变量与函数练习题1-3节(A卷)
知识点详解北师大版七年级数学下册第三章变量之间的关系综合练习试题(含详细解析)

北师大版七年级数学下册第三章变量之间的关系综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某油箱容量为60升的汽车,加满汽油后行驶了100千米时,邮箱中的汽油大约消耗了15,如果加满后汽车的行驶路程为x千米,邮箱中剩余油量为y升,则y与x之间的函数关系式是()A.y=0.12x B.y=60+0.12x C.y=-60+0.12x D.y=60-0.12x2、某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据下列说法错误的是()A.这个问题中,空气温度和声速都是变量B.空气温度每降低10℃,声速减少6m/sC.当空气温度为20℃时,声音5s可以传播1710mD.由数据可以推测,在一定范围内,空气温度越高,声速越快3、为积极响应党和国家精准扶贫的号召,某扶贫工作队步行前往扶贫点开展入户调查。
队员们先匀速步行一段时间,途中休息几分钟后加快了步行速度,最终按原计划时间到达目的地。
设行进时间为t(单位:min ),行进的路程为s (单位:m ),则能近似刻画s 与t 之间的函数关系的大致图象是( )A .B .C .D .4、下列各情境,分别描述了两个变量之间的关系:(1)一杯越晾越凉的开水(水温与时间的关系);(2)一面冉冉升起的旗子(高度与时间的关系);(3)足球守门员大脚开出去的球(高度与时间的关系);(4)匀速行驶的汽车(速度与时间的关系).依次用图象近似刻画以上变量之间的关系,排序正确的是( )A .③④①②B .②①③④C .①④②③D .③①④②5、在圆周长计算公式2C r π=中,对半径不同的圆,变量有( ) A .,C rB .,,C r πC .,C r πD .,2,C r π6、一列火车从A 站行驶3公里到B 处以后,以每小时90公里的速度前进.则离开B 处t 小时后,火车离A 站的路程s 与时间t 的关系是( ) A .s =3+90tB .s =90tC .s =3tD .s =90+3t7、如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h 与注水时间t 之间的函数关系图象可能是( )A .B .C .D .8、如图是反映两个变量关系的图,下列的四个情境比较合适该图的是( )A .一杯热水放在桌子上,它的水温与时间的关系B .一辆汽车从起动到匀速行驶,速度与时间的关系C .一架飞机从起飞到降落的速度与时晨的关系D .踢出的足球的速度与时间的关系9、下表是某报纸公布的世界人口数据情况:表中的变量( )A .仅有一个,是时间(年份)B .仅有一个,是人口数C .有两个,一个是人口数,另一个是时间(年份)D .一个也没有10、某居民小区电费标准为0.55元/千瓦时,收取的电费y (元)和所用电量x (千瓦时)之间的关系式为0.55y x ,则下列说法正确的是( ) A .x 是自变量,0.55是因变量B .0.55是自变量,x 是因变量C.x是自变量,y是因变量D.y是自变量,x是因变量第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图表示的是某种摩托车的油箱中剩余量y(升)与摩托车行驶路程x(千米)之间的关系.由图象可知,摩托车最多装__升油,可供摩托车行驶___千米,每行驶100千米耗油___升.2、地面温度为15 ºC,如果高度每升高1千米,气温下降6 ºC,则高度h(千米)与气温t(ºC)之间的关系式为___________3、城市绿道串连起绿地、公园、人行横道和自行车道改善了城市的交通环境,引导市民绿色出行截至2019年年底,某市城市绿道达2000千米,该市人均绿道长度y(单位:千米)随人口数x的变化而变化,指出这个问题中的所有变量________________.4、长方形的周长为20,宽为x.若设长方形的面积为S,则面积S与宽x之间的关系是________.5、某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1)图中的自变量是_________,因变量是_________;(2)无人机在75米高的上空停留的时间是_________分钟;(3)在上升或下降过程中,无人机的速度为_________米/分;(4)图中a表示的数是_________;b表示的数是_________;(5)图中点A表示_________.三、解答题(5小题,每小题10分,共计50分)1、下表是某报纸公布的世界人口数据情况:(1)表中有几个变量?(2)如果要用x表示年份,用y表示世界人口数那么随着x的变化,y的变化趋势是怎样的?2、如图,是若干个粗细均匀的铁环最大限度的拉伸组成的链条,已知铁环粗0.8厘米,每个铁环长5厘米,设铁环间处于最大限度的拉伸状态.求:(1)2个、3个、4个铁环组成的链条长分别有多少.(2)设n个铁环长为y厘米,请用含n的式子表示y;(3)若要组成2.09米长的链条,需要多少个铁环?3、已知函数y=y1+y2,其中y1与x成反比例,y2与x﹣2成正比例,函数的自变量x的取值范围是x≥1 2,且当x=1或x=4时,y的值均为32.请对该函数及其图象进行如下探究:(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为:.(2)函数图象探究:①根据解析式,补全下表:②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.(3)结合画出的函数图象,解决问题: ①当x =34,214,8时,函数值分别为y 1,y 2,y 3,则y 1,y 2,y 3的大小关系为: ;(用“<”或“=”表示)②若直线y =k 与该函数图象有两个交点,则k 的取值范围是 ,此时,x 的取值范围是 .4、某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25min ,于是立即步行回家取票同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.如图中线段AB 、OB 分别表示父子俩送票、取票过程中离体育馆的路程()s m 与所用时间(min)t 之间的图像,结合图像解答下列问题(假设骑自行车和步行的速度始终保持不变):(1)图中O点表示________;A点表示________;B点表示________.(2)从图中可知,小明家离体育馆________m,父子俩在出发后________min相遇.(3)你能求出父亲与小明相遇时距离体育馆还有多远?(4)小明能否在比赛开始之前赶回体育馆?5、光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并释放出氧气的过程.如图是夏季的白天7时~18时的一般的绿色植物的光合作用强度与时间之间的关系的曲线,分析图象回答问题:(1)大约几时的光合作用最强?大约几时的光合作用最弱?(2)说一说绿色植物光合作用的强度从7时到18时是怎样变化的.-参考答案-一、单选题1、D【分析】先求出1千米的耗油量,再求行驶x千米的耗油量,最后求油箱中剩余的油量即可.【详解】解:∵每千米的耗油量为:60×15÷100=0.12(升/千米),∴y=60-0.12x,故选:D.【点睛】本题考查了函数关系式,求出1千米的耗油量是解题的关键.2、B【分析】根据表格中两个变量的数据变化情况,逐项判断即可.【详解】解:这个问题中,空气温度和声速都是变量,因此选项A不符合题意;在一定的范围内,空气温度每降低10℃,声速减少6m/s,表格之外的数据就不一定有这样规律,因此选项B符合题意;当空气温度为20℃时,声速为342m/s,声音5s可以传播342×5=1710m,因此选项C不符合题意;从表格可得,在一定范围内,空气温度越高,声速越快,因此选项D不符合题意;故选:B.【点睛】本题考查变量之间的关系,理解自变量、因变量之间的变化关系是正确判断的前提.3、A【分析】根据行进的路程和时间之间的关系,确定图象即可得到答案.【详解】解:根据题意得,队员的行进路程s(单位:m)与行进时间t(单位:min)之间函数关系的大致图象是故选:A【点睛】本题考查函数图象,正确理解函数自变量与因变量的关系及其实际意义是解题的关键.4、A【分析】根据题干对应图像中变量的变化趋势即可求解.【详解】解:(1)一杯越来越凉的水,水温随着时间的增加而越来越低,故③图象符合要求;(2)一面冉冉上升的旗子,高度随着时间的增加而越来越高,故④图象符合要求;(3)足球守门员大脚开出去的球,高度与时间成二次函数关系,故①图象符合要求;(4)匀速行驶的汽车,速度始终不变,故②图象符合要求;正确的顺序是③④①②.故选:A.【点睛】本题考查用图像表示变量之间的关系,关键是将文字描述转化成函数图像的能力.5、A【分析】在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量,进而得出答案.【详解】解:在圆周长计算公式C=2πr中,对半径不同的圆,变量有:C,r.故选:A.【点睛】此题主要考查了常量与变量,正确把握变量的定义是解题关键.6、A【分析】根据路程、速度、时间之间的关系可得关系式.【详解】解:火车离A站的距离等于先行的3公里,加上后来t小时行驶的距离可得:s=3+90t,故选:A.【点睛】本题考查了函数关系式,解题的关键是理解路程、速度、时间之间的关系.7、D【详解】开始一段时间内,乙不进行水,当甲的水到过连接处时,乙开始进水,此时水面开始上升,速度较快,水到达连接的地方,水面上升比较慢,最后水面持平后继续上升,故选D.8、B【分析】根据图象信息可知,是s随t的增大而增大,判断下面的四个选项判断的图象变化规律,即可得到符合此图的即可得到答案.