2017年贵州省高考数学试卷(文科)(全国新课标Ⅲ)

合集下载

2017年数学真题及解析_2017年全国统一高考数学试卷(文科)(新课标ⅲ)

2017年数学真题及解析_2017年全国统一高考数学试卷(文科)(新课标ⅲ)

2017年全国统一高考数学试卷(文科)(新课标Ⅲ)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1 B.2 C.3 D.42.(5分)复平面内表示复数z=i(﹣2+i)的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)已知sinα﹣cosα=,则sin2α=()A.﹣ B.﹣ C.D.5.(5分)设x,y满足约束条件则z=x﹣y的取值范围是()A.[﹣3,0]B.[﹣3,2]C.[0,2]D.[0,3]6.(5分)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.7.(5分)函数y=1+x+的部分图象大致为()A. B.C.D.8.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N 的最小值为()A.5 B.4 C.3 D.29.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB. C.D.10.(5分)在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC11.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.12.(5分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣ B.C.D.1二、填空题13.(5分)已知向量=(﹣2,3),=(3,m),且,则m=.14.(5分)双曲线(a>0)的一条渐近线方程为y=x,则a=.15.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=,c=3,则A=.16.(5分)设函数f(x)=,则满足f(x)+f(x﹣)>1的x的取值范围是.三、解答题17.(12分)设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.19.(12分)如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.20.(12分)在直角坐标系xOy中,曲线y=x2+mx﹣2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.21.(12分)已知函数f(x)=lnx+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤﹣﹣2.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|﹣|x﹣2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.2017年全国统一高考数学试卷(文科)(新课标Ⅲ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分。

2017年全国统一高考数学试卷(文科)全国卷1(详解版)

2017年全国统一高考数学试卷(文科)全国卷1(详解版)

2017年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)(2017•新课标Ⅰ)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)(2017•新课标Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)(2017•新课标Ⅰ)下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)(2017•新课标Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)(2017•新课标Ⅰ)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.6.(5分)(2017•新课标Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.7.(5分)(2017•新课标Ⅰ)设x,y满足约束条件,则z=x+y的最大值为()A.0B.1C.2D.38.(5分)(2017•新课标Ⅰ)函数y=的部分图象大致为()A.B.C.D.9.(5分)(2017•新课标Ⅰ)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)(2017•新课标Ⅰ)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)(2017•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=()A.B.C.D.12.(5分)(2017•新课标Ⅰ)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。

