎭⎫ ⎝⎛≥i A S n N q T k V ln 20 C. ⎪⎪⎭⎫ ⎝⎛=i D S n N q T k V ln 0 D. ⎪⎪⎭⎫ ⎝⎛≥i D S n N q T k V ln 20 7. 由于载流子存在浓度梯度而产生的电流是( B )电流,由于载流子在一定电场力的作用下而产生电流是( A )电流。

半导体物理综合练习题(3)参考答案

半导体物理综合练习题(3)参考答案

1、晶格常数2.5?的一维晶格,当外加102V/m 和107V/m 电场时,试分别计算电子自能带底运动到能带顶所需时间。

(1?=10nm=10 -10m ) 解:设电场强度为E.因为代入数据得6, 62 X 10 创2 X 1, 6 X IO -19 X 2. 5 X IO -10 X E 当:E=10s V/m 时昇=&3X10_s (s);E^107V/m 时"=8. 3X10J 13(S )S2、指出下图中各表示的是什么半导体E.r所以—吐?(取绝对值d/Ci击=I I II II II '3- E------ E.If& 3 X IO -6 ( s)4、若费米能E F =5eV ,利用费米分布函数计算在什么温度下电子占据 计算在该温度下电子分布概率 0.9~0.1所对应的能量区间。

解:由费卷分布函数 吕) E —E F&叫 7^5 "1) 其中 t ieV=l. 602XlQ-12erg^Q = L 38 X 10~1G erg/K = 8. 63X1O _S eV/K w 代人有关数 摘得f 5 — 5 H = -- ---------- - -------------- \ --------- '8. 63 X 10Y % 叫厂厉一1)由费米雷数可得当f = 0. 9时吊=+ & 63 X IO -5 X 1251 X In=— 24 (eV)= B E -t- 8. 63 X 1O _& X 1261 X In5、两块n 型硅材料,在某一温度T 时,第一块与第二块的电子密度之比为n i /n 2=e (e 是自然对数的底)(1) 如果第一块材料的费米能级在导带底之下3 k o T ,试求出第二块材料中费米能级的位置;(2) 求出两块材料中空穴密度之比p i /p 2。

E=5.5eV 能级的概率为1%。

并/(£:)= -------------- 1 + cxpj 可得=1261 CK) A -1)'解:设第 块和第二块材料的费农能级分別为巴:和E F —利用式(饥1)可得 t 一 Epj 、^T)--爲丁已知E FL =E 「3怂T,所以E 昭=耳一4為0即第二块材料的费米能级在导带底之下 4Ao K (2〉珥P\='吃=怔6、硼的密度分别为 N A1和N A2(N A1>N A2)的两个硅样品,在室温条件下(1)哪个样品的少子密度低 ?(2)哪个样品的 E F 离价带顶近?(3) 如果再掺入少量的磷 (磷的密度N'D < N A 2),它们的E F 如何变化?解;为了使问题简单明确(半然也足实际一匸作中常遇到的悄况儿我们假定“AI 和为皿 郁远大于室温下的本征载流子密度•即讨论杂质饱和电离的悄况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、晶格常数Å的一维晶格,当外加102V/m和107V/m电场时,试分别计算电子自能带底运动到能带顶所需时间。

(1Å=10nm=10-10m)
2、指出下图中各表示的是什么半导体
3、如图所示,解释一下n0~T关系曲线。

4、若费米能E F=5eV,利用费米分布函数计算在什么温度下电子占据E=能级的概率为1%。

并计算在该温度下电子分布概率~所对应的能量区间。

5、两块n型硅材料,在某一温度T时,第一块与第二块的电子密度之比为n1/n2=e(e是自然对数的底)
(1)如果第一块材料的费米能级在导带底之下3k0T,试求出第二块材料中费米能级的位置;(2)求出两块材料中空穴密度之比p1/p2。

6、硼的密度分别为N A1和N A2(N A1>N A2)的两个硅样品,在室温条件下:
(1)哪个样品的少子密度低
(2)哪个样品的E F离价带顶近
(3)如果再掺入少量的磷(磷的密度N`D< N A2),它们的E F如何变化
7、现有三块半导体硅材料,已知在室温下(300K)它们的空穴浓度分别为p01=×1016cm-3、p02=×1010cm-3、p03=×104cm-3。

(1)分别计算这三块材料的电子浓度n01、n02、 n03;
(2)判别这三块材料的导电类型;
(3)分别计算这三块材料的费米能级的位置。

8、室温下,本征锗的电阻率为47Ω·cm,试求本征载流子浓度。

若掺入锑杂质,使每106个锗原子中有一个杂质原子,计算室温下电子浓度和空穴浓度。

设杂质全部电离。

锗原子的浓度为×1022/cm3,试
求该掺杂锗材料的电阻率。

设µn=3600cm2/(V·s),µp=1700cm2/(V·s)且认为不随掺杂而变化。

n i=×1013cm-3。

9、在半导体锗材料中掺入施主杂质浓度N D=1014cm-3,受主杂质浓度N A=7×1013cm-3,设室温本下本征锗材料的电阻率为ρi=60Ω·cm,假设电子和空穴的迁移率分别为µn=3800cm2/(V·s),
µp=1800cm2/(V·s),若流过样品的电流密度为cm2,求所施加的电场强度。

10、某n型半导体硅,其掺杂浓度N D=1015cm-3,少子寿命τp=5µs,若由于外界作用,使其少子载流子全部被清除(如反向偏压的pn结附近),试求此时电子-空穴的产生率是多大(设n i=×1010cm-3)
11、某p型半导体中的掺杂浓度N A=1016cm-3,少子寿命τn=10µs,在均匀光的照射下产生非平衡载流子,其产生率g=1018cm-3·s,试计算室温时光照射情况下的费米能级并和原来无光照时的费米能级比较。

(设本征载流子浓度n i=1010cm-3)
12、下图为p型半导体在光照射前后的三组能带图,问哪一组简图能正确地反映这一变化情况。

13、平衡pn结有什么特点,画出势垒区中载流子飘移运动和扩散运动的方向。

14、如图所示,p型和n型半导体材料接触结,试画出热平衡时的能带图,并标出势垒高度和势垒宽度。

15、推导pn结自建电动势方程
2
ln A D D
i
k T N N V
q n
16、有锗pn结,设p区的掺杂浓度为N A,n区的掺杂浓度为N D,已知N D=102N A,而N A相当于108个锗原子中有一个受主原子,计算室温下接触电位差V D。

若N A浓度保持不变,而N D增加102倍,试接触电位差的改变。

相关文档
最新文档