【详解】解:题中给的图象变化情况为先是s随t的增大而增大,A:热水的水温先是随时间的增加而减少的,后不变,故不符合题意;B:汽车启动的过程中,速度是随着时间的增长从0增大的,而后匀速后,速度随时间的增加是不变的,故符合题意;C:飞机起飞的过程中速度是随着时间的增加而增大的,而降落的过程中,速度是随着时间的增加而减少的,故不符合题意;D:踢出的足球的速度是随着时间的增加而减少的,故不符合题意;故选B.【点睛】本题主要考查的是实际生活中图象的变化,要深刻理解两变量之间的变化关系,对于图象的变化要很熟练地画出是解此类题的关键.9、C【分析】根据变量的定义直接判断即可.【详解】解;观察表格,时间在变,人口在变,故C正确;故选:C.【点睛】本题考查了变量的定义,解题关键是明确变量的定义,能够正确判断.10、C【分析】根据自变量和因变量的定义:自变量是指:研究者主动操纵,而引起因变量发生变化的因素或条件,因此自变量被看作是因变量的原因;因变量是指:在函数关系式中,某个量会随一个(或几个)变动的量的变动而变动,进行判断即可.【详解】解:A、x是自变量,0.55是常量,故错误;B、0.55是常量,x是自变量,故错误;C、x是自变量,y是因变量,正确;D、x是自变量,y是因变量,故错误.故选C.【点睛】本题主要考查了自变量和因变量、常量的定义,解题的关键在于能够熟练掌握三者的定义.二、填空题1、10 500 2【分析】根据图象可知,当x=0时,对应y的数值就是摩托车最多装多少升油,当y=0时,x的值就是摩托车行驶的千米数;根据摩托车油箱可储油10升,可以行驶500km即可得出每行驶100千米消耗汽油升数.【详解】解:由图象可知,摩托车最多装10升油,可供摩托车行驶500千米,每行驶100千米耗油2升.故答案为:10,500,2.【点睛】此题主要考查了利用函数图象解决问题,从图象上获取正确的信息是解题关键.2、h=156t-.【分析】升高h(千米)就可求得温度的下降值,进而求得h千米处的温度.【详解】高度h(千米)与气温t(℃)之间的关系式为:h=156t-.【点睛】正确理解高度每升高1千米,气温下降6℃,的含义是解题关键.3、人均绿道长度y,人口数x【分析】根据常量与变量的定义进行填空即可.【详解】解:这个问题中的所有变量是该市人均绿道长度y 与人口数x ,故答案为:人均绿道长度y ,人口数x .【点睛】本题考查了常量与变量,掌握常量与变量的定义是解题的关键.4、210S x x =-【分析】先用x 表示出长方形的长,再根据长方形的面积公式解答即可.【详解】解:因为长方形的周长为20,宽为x ,所以长方形的长为(10-x ),所以长方形的面积S 与宽x 的关系式是:()21010S x x x x =-=-. 故答案为:210S x x =-.【点睛】本题考查了用关系式表示变量之间的关系,准确掌握长方形的周长与面积公式是解题的关键.5、操控无人机的时间t ; 无人机的飞行高度h ; 5; 25; 2; 15; 在第6分钟时,无人机的飞行高度为50米.【分析】(1)根据图象信息得出自变量和因变量即可;(2)根据图象信息得出无人机在75米高的上空停留时间为1275-=分钟即可;(3)根据“速度=路程÷时间”计算即可;(4)根据速速、时间与路程的关系式,列式计算求解即可;(5)根据点的实际意义解答即可.【详解】解:(1)横轴代表的是无人机被操控的时间,纵轴是无人机飞行的高度,所以自变量是操控无人机的时间t ;因变量是无人机的飞行高度h ;(2)无人机在75米高的上空停留时间为1275-=分钟;(3)在上升或下降过程中,无人机的速度为:75502576-=-米/分; (4)图中a 表示的数为:50=225分钟;图中b 表示的数为75121525+=分钟; (5)图中点A 表示,在第6分钟时,无人机的飞行高度为50米.【点睛】本题考查变量之间的关系在实际中的应用,根据图象学会分析是解题重点.三、解答题1、(1)两个变量;(2)用x 表示年份,用y 表示世界人口数,那么随着x 的变化,y 的变化趋势是增大.【分析】(1)年份和人口数都在变化,据此得到;(2)根据人口的变化写出变化趋势即可;【详解】解:(1)表中有两个变量,分别是年份和人口数;(2)用x 表示年份,用y 表示世界人口总数,那么随着x 的变化,y 的变化趋势是增大.【点睛】本题考查了变量与常量的知识,解题的关键是能够了解常量与变量的定义,难度不大.2、(1)2个铁环组成的链条长8.4cm ,3个铁环组成的链条长为11.8cm ,4个铁环组成的链条长15.2cm ;(2) 3.4 1.6y n =+;(3)需要61个铁环【分析】(1)根据铁环粗0.8厘米,每个铁环长5厘米,进而得出2个、3个、4个铁环组成的链条长;(2)根据铁环与环长之间的关系进而得出y 与n 的关系式;(3)由(2)得,3.4n +1.6=209,进而求出即可.【详解】解:(1)由题意可得:2520.810 1.68.4()cm ⨯-⨯=-=,3540.815 3.211.8()cm ⨯-⨯=-=,4560.820 4.815.2()cm ⨯-⨯=-=.故2个铁环组成的链条长8.4cm ,3个铁环组成的链条长为11.8cm ,4个铁环组成的链条长15.2cm ;(2)由题意得:n 个铁环一共有n -1个相接的地方,∴52(1)0.8y n n =--⨯,即 3.4 1.6y n =+;(3)∵2.09米=209cm∴据题意有3.4 1.6209n +=,解得:61n =,答:需要61个铁环.【点睛】本题主要考查了用关系式表示的变量之间的关系,利用链条结构得出链条长的变化规律是解题的关键.3、 (1)2112y x x =+-;(2)①见解析;②见解析;(3)①y 2<y 1<y 3;②1<k ≤134,12≤x ≤8. 【解析】【分析】(1)根据题意设11k y x= ,y 2=k 2(x ﹣2),则12(2)k y k x x =+-,即可解答 (2)将表中数据代入2112y x x =+-,即可解答(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大,即可解答②观察图象得:x ≥12,图象最低点为(2,1),再代入即可【详解】(1)设11k y x = ,y 2=k 2(x ﹣2),则12(2)k y k x x =+- , 由题意得:1212323242k k k k ⎧-=⎪⎪⎨⎪+=⎪⎩ ,解得:12212k k =⎧⎪⎨=⎪⎩, ∴该函数解析式为2112y x x =+- , 故答案为2112y x x =+-,(2)①根据解析式,补全下表:②根据上表在平面直角坐标系中描点,画出图象.(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y随x增大而减小;在该点右侧y随x 增大而增大,∴y2<y1<y3,故答案为y2<y1<y3,②观察图象得:x≥12,图象最低点为(2,1),∴当直线y=k与该图象有两个交点时,1<k≤134,此时x的范围是:12≤x≤8.故答案为1<k≤134,12≤x≤8.【点睛】此题考查待定系数法求反比例函数的解析式,列出方程式解题关键4、(1)体育馆,小明家,小明与他父亲相遇的地方;(2)3600,15;(3)父亲与小明相遇时距离体育馆还有900m;(4)小明能在比赛开始之前赶回体育馆.【分析】(1)观察图象得到图中线段AB、OB分别表示父、子送票、取票过程,于是得到O点表示体育馆,A点表示小明家;B点表示小明与他父亲相遇的地方;(2)观察图象得到小明家离体育馆有3600米,小明到相遇地点时用了15分钟,则得到父子俩在出发后15分钟相遇;(3)设小明的速度为x米/分,则他父亲的速度为3x米/分,利用父子俩在出发后15分钟相遇得到15×x+3x×15=3600,解得x=60米/分,则父亲与小明相遇时距离体育馆还有15x=900米;(4)由(3)得到从B点到O点的速度为3x=180米/秒,则从B点到O点的所需时间=900180=5(分),得到小明取票回到体育馆用了15+5=20分钟,小于25分钟,可判断小明能在比赛开始之前赶回体育馆.【详解】解:(1)∵图中线段AB、OB分别表示父、子送票、取票过程,∴O点表示体育馆,A点表示小明家;B点表示小明与他父亲相遇的地方;(2)∵O点与A点相距3600米,∴小明家离体育馆有3600米,∵从点O点到点B用了15分钟,∴父子俩在出发后15分钟相遇;(3)设小明的速度为x米/分,则他父亲的速度为3x米/分,根据题意得15×x+3x×15=3600,解得x=60米/分,∴15x=15×60=900(米)即父亲与小明相遇时距离体育馆还有900米;(4)∵从B点到O点的速度为3x=180米/秒,∴从B点到O点的所需时间=900180=5(分),而小明从体育馆到点B用了15分钟,∴小明从点O到点B,再从点B到点O需15分+5分=20分,∵小明从体育馆出发取票时,离比赛开始还有25分钟,∴小明能在比赛开始之前赶回体育馆.故答案为:体育馆,小明家,小明与他父亲相遇的地方;3600,15;900;小明能在比赛开始之前赶回体育馆.【点睛】本题考查了函数图象:函数图象反映两个变量之间的变化情况,结合图象信息,读懂题目意思,从复杂的信息中分离出数学问题即相遇问题是解决本题的关键.5、 (1)大约10时的光合作用最强,大约7时和18时的光合作用最弱;(2)绿色植物的光合作用从7时至10时逐渐增强,从10时至12时逐渐减弱,从12时至14时30分左右逐渐增强,从14时30分至18时逐渐减弱.【解析】【分析】(1) 观察函数的图象,找出最高点和最低点表示的时间即可;(2) 在函数的图象上找出光合作用强度上升和下降的部分即可;【详解】(1) 函数的图象可得:大约10时的光合作用最强,大约7时和18时的光合作用最弱;(2)绿色植物的光合作用从7时至10时逐渐增强,从10时至12时逐渐减弱,从12时至14时30分左右逐渐增强,从14时30分至18时逐渐减弱.【点睛】此题考查了函数的图象,属于基础题,关键是能读懂函数图象,从函数图象中获得有关信息.。
《19.1 变量与函数》课件(含习题)

讲授新课
一 函数的相关概念
情景一
想一想,如果你坐 在摩天轮上,随着 时间的变化,你离 开地面的高度是如 何变化的?