2017年高考数学文(新课标全国Ⅰ卷)超级详细解析

2017年高考数学文(新课标全国Ⅰ卷)超级详细解析

- 1 -2017年普通高等学校招生全国统一考试文科数学一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R【答案】A【解析】由320x ->得32x <,所以33{|2}{|}{|}22A B x x x x x x ⋂=<⋂<=<,选A. 2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值 D .x 1,x 2,…,x n 的中位数 【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B 3.下列各式的运算结果为纯虚数的是 A .i(1+i)2 B .i 2(1-i) C .(1+i)2 D .i(1+i) 【答案】C【解析】由2(1)2i i +=为纯虚数知选C.4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学 科&网则此点取自黑色部分的概率是A .14B .π8C .12D .π 4【解析】由圆及太极图的对称性可知,黑色部分与白色部分各占圆的面积的12,于是可设圆的半径1r =,则正方形ABCD 的边长2a =,所以所求概率为22221112228r P a πππ⨯===,故选B .5.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为A .13B .1 2C .2 3D .3 2【答案】D【解析】由2224c a b =+=得2c =,所以(2,0)F ,将2x =代入2213y x -=,得3y =±,所以3PF =,又A 的坐标是(1,3),故APF 的面积为133(21)22⨯⨯-=,选D.6.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是 【答案】A【解析】本题考察线面平行的判定,只需证明直线AB 与平面MNQ 的一条直线平行即可,用排除法.在B 中,如图1,易证AB ∥CD ∥MQ ,排除B ;在C 中,如图2,易证AB ∥CD ∥MQ ,排除B ;在D 中,如图3,易证AB ∥CD ∥MQ ,排除B ;故选A ;- 2 -7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .3 【答案】D【解析】如图,目标函数z x y =+经过(3,0)A 时最大,故max 303z =+=,故选D. 8..函数sin21cos xy x=-的部分图像大致为【答案】C【解析】由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当x π=时,0y =,排除D ;当1x =时,sin 201cos 2y =>-,排除A.故选C.9.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增 B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称【答案】C【解析】(法一)函数的定义域为)2,0(,)2(ln )2ln(ln )(x x x x x f -=-+=,设2)1(2)2()(22+--=+-=-=x x x x x x t ,)(t f 为增函数,当)1,0(∈x 时,)(x t 为增函数,∴)(x f 为增函数,当)2,1(∈x 时,)(x t 为减函数,∴)(x f 为减函数.排除A,B , 因为)(x t 是二次函数,图像关于直线1=x 对称,故)2()(x t x t -=,所以)2()(x f x f -=,()y f x =的图像关于直线1x =对称,故选 C ;(法二))2(22211)(x x x x x x f --=--=',当)1,0(∈x 时,0)(>'x f ,)(x f 为增函数. 当)2,1(∈x 时,0)(<'x f ,)(x f 为减函数,故排除A,B. 故选 C10.如图是为了求出满足321000n n ->的最小偶数n ,学|科网那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +2 【答案】D【解析】由题意选择321000nn->,则判定框内填1000A ≤,由因为选择偶数,所以矩形框内填2n n =+,故选D.11.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。

【贵州省贵阳市】2017年高考一模数学(文科)试卷(附答案)

【贵州省贵阳市】2017年高考一模数学(文科)试卷(附答案)