下图反映了摩天轮上的一点的高度h (m)与旋转时间t(min) 之间的关系.
(1)根据左图填表:
t/分 0 1 2 3 4 5 … h/米 3 10 37 45 37 11 … (2)对于给定的时间t ,相 应的高度h能确定吗?
方法 区分常量与变量,就是看在某个变化过程中,该 量的值是否可以改变,即是否可以取不同的值.
二 确定两个变量之间的关系
例3 弹簧的长度与所挂重物有关.如果弹簧原长为10cm, 每1千克重物使弹簧伸长0.5cm,试填下表:
重物的质量 1 2 3 4 5 (kg)
弹簧长度 (cm)
10.5 11
11.5 12 12.5
4x 8 0 x 2
(3) y x 3
x 3 0 x 3
(4) y x 1 1 1 x
x 1且 x 1
x 1 0
1 x 0
即 xx
1 1
... -1 0 1
5.我市白天乘坐出租车收费标准如下:乘坐里程不超过3公 里,一律收费8元;超过3公里时,超过3公里的部分,每公里 加收1.8元;设乘坐出租车的里程为x(公里)(x为整数), 相对应的收费为y(元).
4.收音机上的刻度盘的波长和频率分别是用米(m)和 千赫兹(kHz)为单位标刻的.下面是一些对应的数:
波长l(m) 300 500 600 1000 1500 频率 1000 600 500 300 200 f(khz)
你能发现每一组l,f 的值之间的关系吗?并指出变量与 常量.
难点解析:北师大版七年级数学下册第三章变量之间的关系定向测评练习题(名师精选)

北师大版七年级数学下册第三章变量之间的关系定向测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、把15本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入x本,第二个抽屉放入y本,则下列判断错误的是()A.15是常量B.15是变量C.x是变量D.y是变量2、已知声音在空气中的传播速度与空气的温度有关,在一定范围内,其关系如下表所示:下列说法错误的是()A.自变量是温度,因变量是传播速度B.温度越高,传播速度越快C.当温度为10C︒时,声音5s可以传播1650m D.温度每升高10C︒,传播速度增加6/m s3、瓶子或者罐头盒等圆柱形的物体常常如图所示那样堆放着,随着层数的增加,物体总数也会发生变化,数据如表,则下列说法错误的是()A.在这个变化过程中层数是自变量,物体总数是因变量B.当堆放层数为7层时,物体总数为28个C.物体的总数随着层数的增加而均匀增加D.物体的总数y与层数n之间的关系式为(1)2n ny+ =4、刘师傅到加油站加油,如图是所用的加油机上的数据显示牌,则其中的变量是().A.金额B.单价C.数量D.金额和数量5、小红到文具店买彩笔,每打彩笔是12支,售价18元,那么买彩笔所需的钱数y(元)与购买彩笔的支数x(支)之间的关系式为()A.23y x=B.32y x=C.12y x=D.18=y x6、弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系:下列说法一定错误的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5 cmD.所挂物体质量为7kg时,弹簧长度为13.5cm7、是饮水机的图片.饮水桶中的水由图1的位置下降到图2的位置的过程中,如果水减少的体积是y,水位下降的高度是x,那么能够表示y与x之间函数关系的图象可能是()A.B.C.D.8、在行进路程s、速度v和时间t的相关计算中,若保持行驶的路程不变,则下列说法正确的是()A.速度v是变量B.时间t是变量C.速度v和时间t都是变量D.速度v、时间t、路程s都是常量9、如图,正方形ABCD的边长为2,动点P从点B出发,在正方形的边上沿B C D→→的方向运动到点D停止,设点P的运动路程为x,在下列图象中,能表示PAD△的面积y关于x的函数关系的图象是()A .B .C .D .10、如图,李大爷用24米长的篱笆靠墙围成一个矩形()ABCD 菜园,若菜园靠墙的一边()AD 长为x (米),那么菜园的面积y (平方米)与x 的关系式为( )A .(12)2x x y -=B .(12)y x x =-C .(24)2x x y -=D .(24)y x x =-第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知正方形ABCD 的边长是1,E 为CD 边的中点, P 为正方形ABCD 边上的一个动点,动点P 从A 点出发,沿A B C D →→→运动,到达点E.若点P 经过的路程为自变量x ,△APE 的面积为函数y ,则当y =13时,x 的值等于_____________.2、邓教师设计一个计算程序,输入和输出的数据如表所示,当输入数据是正整数n 时,输出的数据是________.3、如图(a )所示,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,ABP △的面积为y ,如果y 关于x 的关系如图(b )所示,则m 的值是________.4、假期即将开始,李伟制定了一张“假期每天时间分配表”,其中课外阅读时间为1.5小时,这里的“1.5小时”为________.(填“常量”或“变量”)5、把一个函数的自变量x与对应的函数y的值分别作为点的___坐标和___坐标,在直角坐标系中描出它的对应点,___的图形叫做这个函数的图象.三、解答题(5小题,每小题10分,共计50分)1、指出下列问题中的变量和常量:(1)某市的自来水价为4元/t.现要抽取若干户居民调查水费支出情况,记某户月用水量为x吨,月应交水费为y元.(2)某地手机通话费为0.2元/min.李明在手机话费卡中存入30元,记此后他的手机通话时间为mint,话费卡中的余额为w元.(3)水中涟漪(圆形水波)不断扩大,记它的半径为r,周长为C,圆周率(圆周长与直径之比)为 .(4)把10本书随意放入两个抽昼(每个抽屉内都放),第一个抽屉放入x本,第二个抽屉放入y本.2、某剧院的观众席的座位为扇形,且按下列方式设置:(1)按照上表所示的规律,当x每增加1时,y如何变化?.(2)写出座位数y与排数x之间的解析式.(3)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.3、研究表明,温度对生猪词养有一定的影响.下图是某生猪饲养场查阅的下周天气预报情况,根据图中信息回答下列问题:(1)周二的最高气温与最低气温分别是多少?(2)图中点A表示的实际意义是什么?(3)当一天内的温差超过12C时,生猪可能出现生理异常.为了预防生猪生理异常,养殖场需要在哪几天进行人工调节温度?4、某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如表所示(每位乘客的公交票价是固定不变的).(1)在这个变化过程中,每月的乘车人数x与每月利润y分别是变量和变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)当每月乘车人数为4000人时,每月利润为多少元?5、小南一家到某度假村度假.小南和妈妈坐公交车先出发,爸爸自驾车沿着相同的道路后出发.爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村(取东西的时间忽略不计).如下图是他们离家的距离s(km)与小南离家的时间t(h)的关系图.请根据图回答下列问题:(1)图中的自变量是_________,因变量是_________,小南家到该度假村的距离是_____km.(2)小南出发___________小时后爸爸驾车出发,爸爸驾车的平均速度为___________km/h,图中点A表示.(3)小南从家到度假村的路途中,当他与爸爸相遇时,离家的距离约是___________km.-参考答案-一、单选题1、B【分析】一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量,据此判断即可.【详解】解:把15本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入x本,第二个抽屉放入y 本.则x和y分别是变量,15是常量.故选:B.【点睛】本题考查函数的基础:常量与变量,熟练掌握常量与变量的定义是解题关键.2、C【分析】根据所给表格,结合变量和自变量定义可得答案.【详解】解:A、自变量是温度,因变量是传播速度,故原题说法正确;B、温度越高,传播速度越快,故原题说法正确;C、当温度为10℃时,声音5s可以传播1680m,故原题说法错误;D、温度每升高10℃,传播速度增加6m/s,故原题说法正确;故选:C.【点睛】此题主要考查了常量与变量和通过表格获取信息,关键是掌握在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.3、C【分析】先根据表中数字的变化规律写出y和n之间的关系式,再根据每个选项的说法作出判断.【详解】解:∵物体总个数随着层数的变化而变化,∴A选项说法正确,不符合题意,根据表中数字的变化规律可知y=()12n n+,当n=7时,y=28,∴B选项说法正确,不符合题意,根据表中数字的变化规律可知总数增加的越来越快,∴C选项说法错误,符合题意,根据表中数字的变化规律可知y=()12n n+,∴D选项说法正确,不符合题意,故选:C.本题主要考查用列表表示函数的应用,关键是要能根据表中的数据写出y与n之间的关系式.4、D【分析】根据常量与变量的定义即可判断.【详解】解:常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故选:D.【点睛】本题考查常量与变量,解题的关键是正确理解常量与变量,本题属于基础题型.5、B【分析】由题意可知,y与x成正比例函数,设函数关系式为y=kx(k≠0),根据每打彩笔是12支,售价18元,可确定k的值求出函数关系式.【详解】解:设函数关系式为y=kx(k≠0),由题意,得当x=12时,y=18,∴18=12k解得k=1812=32∴32 y x故选B.本题考查了根据实际问题列函数式.关键是确定函数形式,以及用待定系数法求函数的解析式.6、B【分析】根据变量与常量,函数的表示方法,结合表格中数据的变化规律逐项进行判断即可.【详解】解:A.x与y都是变量,且x是自变量,y是因变量,是正确的,因此选项A不符合题意;B.弹簧不挂重物时的长度,即当x=0时y的值,此时y=10cm,因此选项B是错误的,符合题意;C.物体质量x每增加1kg,弹簧长度y增加0.5cm,是正确的,因此选项C不符合题意;D.根据物体质量x每增加1kg,弹簧长度y增加0.5cm,可得出所挂物体质量为7kg时,弹簧长度为13.5cm,是正确的,因此选项D不符合题意;故选:B.【点睛】本题考查常量与变量,函数的表示方法,理解和发现表格中数据的变化规律是解决问题的关键.7、C【分析】水位随着水减少而下降,且饮水机是圆柱形,是同等变化的下降.【详解】根据图片位置分析:水减少的体积随着水位下降的高度而增加,且饮水机是圆柱形,所以均匀增加故答案选:C【点睛】本题考查用图象法表示变量之间的关系,掌握变量之间的变化关系解题关键.8、C【分析】根据变量和常量的定义即可判断.【详解】解: 在行进路程s、速度v和时间t的相关计算中,若保持行驶的路程不变,则速度v和时间t都是变量,路程s是常量故选:C.【点睛】本题考查变量和常量的定义,熟练掌握基本概念是解决问题的关键.9、D【分析】分02x≤≤、24x<≤两种情况,分别求出函数表达式,即可求解.【详解】解:当02x≤≤时,如图,则1122222y AD AB=⋅=⨯⨯=,为常数;当24x<≤时,如下图,则112(22)422y AD PD x x=⨯=⨯⨯+-=-,为一次函数;故选:D.【点睛】本题考查了动点函数图象问题,在图象中应注意自变量的取值范围,注意分类讨论.10、C【分析】根据篱笆长可得2AB+x=24,先表示出矩形的长,再由矩形的面积公式就可以得出结论.【详解】解:由题意得:2AB+x=24,∴AB=242x-;∴()242-=x x y故选:C【点睛】此题考查了根据实际问题列函数关系式的知识,属于基础题,解答本题关键是根据三边总长应恰好为24米,列出等式.二、填空题1、23或53【分析】根据P点的运动轨迹,分析出当P在AB或BC上均有可能,再根据APE∆的面积为13分类讨论计算即可.【详解】(1)当P 在AB 上时,如图:11123y x == ∴23x =(2)当P 在BC 上时,如图:()()11111111112222223ABP EDC y S S S x x ∆∆⎛⎫=--=+--⋅--= ⎪⎝⎭梯ABCE ∴53x =故答案为:23或53【点睛】本题考查动点问题与三角形面积求算,不规则图形面积求算通常采用割补法,同时注意分类讨论. 2、31n n - 【分析】观察表格中的数据可得:各个式子的分子是输入的数字,分母是输入数字的3倍减1,据此解答即可.【详解】解:因为各个式子的分子是输入的数字,分母是输入数字的3倍减1,所以当输入数据是正整数n 时,输出的数据是:31n n -. 故答案为:31n n -. 【点睛】 本题考查了利用表格表示变量之间的关系和数据规律的探求,分别找出式子的分子与分母的规律是解本题的关键.3、5【分析】先根据点(2,3)在图象上得出BC 的长,然后利用三角形的面积求出AB 的长,进而可得答案.【详解】解:由图象上的点(2,3)可知:2BC =, 由三角形面积公式,得:132BC AB ⨯⨯=,解得:3AB =.3CD AB ∴==,5m BC CD =+=. 故答案为:5.【点睛】本题考查了利用图象表示变量之间的关系,属于常见题型,根据题意和图象得出BC 和AB 的长是解题关键.4、常量.【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行解答即可.【详解】解:假期即将开始,李伟制定了一张“假期每天时间分配表”,其中课外阅读时间为1.5小时,这里的“1.5小时”为常量,故答案为常量.【点睛】此题主要考查了常量,关键是掌握常量定义.5、横纵由这些点组成【分析】利用对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象,进而得出即可.【详解】解:把一个函数的自变量x与对应的函数y的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,由这些点组成的图形叫做这个函数的图象.故答案为:横,纵,由这些点组成.【点睛】此题主要考查了函数图形的定义,熟练根据函数定义得出是解题关键.三、解答题1、(1)变量x,y;常量4.(2)变量t,w;常量0.2,30.(3)变量r,C;常量 .(4)变量x,y;常量10.【分析】根据常量与变量的定义求解即可.【详解】解:(1)由题意可知,变量为x,y,常量为4;(2)由题意可知,变量为t ,w ,常量为0.2,30;(3)由题意可知,变量为r ,C ,常量为π;(4)由题意可知,变量为x ,y ,常量为10.【点睛】本题考查常量与变量的定义,常量是指在变化过程中不随时间变化的量;变量是指在变化过程中随着时间变化的量.2、(1)当x 每增加1时,y 增加3;(2)347y x =+;(3)某一排不可能有90个座位,理由见解析.【分析】(1)根据表格中数据直接得出y 的变化情况;(2)根据x ,y 的变化规律得出y 与x 的函数关系;(3)利用(2)中所求,将y =90代入分析即可.【详解】(1)由图表中数据可知;当x 每增加1时,y 增加3;(2)由题意可知:503(1)347y x x =+-=+,(3)某一排不可能有90个座位理由:由题意可知:34790y x =+=解得:433x = 故x 不是整数,则某一排不可能有90个座位.【点睛】本题主要考查了分析图表列函数解析式,认真分析图表,从中获取关键信息列出解析式是解题的关键.3、(1)周二的最高气温为18℃,最低气温为5℃;(2)A 点的实际意义周五的最高气温为25℃;(3)周一的温差为13-4=9℃,周二的温差为18-5=13℃,周三的温差为16-10=6℃,周四的温差为23-12=11℃,周五的温差为25-11=14℃,周六的温差为21-8=13℃,周日的温差为15-7=8℃.所以这一周周二、周五、周六三天要人工调节温度.【分析】本题考查用图像表示变量之间的关系,根据所给的条件找到相对应的横纵坐标,解答此类问题是,要认真读图,从中找出所有可能用到的条件,只要能正确找出图像所表达的信息就可以解答此类问题.【详解】(1)周二的最高气温为18℃,最低气温为5℃;(2)A点的实际意义周五的最高气温为25℃;(3)周一的温差为13-4=9℃,周二的温差为18-5=13℃,周三的温差为16-10=6℃,周四的温差为23-12=11℃,周五的温差为25-11=14℃,周六的温差为21-8=13℃,周日的温差为15-7=8℃.所以这一周周二、周五、周六三天要人工调节温度.【点睛】图像中横轴代表时间,纵轴代表温度,上面的图像代表最高气温,下面的代表最低气温,观察图像即可解决问题.4、(1)每月的乘车人数,每月利润;(2)2000人;(3)4000元【分析】(1)根据函数的定义即可求解;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,即可求解;(3)有表中的数据推理即可求解.【详解】解:(1)在这个变化过程中,每月的乘车人数是自变量,每月利润是因变量;故答案为:每月的乘车人数,每月利润;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,故答案为:2000;(3)有表中的数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,利润为0元,故每月乘车人数为4000人时,每月的利润是(4000-2000)÷500×1000=4000元.【点睛】本题考查了根据表格与函数知识,正确读懂表格,理解表格体现变化趋势是解题关键.5、(1)t,s,60;(2) 1,60,小南出发2.5小时后,离家的距离为50km ;(3)30或45.【解析】【分析】(1)直接利用常量与变量的定义得出答案;直接利用函数图象结合纵坐标得出答案;(2)利用函数图象求出爸爸晚出发1小时,根据速度=路程÷时间求解即可;根据函数图象的横纵坐标的意义得出A点的意义;(3)利用函数图象得出交点的位置进而得出答案.【详解】(1)自变量是时间或t,因变量是距离或s;小亮家到该度假村的距离是:60;(2)小亮出发1小时后爸爸驾车出发:爸爸驾车的平均速度为60÷1=km/h;图中点A表示:小亮出发2.5小时后,离度假村的距离为10km;(3)当20t=60(t-1),解得:t=1.5则离家20×1.5=30(千米)当20t=120-60(t-1),解得:t=2.25则离家20×2.25=45(千米)小亮从家到度假村的路途中,当他与他爸爸相遇时.离家的距离约是30或45.【点睛】此题主要考查了函数图象以及常量与变量,利用函数图象获取正确信息是解题关键.。
人教八年级数学下册-变量与函数(附习题)

C.p和t是变量
D.数100和t都是常量
2.分别指出下列式子中的变量和常量:
(1)圆的变周量长l=2π常r(其量中l为周长,r为半径);
(2)式变子量m=(n-常2)量×18变0°量(m为多边形的内角
和,n为边数);
变量
常量
变量 常量 (3)若矩形的宽为x,面积为36,则这个矩形的
长为y= 36 . 变量
2.能列出函数解析式表示两个变量之间 的关系.
3.能根据函数解析式求函数自变量的取 值范围.
4.能根据问题的实际意义求函数自变量 的取值范围.
推进新课
知识点 1 函数的概念及函数值
思考下面两个问题, 你学到了什么?
1.下图是体检时的心电图,图上点的横坐标x 表示时间,纵坐标y表示心脏部位的生物电流,它 们是两个变量.在心电图中,对于x的每一个确定 的值,y都有唯一确定的值与其对应吗?