贵州省贵阳市2017年高考一模数学(文科)试卷一、选择题(共12小题,每小题5分,满分60分) 1.已知i 为虚数单位,则232017i i i i z =++++=( )A .0B .1C .﹣iD .i 2.满足{{1,2}1,2,,4}3P ⊆Ø的集合P 的个数是( )A .2B .3C .4D .53.某公司某件产品的定价x 与销量y 之间的数据统计表如下,根据数据,用最小二乘法得出y 与x 的线性回归直线方程为:ˆˆ6.517.5yx =+,则表格中n 的值应为( )A .45B .50C .55D .604.已知{}n a 是等差数列,且公差0d ≠,n S 为其前n 项和,且56S S =,则11S =( ) A .0B .1C .6D .115.如图的程序框图,如果输入三个数a ,b ,c ,22(0)a b +≠要求判断直线0ax by c ++=与单位圆的位置关系,那么在空白的判断框中,应该填写下面四个选项中的( )A .0?c =B .0?b =C .0?a =D .0?ab =6.某一空间几何体的三视图如图所示,则该几何体的最长棱长为( )A .2BC .D .37.在[0,π]内任取一个实数x ,则1sin 2x ≤的概率为( ) A .23B .12C .13D .148.设M 为边长为4的正方形ABCD 的边BC 的中点,N 为正方形区域内任意一点(含边界),则AM AN 的最大值为( ) A .32B .24C .20D .169.经过双曲线的左焦点1F 作倾斜角为30︒的直线,与双曲线的右支交于点P ,若以1PF 为直径的圆恰好经过双曲线的右焦点,则双曲线的离心率为( )AB .2CD10.设SA 为球的直径,B C D 、、三点在球面上,且SA BCD ⊥面,三角形BCD 的面积为3,33S BCD A BCD V V --==,则球的表面积为( )A .16πB .64πC .32π3D .32π 11.设命题p :若()y f x =的定义域为R ,且函数(2)y f x =-图象关于点(2,0)对称,则函数()y f x =是奇函数,命题q :0x ∀≥,1123x x ≥,则下列命题中为真命题的是( ) A .p q ∧B .p q ⌝∨C .p q ∧⌝D .p q ⌝∧⌝12.过点(22M 作圆221x y +=的切线l,l 与x 轴的交点为抛物线22(0)E y px p =:>的焦点,l 与抛物线E 交于A B 、两点,则AB 中点到抛物线E 的准线的距离为( )A B . CD .二、填空题(共4小题,每小题5分,满分20分)13.已知2sin cos 3sin cos αααα+=-,则tan2α=_________.14.函数2()f x x =在1x =处的切线与两坐标轴围成的三角形的面积为__________.15.我国古代数学家刘徽是公元三世纪世界上最杰出的数学家,他在《九章算术圆田术》注重,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法,所谓“割圆术”,即通过圆内接正多边形细割圆,并使正多边形的周长无限接近圆的周长,进而求得较为精确的圆周率(圆周率指周长与该圆直径的比率).刘徽计算圆周率是从正六边形开始的,易知圆的内接正六边形可分为六个全等的正三角形,每个三角形的边长均为圆的半径R ,此时圆内接正六边形的周长为6R ,此时若将圆内接正六边形的周长等同于圆的周长,可得圆周率为3,当正二十四边形内接于圆时,按照上述算法,可得圆周率为______(参考数据:cos150.966︒≈,0.26≈)16.已知数列{}n a 满足:23*1232222(N )nn a a a a n n ++++=∈,数列2211{}log log n n a a +的前n 项和为n S ,则12310S S S S =___________.三、解答题(共5小题,满分60分)17.(12分)已知锐角ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,sin()b A C =+,cos()cos A C B -+=. (1)求角A 的大小; (2)求b c +的取值范围.18.(12分)2017年1月1日,作为贵阳市打造“千园之城”27个示范性公元之一的泉湖公园正式开园,元旦期间,为了活跃气氛,主办方设置了水上挑战项目向全体市民开放,现从到公园游览的市民中随机抽取了60名男生和40名女生共100人进行调查,统计出100名市民中愿意接受挑战和不愿意接受挑战的男女生比例情况, (1)根据条件完成下列22⨯列联表,并判断是否在犯错误的概率不超过1%的情况下愿意接受挑战与性别有关?(2)现用分层抽样的方法从愿意接受挑战的市民中选取7名挑战者,再从中抽取2人参加挑战,求抽取的2人中至少有一名男生的概率. 参考公式与数据:22()()()()()n ad bc a b c K d a c b d -=++++.19.(12分)底面为菱形的直棱柱1111ABCD A B C D -中,E F 、分别为棱11A B 、11A D 的中点,(1)在图中作一个平面α,使得BD α⊂,且平面AEF α∥(不必给出证明过程,只要求做出α与直棱柱1111ABCD A B C D -的截面)(2)若12AB AA ==,60BAD ∠=︒,求点C 到所作截面α的距离.20.(12分)已知圆1F:22(9x y ++=与圆2F:22(1x y -+=,以圆1F 、2F 的圆心分别为左右焦点的椭圆C :22221(0)x y a b a b+=>>经过两圆的交点.(1)求椭圆C 的方程;(2)直线x =M 、N (M 在第一象限)满足120F M F N =,直线1MF 与2NF 交于点Q ,当||MN 最小时,求线段MQ 的长.21.(12分)设()e x f x x =,21()2g x x x =+. (1)令()()()F x f x g x =+,求()F x 的最小值;(2)若任意12[1)x x ∈-+∞,,且12x x >有1212))][((())(m f x x g x g x f -->恒成立,求实数m 的取值范围. 四、请考生在第22.23题中任选一题作答,如多做,则按所做的第一题记分选修4-4:坐标系与参数方程选讲 22.(10分)在直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为12cos 6sin 0ρθθρ-+=-,直线l的参数方程为132()3x t t y ⎧=+⎪⎪⎨⎪=+⎪⎩为参数. (1)求曲线C 的普通方程;(2)若直线l 与曲线C 交于A ,B 两点,点P 的坐标为(3,3),求|||PA PB +|的值. 选修4-5:不等式选讲 23.设()|1||4|f x x x =+--.(1)若2(x)6f m m -+≤恒成立,求实数m 的取值范围;(2)设m 的最大值为0m a b c ,,,均为正实数,当0345a b c m ++=时,求222a b c ++的最小值,贵州省贵阳市2017年高考一模数学(文科)试卷答 案一、选择题(共12小题,每小题5分,满分60分) 1~5.DBDAA6~10.DCBCA11~12.CD二、填空题(共4小题,每小题5分,满分20分)13.815-. 14.14.15.3.12.16.111. 三、解答题(共5小题,满分60分)17.解:(1)sin()b A C =+,可得:sin b B =, ∴由正弦定理sin sinB sin a b cA C==,可得:sin a A =,sin c C =,cos()cos A C B -+=,可得:cos()cos()A C A C --+=,可得:cos cos sin sin (cos cos sin sin )A C A C A C A C +--=,2sin sin A C ∴=,2ac ∴=,可得:sin a A ==, ∵A 为锐角,π3A ∴=.(2)3a =,π3A =,∴由余弦定理可得:222π2cos 3b c bc -=+,即2234b c bc =+-,整理可得:23()4b c bc +=+, 又22324b c bc bc bc bc =+--=≥,当且仅当b c =时等号成立,23333()4442b c bc ∴+=++=≤,解得:b c +,当且仅当b c =时等号成立,又b c a +=>,b c ∴+∈. 18.解:(1)列联表2100(15202045) 6.59 6.63535656040K ⨯⨯-⨯=≈⨯⨯⨯<,∴不能在犯错误的概率不超过1%的情况下愿意接受挑战与性别有关;(2)现用分层抽样的方法从愿意接受挑战的市民中选取7名挑战者,男生3名,女生4名,从中抽取2人参加挑战,共有2721C =种方法,全是女生的方法有6种,∴抽取的2人中至少有一名男生的概率为651217-=.19.解:(1)1111B C G D C H BG GH DH 取的中点,的中点,连结,,,1111BDHG ABCD A B C DBDHG αα-则平面就是所求的平面,与直棱柱的截面即为平面.(2)取BC 中点M ,12AB AA ==,60BAD ∠=︒,∴以D 为原点,DA 为x 轴,DM为y 轴,1DD 为z 轴,建立空间直角坐标系,(C -,(0,0,0)D ,B ,G , DB =,DG =,(DC =-,设平面BDG的法向量(,,)n x y z =,则0320n DB x n DGy z ⎧=+=⎪⎨=+=⎪⎩,取1y =,得(23,n =-,∴点C 到所作截面α的距离:||4||219n DC d n ===.20.