小圆半径 小圆面积 圆环面积
课堂小结
变量
数值发生变化的量
常量
数值始终不变的量
拓展延伸 心理学家发现,学生对概念的接受能力y
与提出概念所用的时间x(单位:分)之间有如 下关系(其中0≤x≤30):
提出概念所用的时间(x) 2 5 7 10 12 13 14 17 20 对概念的接受能力(y) 47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55
13分钟
第2课时 函数
新课导入
上节课我们学习了变量与常量, 这节课我们进一步学习函数及函数自 变量的取值范围问题.
试判断下面所给的两个例子中两 个变量是否也存在一一对应的关系.
1.下图是体检时的心电图,图上点的横坐标x 表示时间,纵坐标y表示心脏部位的生物电流,它 们是两个变量.在心电图中,对于x的每一个确定 的值,y都有唯一确定的值与其对应吗?
【含8套中考卷】2019年中考数学一轮复习《变量与函数》专题练习卷含答案

1. 2. 3. 4. 5. 6.7.变量与函数专题在平面直角坐标系中,点(-3,2)所在的象限是A.第一象限C.第三象限【答案】B函数y=VEE2中自变量X的取值范围是x-3A.x>2B.xN2【答案】CB.第二象限D.第四象限C.xN2且xU3若一次函数y=(k-2)x+1的函数值y随x的增大而增大,则A.k<2B.k>2C.k>0D.k<0D.x"3【答案】B一次函数y=x+2的图象与y轴的交点坐标为A.(0,2)【答案】AB.(0,-2)C.(2,0)D.(-2,0)将直线y=2x-3向右平移2个单位长度,A.y=2x-4B.y=2x+4再向上平移3个单位长度后,所得的直线的表达式为C.y=2x+2D.y=2x-2【答案】A如图,在矩形A0BC中,A(-2,1A.--2【答案】A1B.-20),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为C.-2D.2如图,直线y二kx+b(k"0)经过点A(-2,4),则不等式kx+b>4的解集为A.x>-2 D.x<4【答案】A8.如图,直线1是一次函数y=kx+b 的图象,若点A (3, m)在直线1上,则m 的值是【答案】C9.反比例函数y=§的图象经过点(3, -2),下列各点在图象上的是xA. (-3, -2)B. (3, 2)C. ( - 2, - 3)D. ( -2, 3)【答案】D10.如图,已知直线y=k 1X (虹尹0)与反比例函数y=4 (k 2^0)的图象交于M, N 两点.若点M 的坐标x是(1, 2),则点N 的坐标是A. ( - 1> - 2)C. (1, -2)B. ( -1, 2)D. ( -2, - 1)【答案】A11.如图,点C 在反比例函数y=* (x>0)的图象上,过点C 的直线与x 轴,y 轴分别交于点A, B,且AB=BC,X△A0B 的面积为1,则k 的值为A. 1B. 2C. 3D. 4【答案】D12.某通讯公司就上宽带网推出A, B,C 三种月收费方式.这三种收费方式每月所需的费用y (元)与上网时间x (h)的函数关系如图所示,则下列判断错误的是65503012025 50 55ox(h)A. 每月上网时间不足25h 时,选择A 方式最省钱B. 每月上网费用为60元时,B 方式可上网的时间比A 方式多C. 每月上网时间为35h 时,选择B 方式最省钱D. 每月上网时间超过70h 时,选择C 方式最省钱【答案】D13.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长,根据如图,在下列选项中指出白昼时长低于11小时的 节气白昼时长伺咽A.惊蛰B.小满C.立秋D.大寒【答案】D14.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s (单位:m )与时间r (单位:min )之间函数关系的大致图象是B.—°/(min)D.【答案】B15.在平面直角坐标系中,一个智能机器人接到如下指令:从原点0出发,按向右,向上,向右,向下的方向依次不断移动,每次移动Im.其行走路线如图所示,第1次移动到Au 第2次移动到A 2,…,第n 次移动到A ”.则左OA 2A 20i9的面积是16.17.A, 504m 2【答案】A22二次函数y=ax 2+bx+c (a^O)的部分图象如图所示,则下列结论错误的是A. 4a+b=0C. a : c= - 1 : 5【答案】DD.当-1W x W5 时,y>0如图,若二次函数y=ax 2+bx+c (a 尹0)图象的对称轴为x=l,与y 轴交于点C,与x 轴交于点A 、点B ( - 1, 0),则①二次函数的最大值为a+b+c ;②a - b+c<0;(3)b 2 - 4ac<0;④当y>0时,其中正确的个数是【答案】B18. P (3, -4)到x 轴的距离是【答案】419.抛物线y=2(x+2)纤4的顶点坐标为.【答案】(-2,4)20.如图,抛物线y=ax,与直线y=bx+c的两个交点坐标分别为A(-2,4),B(1,1),则方程ax^bx+c的解是.【答案】xi=-2,x2=l21.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=m时,矩形土地ABCD的面积最大.【答案】1503, 22.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t-一尸.在2飞机着陆滑行中,最后4s滑行的距离是m.【答案】2423.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.【答案】(4扼-4)24.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(-2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k、b的值;(2)若点D在y轴负半轴上,且满足S acod=|saboc,求点D的坐标.【解析】(1)当X=1时,y=3x=3,.•.点C 的坐标为(1, 3) .将 A ( - 2, 6)、C (1, 3)代入 y=kx+b,得:—2k + 〜=6k + b = 3,解徐’k = -l b = 4(2)由(1)得直线AB 的解析式为y=-x+4.当 y=0 时,有-x+4=0,解得:x=4,.•.点B 的坐标为(4, 0).设点D 的坐标为(0, m ) (m<0),1 nn 1 1 1S acod = — S aboc ,即m = — X — X 4X 3,3 2 3 2解得:m= - 4,.•.点D 的坐标为(0, -4).25.抛物线y=-|x +bx+c 经过点A (3 0, 0)和点B (0, 3),且这个抛物线的对称轴为直线1,顶点121 9 l【解析】(1) •抛物线y = +版+。
人教版八年级数学下册 19.1 变量与函数 课后练习(含答案)

2019年八年级数学下册变量与函数课后练习一、选择题:1、变量x,y有如下关系:①x+y=10;②y=;③y=|x-3;④y2=8x.其中y是x的函数的是( ).A.①②②③④B.①②③C.①②D.①2、在圆的周长C=2πr中,常量与变量分别是( ).A.2是常量,C、π、r是变量B.2是常量,C、r是变量C.C、2是常量,r是变量D.2是常量,C、r是变量3、小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t以及容器内水面的高度h,并画出表示h与t的函数关系的大致图象.如图所示.小明选择的物体可能是()4、下列曲线中,不能表示y是x的函数的是( )5、下列四幅图像近似刻画了两个变量之间的关系,图像与下列四种情景对应排序正确的是( )①一辆汽车在公路上匀速行驶 (汽车行驶的路程与时间的关系);②向锥形瓶中匀速注水 (水面的高度与注水时间的关系);③将常温下的温度计插入一杯热水中 (温度计的读数与时间的关系);④一杯越来越凉的水 (水温与时间的关系).A.①②④③B.③④②①C.①④②③D.③②④①6、根据如图的程序,计算当输入值x=-2时,输出结果y为()A.1;B.5;C.7;D.以上都有可能;7、小明同学准备从家打车去南坪,出门后发现到了拥堵使得车辆停滞不前,等了几分钟后他决定步行前往地铁站乘地铁直达南坪站(忽略中途等站和停靠站的时间),在此过程中,他离南坪站的距离y(km)与时间x(h)的函数关系的大致图象是()8、小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会儿,小华继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x 之间的关系的大致图象是()9、小丽的父亲饭后去散步,从家中走20分钟到离家1000米的报亭看了10分钟的报纸后,用15分钟返回家里,下列各图中表示小丽父亲离家的时间与距离之间的关系是()10、清清从家步行到公交车站台,等公交车去学校.下公交车后又步行了一段路程才到学校.图中的折线表示清清的行程s(米)与所花时间t (分)之间的函数关系.下列说法错误的是()A.清清等公交车时间为3分钟B.清清步行的速度是80米/分C.公交车的速度是500米/分D.清清全程的平均速度为290米/分二、填空题:11、在函数y=中,自变量x的取值范围是.12、小明根据某个一次函数关系式填写了下面的这张表, 其中有一格不慎被墨迹遮住了,想想看,表中空格原来填的数是 .13、一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧剩下的高度h(cm)随燃烧时间t(时)变化,请写出函数关系式14、明星中学计划投资8万元购买学生用电脑,则所购电脑的台数n(台)与单价x(万元)之间的关系是,其中________是常量,_______是变量.15、随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势:(1)上表中_____是自变量,_____是因变量.(2)你预计该地区从_____年起入学儿童的人数不超过1 000人.16、如图所示表示“龟兔赛跑”时路程与时间的关系,已知龟、兔上午8:00从同一地点出发,请你根据图中给出的信息,算出乌龟在点追上兔子.三、解答题:17、科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(℃)有关,当气温是0 ℃时,音速是331米/秒;当气温是5 ℃时,音速是334米/秒;当气温是10 ℃时,音速是337米/秒;当气温是15 ℃时,音速是340米/秒;当气温是20 ℃时,音速是343米/秒;当气温是25 ℃时,音速是346米/秒;当气温是30 ℃时,音速是349米/秒.(1)请你用表格表示气温与音速之间的关系;(2)表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(3)当气温是35 ℃时,估计音速y可能是多少?(4)能否用一个式子来表示两个变量之间的关系?18、写出下列各问题中的关系式中的常量与变量:(1)分针旋转一周内,旋转的角度n(度)与旋转所需要的时间t(分)之间的关系式n=6t;(2)某市居民用电价格是0.58元/度,居民生活应付电费y(元)与用电量x(度)之间满足y=0.58x.19、在一次实验中,小明把一根弹簧的上端固定.在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?(3)若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?20、已知如图,一天上午6点钟,言老师从学校出发,乘车上市里开会,8点准时到会场,中午12点钟回到学校,他这一段时间内的行程s(km)(即离开学校的距离)与时间(时)的关系可用图中的折线表示,根据图中提供的有关信息,解答下列问题:(1)开会地点离学校多远?(2)请你用一段简短的话,对言老师从上午6点到中午12点的活动情况进行描述.21、周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。