解:(1)由题意,c =,两圆的交点坐标为, 代入椭圆方程可得2242331a b +=, 联立223a b +=,可得22a =,21b =,∴椭圆C 的方程为2212x y +=;(2)设直线1MF 的方程为()y kx k =+>0,可得)M ,同理N , 1|MN |)|6k k∴=+≥,当且仅当k =时,|MN|取得最小值6,此时M ,1||6MF =,1||3QF =,||3MQ ∴=.21.解:(1)21()()()e 2x F x f x g x x x x =+=++,()(1)(e 1)x F x x '=++, 令()0F x '>,解得:1x >-,令0F x '()<,解得:1x <-, 故()F x 在(,1)-∞-递减,在(1,)-+∞递增,故min 1()(1)1eF x F =-=--;(2)若任意12[1)x x -∈+∞,,且12x x >有1212[))](())((m f x f x g x g x -﹣>恒成立, 则任意12[1)x x -∈+∞,,且12x x >有1122(())))((0mf x g x mf x g x -->>恒成立, 令21()()()e 1,[2x h x mf x g x mx x x x -=-=∈-+∞﹣,), 即只需()h x 在[1,)-+∞递增即可;故()(1)1(e 0-)x h x x m '=+≥在[1,)-+∞恒成立,故1e x m ≥,而1e e x≤, 故e m ≥.四、请考生在第22.23题中任选一题作答,如多做,则按所做的第一题记分选修4-4:坐标系与参数方程选讲22.解:(1)曲线C 的极坐标方程为12cos 6sin 0ρθθρ+-=-,可得:22cos 6sin 10ρρθρθ-+-=, 可得222610x y x y -+-+=,曲线C 的普通方程:222610x y x y -+-+=.(2)由于直线l的参数方程为132()3x t t y ⎧=+⎪⎪⎨⎪=+⎪⎩为参数. 把它代入圆的方程整理得2250t t +-=,122t t ∴+=-,125t t =-,1||||PA t =,2||||PB t =,12||||||||PA PB t t +=+== ∴||||PA PB +的值选修4-5:不等式选讲23.解(1)51||4|5x x -+--≤|≤. 由于2()6f x m m -+≤的解集为R ,265m m ∴-+≥,即15m ≤≤.(2)由(1)得m 的最大值为5,3455a b c ∴++=由柯西不等式2222222(3453)()(45)25a b c a b c ++++++=≥﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣故22212a b c ++≥.(当且仅当310a =,410b =,510c =时取等号)222a b c ∴++的最小值为12.贵州省贵阳市2017年高考一模文科数学试卷解析一、选择题(共12小题,每小题5分,满分60分)1.【考点】虚数单位i及其性质.【分析】利用等比数列的求和公式、复数的周期性即可得出.【解答】解:z====i,【点评】本题考查了等比数列的求和公式、复数的周期性,考查了推理能力与计算能力,属于基础题.2.【考点】集合的包含关系判断及应用.【分析】集合A一定要含有1、2两个元素,可能含有3、4,但不能包含全部,即可得出结论.【解答】解:P可以为{1,2},{1,2,3},{1,2,4},个数为3.【点评】子集包括真子集和它本身,集合的子集个数问题,对于集合M的子集问题一般来说,若M中有n 个元素,则集合M的子集共有2n个,真子集2n﹣1个.3.【考点】线性回归方程.【分析】求出、,根据回归直线方程经过样本中心点,求出n的值.【解答】解:由题意可知:=×(2+4+5+6+8)=5,=×(30+40+n+50+70)=38+,∵回归直线方程经过样本中心,∴38+=6.5×5+17.5解得n=60.【点评】本题考查了平均数与回归直线方程过样本中心点的应用问题,是基础题目.4.【考点】等差数列的前n项和.【分析】先求出a6=S6﹣S5=0,由此利用S11=(a1+a11)=11a6,能求出结果.【解答】解:∵{a n}是等差数列,且公差d≠0,S n为其前n项和,且S5=S6,∴a6=S6﹣S5=0,∴S11=(a1+a11)=11a6=0.【点评】本题考查数列两项倒数和的最小值的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.5.【考点】程序框图.【分析】根据直线ax+by+c=0与单位圆x2+y2=1的位置关系,当c2<a2+b2,且c=0时,直线与单位圆相交过圆心,即可得解.【解答】解:根据直线ax+by+c=0与单位圆x2+y2=1的位置关系,当c2<a2+b2,且c=0时,直线与单位圆相交过圆心,可得:空白的判断框中,应该填写c=0?