函数与变量知识点与练习(复习用)
第一讲 变量与函数知识点1:常量与变量常量(或常数):数值保持不变的量 变量:可以取不同数值且变化的量注:常量和变量是相对而言的,它由问题的条件确定。
如s =vt 中,若s 一定时,则 s 是常量,v 、t 是变量若v 一定时,则 v 是常量,s 、t 是变量若t 一定时,则 t 是常量,s 、v 是变量例1 分别指出下列关系式中的变量与常量:(1) 一个物体从高处自由落下,该物体下落的距离()h m 与它下落的时间()t s 的关系式为212h gt =(其中29.8g m s ≈); (2) 一个多边形的内角和A 与边数n (3n ≥,且n 为整数)存在关系()2180A n =-•;(3) 长方体的体积()3V cm 与长()a cm ,宽()b cm ,高()h cm 之间的关系式为V abh =。
知识点2:函数的概念 及函数思想(难点)一般地,设在一个变化的过程中有两个变量x 、y,如果对于x 在它允许取值范围内的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数.对函数概念的理解,主要抓住以下三点:1 ① 有两个变量;② 一个变量的数值随着另一个变量的数值的变化而变化;③ 对于自变量每一个确定的值,函数有且只有一个值与之对应。
例如:y=±x ,当x=1时,y 有两个对应值,所以y=±x 不是函数关系。
对于不同的自变量x 的取值,y 的值可以相同,例如,函数:y=|x|,当x=±1时,y 的对应值都是1。
注:(1)函数体现的是一个变化的过程:一个变量的变化对另一个变量的影响。
(2)在变化的过程中有且只有两个变量:自变量(一般在等号的右边)和因变量(一般在等号的左边)。
(3)函数的实质是两个变量之间的对应关系:自变量x 每取一个值,因变量有唯一确定的值与它对应。
(4)含有一个变量的代数式可以看作这个变量的函数。
例1 判断下列变量之间是不是存在函数关系并说明理由(1)长方形的宽一定时,其长与面积; (2)等腰三角形的底边长与面积 (3)某人的身高与年龄 (4)弹簧的总长度y (cm )与所挂物体质量x (kg )例2 下列变量x 、y 的关系中,y 是x 的函数的()x 是y 的函数的()①3x -y =5 ②y =|x | ③2210x y -=例3 下列各曲线中,不能表示y 是x 函数的为( )A .B .C .D .知识点3:函数的自变量的取值范围 (重点、常考点)(1)若函数关系式是整式,则自变量的取值范围是:全体实数。
2022学年北师大版七年级数学下册第三章《变量之间的关系》测试卷附答案解析
2022-2023学年七年级数学下册第三章《变量之间的关系》测试卷【全卷满分120分考试时间120分钟】一、单选题(每题3分,共30分)1.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s (米)与散步所用时间t (分)之间的函数关系,根据图象,下列信息错误的是()A .小明看报用时8分钟B .公共阅报栏距小明家200米C .小明离家最远的距离为400米D .小明从出发到回家共用时16分钟2.某水果销售商有100千克苹果,当苹果单价为15元/千克时,能全部销售完,市场调查表明苹果单价每提高1元,销售量减少6千克,若苹果单价提高x 元,则苹果销售额y 关于x 的函数表达式为()A .()100y x x =-B .()1006y x x =-C .()()10015y x x =-+D .()()100615y x x =-+3.在关系式37y x =--中,当自变量5x =-时,因变量y 的值为()A .8-B .8C .22-D .224.下列关于圆的周长C 与半径r 之间的关系式2C r π=中,说法正确的是()A .C 、r 是变量,π是常量B .r 、π是变量,2是常量C .C 、r 是变量,2是常量D .C 、r 是变量,2π是常量5.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度()cm y 与所挂的物体的重量()kg x 间有下表的关系:下列说法不正确的是()/kg x 012345/cmy 2020.52121.52222.5A .弹簧不挂重物时的长度为0cmB .x 与y 都是变量,且x 是自变量,y 是因变量C .随着所挂物体的重量增加,弹簧长度逐渐变长D .所挂物体的重量每增加1kg ,弹簧长度增加0.5cm6.若等腰三角形的周长为60cm ,底边长为x cm ,一腰长为y cm ,则y 关于x 的函数解析式及自变量x 的取值范围是()A .y =60-2x(0<x<60)B .y =60-2x(0<x<30)C .y =12(60-x)(0<x<60)D .y =12(60-x)(0<x<30)7.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃20-10-0102030声速/()m/s 318324330336342348下列说法错误的是()A .在这个变化中,自变量是温度,因变量是声速B .温度越高,声速越快C .当空气温度为20℃时,声速为342m/sD .当温度每升高10℃,声速增加8m/s8.甲骑摩托车从A 地去B 地,乙开汽车从B 地去A 地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s (单位:千米),甲行驶的时间为t (单位:小时),s 与t 之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是()A .4B .3C .2D .19.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是A .B .C .D .10.小明从家骑自行车上学,先以0.4千米/分的速度匀速骑行5分钟,途经超市时,买文具用了5分钟,为按时到校,再以0.5千米/分的速度骑行2分钟到学校.设小明骑自行车的速度为v (千米/分),离家路程为s (千米),上学时间为t (分).下列图象能表达这一过程的是()A .B .C .D .二、填空题(每题3分,共30分)11.某水库的水位在某段时间内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时的函数关系式为_____.12.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势:年份201520162017…入学儿童人数252023302140…(1)上表中_____是自变量,_____是因变量;(2)你预计该地区从_____年起入学儿童的人数不超过2000人.13.出租车的收费标准为:5km 以内(含5km )起步价为8元,超过5km 后每1km 收1.5元,如果用()5km s s ≥表示出租车行驶的路程,y 表示的是出租车应收的车费,请你表示y 与s 之间的表达式___________.14.一商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元.该商场为促销决定:买1支毛笔就赠送1本书法练习本.某校书法兴趣小组打算购买这种毛笔10支,这种练习本x (x ≥10)本,则付款金额y(元)与练习本个数x(本)之间的函数关系式是_____.15.如图,某链条每节长为2.8cm,每两节链条相连接部分重叠的圆的直径为1cm,按这种连接方式,x y,则y关于x的函数关系式是_______.节链条总长度为cm16.弹簧挂上物体后会伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:物体的质量(kg)012345弹簧的长度(cm)1010.51111.51212.5在弹簧能承受的范围内,如果物体的质量为x kg,那么弹簧的长度y cm可以表示为_____.17.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.则体育场离张强家_____千米,张强在体育场锻炼了_____分钟,张强从早餐店回家的平均速度是_____千米/小时.18.某城市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费45元,则所用水为____方.月用水量不超过12方部分超过12方不超过18方部分超过18方部分收费标准(元/方)2 2.5319.声音在空气中传播的速度y(米/秒)(简称音速)与气温x(℃)之间的关系如下:从表中可知音速y 随温度x 的升高而_____.在气温为20℃的一天召开运动会,某人看到发令枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发令地点________米.20.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是_____.(把你认为正确说法的序号都填上)三、解答题(共60分)21.探索计算:弹簧挂上物体后会伸长.