【点评】本题考查的知识点是程序框图的作用,点到直线的距离,属于基础题.6.【考点】由三视图求面积、体积.【分析】由三视图知该几何体是底面为直角梯形的直四棱锥,结合图中数据,即可求出四棱锥中最长的棱长.【解答】解:由三视图知,几何体是一个四棱锥,且四棱锥的底面是一个直角梯形OABC,直角梯形的上底是BC=1,下底是AO=2,垂直于底边的腰是OP=2,如图所示:则四棱锥的最长棱长为PB===3.【点评】本题考查了几何体三视图的应用问题,解题的关键是还原出几何体结构特征,是基础题.7.【考点】几何概型.【分析】由题意,本题属于几何概型的运用,已知区间的长度为π,满足sinx≤,可得0≤x≤或,区间长度为,由几何概型公式解答.【解答】解:在区间[0,π]上,长度为π,当x∈[0,π]时,sinx≤,可得0≤x≤或,区间长度为由几何概型知,符合条件的概率为=.【点评】本题考查解三角函数与几何概型等知识,关键是求出满足条件的x区间长度,利用几何概型关系求之.8.【考点】平面向量数量积的运算.【分析】以A为坐标原点,以AB方向为x轴正方向,以AD方向为y轴方向建立坐标系,将向量的数量积用坐标表示,再利用线性规划方法解决问题.【解答】解:以A为坐标原点,以AB方向为x轴正方向,以AD方向为y轴方向建立坐标系,则A=(0,0),M(4,2),则=(4,2),设N点坐标为(x,y),则=(x,y),,∴•=4x+2y,设z=4x+2y,平移目标函数,则过点C(4,4)时有最大值,此时最大值为z=16+8=24,【点评】本题主要考查两个向量的数量积公式的应用,向量的主要功能就是数形结合,将几何问题转化为代数问题,但关键是建立合适的坐标系,将向量用坐标表示,再将数量积运算转化为方程或函数问题9.【考点】双曲线的简单性质.【分析】由题意,PF2⊥x轴,将x=c代入双曲线方程求出点P的坐标,通过解直角三角形列出三参数a,b,c的关系,求出离心率的值.【解答】解:由题意,PF2⊥x轴,将x=c代入双曲线的方程得y=,即P(c,)在△PF1F2中tan30°=,即,解得e=.【点评】本题主要考查了双曲线的简单性质,属基础题.10.【考点】球的体积和表面积.【分析】利用SA⊥面BCD,三角形BCD的面积为3,V S﹣BCD=3V A﹣BCD=3,求出球的直径,即可得出结论.【解答】解:设三棱锥A﹣BCD的高为h,则三棱锥S﹣BCD的高为3h,球的直径为2R,∵三角形BCD的面积为3,V A﹣BCD=1,∴=1,∴h=1,∴R=2,∴球的表面积为4π•22=16π,【点评】本题考查球的表面积,考查三棱锥体积的计算,考查学生的计算能力,属于中档题.11.【考点】命题的真假判断与应用.【分析】函数y=f(x﹣2)图象关于点(2,0)对称⇒函数y=f(x﹣2)图象关于点(0,0)对称,则函数y=f(x)是奇函数,故命题p为真命题;当x=时,x=,x=,此时,x<x,故命题q是假命题.所以p∧¬q为真命题.【解答】解:若y=f(x)的定义域为R,且函数y=f(x﹣2)图象关于点(2,0)对称⇒函数y=f(x)图象关于点(0,0)对称,则函数y=f(x)是奇函数,故命题p为真命题;当x=时,x=,x=,此时,x<x,故命题q是假命题.所以p∧¬q为真命题,【点评】本题考查了复合命题真假的判定,属于基础题.12.【考点】圆与圆锥曲线的综合.【分析】利用已知条件求出切线方程,求出抛物线的焦点坐标,得到抛物线方程,联立直线与抛物线方程,利用韦达定理求出中点的横坐标,然后求解结果.【解答】解:过点M(,﹣)作圆x2+y2=1的切线l,点在圆上,可得曲线的斜率为:1,切线方程为:y+=x﹣,可得x﹣y﹣=0,直线与x轴的交点坐标(,0),可得抛物线方程为:y2=4x,,可得x2﹣6+2=0,l与抛物线E交于A(x1,y1)、B(x2,y2),可得:x1+x2=6,则AB中点到抛物线E的准线的距离为:3=4.【点评】本题考查抛物线的简单性质的应用,直线与抛物线的位置关系,考查计算能力.二、填空题(共4小题,每小题5分,满分20分)13.【考点】二倍角的正切;同角三角函数基本关系的运用.【分析】由已知及同角三角函数间的基本关系式即可求出tanα的值,由二倍角的正切公式即可求值.【解答】解:由=,可得:tanα=4,那么:tan2α==【点评】本题主要考查了同角三角函数间的基本关系式,二倍角的正切公式的应用,属于基本知识的考查.14.【考点】利用导数研究曲线上某点切线方程.【分析】根据求导公式求出函数的导数,把x=1代入求出切线的斜率,求出切点,代入点斜式方程,分别令x=0和y=0求出切线与坐标轴的交点坐标,再代入三角形的面积公式求解.【解答】解:函数f(x)=x2的导数为f′(x)=2x,可得在x=1处的切线斜率为2,切点为(1,1),即有在x=1处的切线方程为y﹣1=2(x﹣1),令x=0,可得y=﹣1;y=0,可得x=.