已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:所挂物体的质量/kg 01234567弹簧的长度/cm1212.51313.51414.51515.5(1)当所挂物体的质量为3kg 时,弹簧的长度是;(2)在弹性限度内如果所挂物体的质量为x kg ,弹簧的长度为y cm ,根据上表写出y 与x 的关系式;(3)当所挂物体的质量为5.5kg 时,请求出弹簧的长度;(4)如果弹簧的最大长度为20cm ,那么该弹簧最多能挂质量为多少的物体?22.下表是某河流在汛期一天中涨水的情况,警戒水位为25米.时间/时04812162024超警戒水位/米0.2+0.25+0.35+0.5+0.7+0.9+ 1.0+(1)上表反映了________与时间之间的关系,其中____是自变量,______是因变量;(2)估计上午10时的水位是_______;(3)从0时到24时,水位从_______上升到_____;(4)从__时到__时,水位上升最快;(5)假设第二天持续下雨(基本与当天降水量一样),则第二天12时超警戒水位__米.23.据统计,某公交车每月的支出费用为3000元,每月利润(利润=票款收入-支出费用)(元)与每月的乘车人数(人)的变化关系如下表所示(公交车票价固定不变).每月的乘车人数/人600900120015001800…每月利润/元-1800-1200-6000600…(1)在这个变化过程中,自变量是,因变量是;(2)观察表中数据可知,每月乘车人数达到人以上时,该公交车才不会亏损;(3)由表中数据可推断出该公交车的票价为元;(4)求每月乘车人数为5000人时的每月利润.24.宝兰客专是首条贯通丝绸之路经济带的高铁线,宝兰客专的通车对加快西北地区与“一带一路”沿线国家和地区的经贸合作,人文交流具有十分重要的意义.试运行期间,一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y (千米),图中的折线表示y与x之间的关系,根据图象,解答下列问题:(1)西宁与西安相距千米,两车出发后小时相遇;(2)普通列车到达终点共需小时,它的速度是千米/小时;(3)求动车的速度;(4)动车行驶多长时间与普通列车相距140千米?25.心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:min )之间有如下关系(其中220x ):提出概念所用的时间x 257101213141720学生对概念的接受能力y47.853.556.359.059.859.959.858.355.0(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当提出概念所用的时间是5min 时,学生的接受能力是多少?(3)根据表格中的数据回答:当提出概念所用的时间是几分钟时,学生的接受能力最强?(4)根据表格中的数据回答:当x 在什么范围内时,学生的接受能力在增强?当x 在什么范围内时,学生的接受能力在减弱?26.甲、乙两车早上从A 城车站出发匀速前往B 城车站,在整个行程中,两车离开A 城的距离s 与时间t 的对应关系如图所示:(1)A ,B 两城之间距离是多少?(2)求甲、乙两车的速度分别是多少?(3)乙车出发多长时间追上甲车?(4)从乙车出发后到甲车到达B 城车站这一时间段,在何时间点两车相距40km ?27.如图所示,是反映了爷爷每天晚饭后从家中出发去散步的时间与距离之间的关系的一幅图.(1)下图反映了哪两个变量之间的关系?(2)爷爷从家里出发后20分钟到30分钟可能在做什么?(3)爷爷每天散步多长时间?(4)爷爷散步时最远离家多少米?(5)分别计算爷爷离开家后的20分钟内、30分钟内、45分钟内的平均速度.28.小华在暑假社会实践过程中,以每千克0.5元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图所示,请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的关系式?(2)小华从批发市场共购进多少千克西瓜?(3)小华这次卖瓜赚了多少钱?参考答案:1.A .2.D3.B4.D5.A6.D7.D8.B9.C10.D 11.60.3y x =+12.年份,入学儿童人数2018.13.y =1.5s +0.514.5200y x =+##=200+5y x 15. 1.81y x =+16.y =10+0.5x 17. 2.515318.2019.增大;68.6.20.①③④21.(1)解:由表可知当所挂物体的质量为3kg 时,弹簧的长度是13.5,故答案为:13.5;(2)由表可知:弹簧原长为12cm ,所挂物体每增加1kg 弹簧伸长0.5cm ,∴弹簧总长y (cm )与所挂重物x (kg )之间的函数关系式为0.512y x =+;(3)当 5.5x =kg 时,代入0.512y x =+,解得14.75y =cm ,即弹簧总长为14.75cm .(4)当20y =cm 时,代入0.512y x =+,解得16x =,即所挂物体的质量为16kg .22.(1)解:上表反映了超警戒水位随着时间的变化而变化,其中时间是自变量,超警戒水位是因变量;(2)解:估计上午10时超警戒水位0.4米,则估计上午10时的水位是:250.425.4+=(米),故答案为:25.4米;(3)解:0时水位:250.225.2+=(米)24时水位:25126+=(米),即从0时到24时,水位从25.2米上升到26米,故答案为:25.2米,26米;(4)解:观察表格得,在0至4时,警戒水位上升:()0.250.20.05+-+=(米),在4至8时,警戒水位上升:()0.350.250.1+-+=(米),在8至12时,警戒水位上升:()0.50.350.15+-+=(米),在12至16时,警戒水位上升:0.7(0.5)0.2+-+=(米),在16至20时,警戒水位上升:0.9(0.7)0.2+-+=(米),在20至24时,警戒水位上升: 1.0(0.9)0.1+-+=(米),即从12时到20时,水位上升的最快,故答案为:12,20;(5)解:观察表格得,第一天12时超警戒水位0.5+米,24时警戒水位 1.0+米,假若第二天持续下雨(基本与第一天降水情况一样),则估计第二天12时超警戒水位10.5 1.5++=(米),故答案为: 1.5+.23(1)解:在这个变化过程中,每月乘车人数是自变量,每月的利润是因变量,故答案为:每月乘车人数,每月的利润;(2)解:观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到1500人以上时,该公交车才不会亏损,故答案为:1500;(3)解:由表中数据可知,当每月乘车人数为1500人时,每月利润为0元,则题中票款收入=支出费用,而每月固定支出费用为3000元,从而得到票价为300021500=元,故答案为:2;(4)解:由表中数据可知,每月的乘车人数每增加300人,每月的利润可增加600元,当每月的乘车人数为1500人时,每月利润为0元,则当每月乘车人数为5000人时,每月利润为()500015006007000300-⨯=元,故答案为:7000元.24.(1)由0x =时,1260y =,知西宁到西安两地相距1260千米,由3x =时,0y =,知两车出发后3小时相遇,(2)由图象知14x =时,普通列车到达西安,即普通列车到达终点共需14小时,普通列车的速度是12609014=(千米/小时),(3)设动车的速度为x 千米/小时,根据题意,得:33901260x +⨯=,答:动车的速度为330千米/小时;(4)①相遇前动车行驶与普通列车相距140千米,()()81260140330903-÷+=(小时),∴动车行驶83小时与普通列车相距140千米;②相遇后动车行驶与普通列车相距140千米,42126033011÷=(小时),10(1260140)(33090)3+÷+=(小时)∴动车行驶103小时与普通列车相距140千米;综上,动车行驶83小时或103小时与普通列车相距140千米.25.(1)解:提出概念所用的时间x 和对概念的接受能力y 两个变量;提出概念所用时间x 是自变量,对概念的接受能力y 是因变量.(2)解:当5x =时,53.5y =,答:当提出概念所用时间是5min 时,学生的接受能力是53.5.(3)解:当13x =时,y 的值最大是59.9,答:提出概念所用时间为13分钟时,学生的接受能力最强.(4)解:由表中数据可知:当213x ≤<时,y 值逐渐增大,学生的接受能力逐步增强;当1320x <≤时,y 值逐渐减小,学生的接受能力逐步减弱.26(1)解:由图象可知A 、B 两城之间距离是300km ;(2)解:由图象可知,甲的速度=3005=60(km/h ),乙的速度=3003=100(km/h ),∴甲、乙两车的速度分别是60km/h 和100km/h ;(3)解:设乙车出发x h 追上甲车,由题意:60(x +1)=100x ,解得:x =1.5,∴乙车出发1.5h 追上甲车;(4)解:设乙车出发后到甲车到达B 城车站这一段时间内,甲车与乙车相距40km 时甲车行驶了m h ,①当甲车在乙车前时,得:60m -100(m -1)=40,解得:m =1.5,此时是上午6:30;②当甲车在乙车后面时,100(m-1)-60m=40,解得:m=3.5,此时是上午8:30;③当乙车到达B城后,300-60m=40,解得:m=13 3,此时是上午9:20.∴分别在上午6:30,8:30,9:20这三个时间点两车相距40km.27.解:(1)爷爷散步的时间与距离之间的关系;(2)可能在某处休息.(3)爷爷每天散步45分钟(4)爷爷散步时最远离家为900米(5)爷爷离开家后:①20分钟内平均速度:900÷20=45(米/分);②30分钟内平均速度:900÷30=30(米/分);③45分钟内平均速度:9002⨯÷45=40(米/分).28.(1)设函数的解析式是y=kx,把x=40,y=64代入得:40k=64,解得k=1.6.则函数的解析式是y=1.6x.(2)∵价前西瓜售价每千克1.6元.降价0.4元后西瓜售价每千克1.2元.降价后销售的西瓜为(76-64)÷1.2=10(千克)∴小华从批发市场共购进50千克西瓜.(3)76-50×0.8=76-40=36(元).即小华这次卖瓜赚了36元钱.。
九年级数学函数与方程练习题及答案
九年级数学函数与方程练习题及答案1. 函数1.1 定义函数函数是一种特殊的关系,将一个集合的元素映射到另一个集合的元素。
我们用 f(x) 表示函数,其中 x 是输入变量,f(x) 是输出变量。
1.2 函数的性质函数具有以下性质:- 每个输入变量只有唯一对应的输出变量。
- 可以通过输入变量的值计算输出变量的值。
- 函数可以表示为一个表格、一条曲线或者一个方程。