则围成的三角形的面积为×1×=.故答案为:.【点评】本题考查导数的运用:求切线的方程,考查导数的几何意义,以及直线方程的运用,正确求导是解题的关键,属于基础题.15.【考点】模拟方法估计概率.【分析】求出边长为≈0.26R,周长为0.26×24R=2πR,即可得出结论.【解答】解:正二十四边形的圆心角为15°,圆的半径R,边长为≈0.26R,周长为0.26×24R=2πR,∴π=3.12,故答案为3.12.【点评】本题考查模拟方法估计概率,考查学生的计算能力,比较基础.16.【考点】数列递推式;数列的求和.【分析】根据2a1+22a2+23a3+…+2n a n=n,求出a n=,再利用对数的运算性质和裂项法即可得到=﹣,裂项求和得到S n,代值计算即可.【解答】解:∵2a1+22a2+23a3+…+2n a n=n,∴2a1+22a2+23a3+…+2n﹣1a n﹣1=n﹣1,∴2n a n=1,∴a n=,∴===﹣,∴S n=1﹣+﹣+…+﹣=1﹣=,∴S1•S2•S3…S10=×××…××=,故答案为:【点评】本题考查了数列的通项公式的求法和裂项求和,属于中档题.三、解答题(共5小题,满分60分)17.【考点】余弦定理.【分析】(1)由已知利用正弦定理可得:a=sinA,c=sinC,利用三角函数恒等变换的应用化简已知等式可得2sinAsinC=,从而可求a==sinA,结合A为锐角,可求A的值.(2)由余弦定理,基本不等式可求b+c≤,由三角形两边之和大于第三边可得b+c>a=,即可得解b+c的范围.【点评】本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,基本不等式以及三角形两边之和大于第三边等知识的综合应用,考查了转化思想,属于中档题.18.【考点】独立性检验的应用.【分析】(1)根据所给数据得出2×2列联表,求出K2,即可得出结论;(2)利用古典概型的概率公式求解即可.【点评】本题考查独立性检验知识的运用,考查概率的计算,考查学生对数据处理的能力,属于中档题.19.【考点】点、线、面间的距离计算;棱柱的结构特征.【分析】(1)取B1C1的中点G,D1C1的中点H,连结BG,GH,DH,则平面BDHG就是所求的平面α.(2)取BC中点M,以D为原点,DA为x轴,DM为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出点C到所作截面α的距离.【点评】本题主要考查满足条件的平面的作法,考查点到直线的距离的求法,考查直线与直线、直线与平面、平面与平面的位置关系等基础知识;考查学生的空间想象能力、推理论证能力及运算求解能力;考查了化归与转化及数形结合的数学思想.20.【考点】直线与圆的位置关系.【分析】(1)由题意,c=,两圆的交点坐标为(,±),代入椭圆方程可得=1,联立a2+b2=3,求出a,b,即可得到椭圆方程;(2)求出M,N的坐标,利用基本不等式求出|MN|的最小值,即可得出结论.【点评】本题考查椭圆方程,考查直线方程,考查基本不等式的运用,属于中档题.21.【考点】利用导数求闭区间上函数的最值;函数的最值及其几何意义.【分析】(1)求出函数F(x)的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值即可;(2)问题转化为任意x1,x2∈[﹣1,+∞)且x1>x2有mf(x1)﹣g(x1)>mf(x2)﹣g(x2)>0恒成立,令h(x)=mf(x)﹣g(x)=mxe x﹣x2﹣x,x∈[﹣1,+∞),根据函数的单调性求出m的范围即可.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道综合题.四、请考生在第22.23题中任选一题作答,如多做,则按所做的第一题记分选修4-4:坐标系与参数方程选讲22.【考点】简单曲线的极坐标方程;参数方程化成普通方程;参数方程的优越性.【分析】(1)利用极坐标与直角坐标化简公式化简求解即可.(2)把直线方程代入圆的方程化简可得t的二次方程,利用根与系数的关系,以及|PA|=|t1|,|PB|=|t2|求出|PA|•|PB|.【点评】本题考查参数方程化普通方程,考查极坐标方程化直角坐标方程,考查了直线的参数方程中参数t 的几何意义,是基础题.选修4-5:不等式选讲23.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(1)求出f(x)=|x+1|﹣|x﹣4|的最大值,f(x)max≤﹣m2+6m即可.(2)由柯西不等式(a2+b2+c2)(32+42+52)≥(3a+4b+5c)2=25【点评】本题考查绝对值不等式的最值,柯西不等式的应用,属于中档题.。