2. 方程2.1 一次方程一次方程是指次数为1的等式,通常形式为ax + b = c,其中a、b、c 是已知常数,x 是未知数。
2.2 解一次方程的方法解一次方程的基本步骤如下:- 将方程移项,将未知数的项移到等式一边,已知常数的项移到等式的另一边。
- 合并同类项,将未知数的系数与未知数相乘,得到一个整数。
- 用求得的整数除以未知数的系数,得到未知数的值。
3. 习题及答案3.1 函数练习题1) 设有函数 f(x) = 3x + 2,求当 x = 4 时的函数值。
解: 将 x = 4 代入函数 f(x) = 3x + 2,得到 f(4) = 3(4) + 2 = 14。
2) 设有函数 g(x) = x^2 - 5x + 6,求当 x = 2 时的函数值。
解: 将 x = 2 代入函数 g(x) = x^2 - 5x + 6,得到 g(2) = 2^2 - 5(2) + 6 = 4 - 10 + 6 = 0。
3.2 方程练习题1) 解方程 2x + 5 = 15。
解:将方程移项得 2x = 15 - 5 = 10,再将等式两边都除以 2 得 x = 10 / 2 = 5。
所以方程的解为 x = 5。
2) 解方程 3(x - 4) = 6 + 2x。
解:展开方程得 3x - 12 = 6 + 2x,移项得 3x - 2x = 6 + 12,合并同类项得 x = 18。
所以方程的解为 x = 18。
3) 解方程 2(3x - 1) + 5(x + 2) = 4(2x + 3) - 7。
人教版八年级下册数学19.1.1《变量和函数》课时练习(无答案)
八年级数学19.1.1《变量与函数》课时练习一、选择题:1、函数y=x2+2x+2中自变量的取值范围为():A.全体实数B.正数C. 非负数D.x>12、已知等腰三角形的周长为20,腰为x,底边为y,请写出y与x之间的函数关系式为()A. y=20-2xB. y=20+2xC. y=10-2xD. y=10+2x3、判断下列各点中是在函数y=x+0.5的图象上的是( )A.(-4,-4.5)B.(4,4.5)C. (4,3.5)D. (-4,4.5)4、甲、乙两地相距S千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=S,在这个变化过程中,下列判断中错误的是()A.S是变量 B.t是变量 C.v是变量 D.S是常量5、一辆汽车的油箱中现有汽油30L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.2L/km。
表示y与x的函数关系的式子为()A.y = 30-0.2xB. y = 30+0.2xC. y = 20-0.2xD. y = 30-0.3x6、一个正方形的边长为3cm,它的各边长减少x cm后,得到的新正方形周长为ycm。
求y 和x间的关系式为()A. y=4(3-x)B. y=4(x-3)C. y=2(3-x)D. y=4(3+x)7、小军用100元钱去买单价是6元的笔记本,则他剩余的钱Q•(元)与他买这种笔记本的本数x之间的关系是()A.Q=6x B.Q=6x-100 C.Q=100-6x D.Q=6x+1008、函数y=3x-12-x+21-x中,自变量x的取值范围是()A.x≤2 B.x≤2且x≠1C.x<2且x≠1 D.x≠19、若点p在第二象限,且p点到x轴的距离为3,到y轴的距离为1,则p点的坐标是()A.(-1,3)B.(-,1)C.(,-1)D.(1,-3)10、一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:千米)的增加而减少,平均耗油量为0.1L/千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.1 常量与变量
一、填空题:
1、在匀速运动公式S=Vt 中,V 表示速度,t 表示时间,S 表示在时间t 内所走的路程,则变量是 ,常量是 。
2、某方程的两个未知数之间的关系为y=-3x 2+5, 变量是 ,常量是 。
3、茶叶蛋每只0.3元,在买卖鸡蛋的过程中, 是常量, 是变量;设买茶叶蛋的个数为x (个),所付的钱数为y (元),它们的关系可表示为 。
4某弹簧的自然长度为3cm ,在弹性限度内,所挂物体的质量x 每增加某1千克,弹簧长度y 增加0.5厘米。
则有关系式y=3+0.5x ,指出其中的变量与常量。
7.2 认识函数(1)
1、小明用30元钱去购买价格为每件5元的某种商品,求他剩余的钱y(元)与购买这种商品x 件之间的关系 。
当x=5时,函数值是 ,这一函数值的实际意义是 。
2、某商店售货时,在进货价的基础上加一定的利润,其数量x 与售价y 如下表示,根据表中所提供的信息,售价y 与售货数量x 的函数解析式为( )
A y=8.4x
B y= 8x +0.4
C y=0.4x +8
D y=8x
3、地壳的厚度约为8~40km ,在地表以下不太深的地方,温度可按y=35x+t 计算,其中x 是深度,t 是地球表面温度,y 是所达深度的温度。
当x 为22km 时,地壳的温度(地表温度为2°C )( )
A 24°C
B 772°C
C 70°C D570°C
4、围猪舍三间,它们的形状是一排大小相等的三个矩形,一面利用旧墙,包括隔墙在内的其他各墙均用木料,已知现有木料可围24米的墙,设整个猪舍的长为x (米),宽为y (米),则y 关系x 的函数关系式为 。
y
§7.2 认识函数(2)
1、一个长方形的长比宽大3cm,如果宽是xcm,那么这个长方形的面积是,当x
为8时,长方形的面积为 .
2、函数中,自变量x的取值范围。
3、已知正方形的边长为xcm,若把这个正方形的每边长都减少3cm,则正方形减少的面积
为()
A 3
B 6x – 9
C (x-3)2
D 6x
4、一台机器开始工作时油箱中储油4升,如果每小时耗油0.5升,那么油箱中所剩油y(升)与它工作时间t(小时)之间的函数关系式是
A y= 0.5 t
B y= 4 - 0.5 t
C y= 4+ 0.5 t
D y= 4 / t
5、求下列函数自变量的取值范围。
(1)(2)
7.3 一次函数(1)
1、一次函数21y x =-+中一次项系数k 值为 。
2、一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加3m ,则小球速度V (m/s )时间t (s )之间关系式为 。
3、一次函数y=kx+2,当x=3时y=-7,则k 的值是 。
4、下列说法正确的是( )
A 、一次函数是正比例函数
B 、正比例函数是一次函数
C 、不是正比例函数就不是一次函数
D 、正比例函数不是一次函数
5、下列关于x 的函数中,是正比例函数的是( )
A 、51y x =-+
B 、5y x
= C 、3y x =- D 、23y x = 7.3 一次函数(2)
1、已知一次函数3y x b =+,当x=1时,y=3,则b 的值是 。
2、某汽车行驶时,油箱内装满汽油70升,如果每时耗油7升,油箱内剩余油量y (升)与时间x (时)之间的函数关系式为 。
3、已知y 与x -1成正比例,且当x=-5时,y=3,写出y 与x 之间函数关系式 。
二、选择题
4、一次函数y=kx+3中,当x=2时,y 的值为5,则k 的值为( )
A 、1
B 、-1
C 、5
D 、-5
5、一次函数当x=0时,y=-2,当x=3时,y=1,那么这个函数的表达式是( )
A 、2y x =-+
B 、2y x =+
C 、2y x =-
D 、2y x =--
第七章一次函数(7.1—7.3)综合试卷
一、填空题
1.在圆的周长和半径之间的关系式C=2πr中,C随着r的变化而变化.其中,_______是常量,_______是变量.
2.有一棵树苗,刚栽下去时树高1.2米,以后每年长高0.2米,设x年后树高为y米,那么y与x之间的函数解析式为_______。
3.当x=5时,函数y=x+4的值是_______。
4.函数y=
1
2x-1
中,自变量x的取值范围是_______。
5.已知y与x成正比例,当X=-2时,y=6,那么比例系数k=_______。
6.已知一次函数y=-2x+b,当x=1时,y=2,那么b的值是_______。
7.已知y-2与x成正比例,并且当x=-1时,y=7,那么y与x之间的函数解析式是_______。
8.已知一次函数y=x+5,当y>1时,自变量x的取值范围是_______。
9.等腰三角形的周长为20cm,设腰长为xcm,底边长为ycm,那么y与x之间的函数解析式是_______,其中自变量x的取值范围是_______。
二、选择题
10.在某地,温度T(℃)与高度d(米)之间的关系可以近似地用T=10-d
150来表示,那么,当高度d=900米时,温度T为( )
A.8℃B.6℃C.5℃D.4℃
11.如果每盒圆珠笔有12支,售价18元,那么圆珠笔的售价y(元)与圆珠笔的支数x之间的函数关系式是( )
A.y=1.5x(x为自然数) B.y=2
3x(x为自然数)
C.y=12x(x为自然数) D.y=18x(x为自然数)
12.正方体的棱长是a,表面积为S,那么S与a之间的函数解析式是( )
A.S=4a2B.S=a3C.S=6a2D.S=8a2
13.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度h(cm)与燃烧时间t (小时)(0≤t≤4)之间的函数解析式是( )
A.h=4t B.h=5t C.h=20-4t D.h=20-5t
14.已知下列函数:①y=2x-1;②y=-x;③y=4x;④y=x/2。
其中属于正比例函数的有( )
A.1个B.2个C.3个D.4个
15.一次函数y=kx+b中,k为( )
A.非零实数B.正实数C.非负实数D.任意实数
16、写出下列函数关系式,并判断其中哪些是正比例函数,哪些是一次函数。
(1)行驶200千米路程,车速V(千米/时)与行驶的时间t(小时)的关系。
(2)三角形底边上的高h一定,它的面积S与底边长a的关系。
(3)游泳池内有水15m3,现以每分钟3m3的流量往池里注水,80分钟可以将水池注满,池内水量Q(m3)与注水时t(分)之间关系
17.已知y与x成正比例,且x=2时,y=-6.求:
(1)y与x的函数关系式;
(2)当y=12时,x的值.
18.(6分)已知y是x的一次函数,当x=-2时,y=8;当x=-1时,y=5.求y与x的函数解析式。
19、已知y与x+2成正比例,且当x=1时,y=-6
(1)求y与x之间的函数关系式
(2)当y=2时,求自变量x值
20、平行四边形的周长为18cm,两条邻边不相等,其中较大的一条边长为ycm,较小的一条边长为xcm.求y与x之间的函数解析式,并写出自变量x的取值范围。