2017年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

2017年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

2017 年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12 小题,每小题5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5 分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4} B.{1,2,3} C.{2,3,4} D.{1,3,4} 2.(5分)(1+i)(2+i)=()A.1﹣i B.1+3i C.3+i D.3+3i3.(5分)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.4.(5 分)设非零向量,满足|+|=|﹣|则()A.⊥B.||=|| C.∥D.||>||5.(5 分)若a>1,则双曲线﹣y2=1 的离心率的取值范围是()A.(,+∞)B.(,2)C.(1,)D.(1,2)6.(5 分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π7.(5 分)设x,y 满足约束条件,则z=2x+y 的最小值是()A.﹣15 B.﹣9 C.1 D.98.(5 分)函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)9.(5 分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2 位优秀,2 位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.(5 分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.511.(5 分)从分别写有1,2,3,4,5 的5 张卡片中随机抽取1 张,放回后再随机抽取1 张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.12.(5 分)过抛物线C:y2=4x 的焦点F,且斜率为的直线交C 于点M(M 在x 轴上方),l为C 的准线,点N 在l 上,且MN⊥l,则M 到直线NF 的距离为()A.B.2C.2D.3二、填空题,本题共4 小题,每小题5 分,共20 分13.(5 分)函数f(x)=2cosx+sinx 的最大值为.14.(5 分)已知函数f(x)是定义在R 上的奇函数,当x∈(﹣∞,0)时,f (x)=2x3+x2,则f(2)=.15.(5 分)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为.16.(5 分)△ABC 的内角A,B,C 的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.三、解答题:共70 分.解答应写出文字说明,证明过程或演算步骤,第17 至21 题为必考题,每个试题考生都必须作答.第22、23 题为选考题,考生根据要求作答.(一)必考题:共60 分.17.(12 分)已知等差数列{a n}的前n 项和为S n,等比数列{b n}的前n 项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.18.(12 分)如图,四棱锥P﹣ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD 面积为2,求四棱锥P﹣ABCD 的体积.19.(12 分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:P(K2≥K)0.050 0.010 0.001K 3.841 6.635 10.828K2=.20.(12 分)设O 为坐标原点,动点M 在椭圆C:+y2=1 上,过M 作x 轴的垂线,垂足为N,点P 满足= .(1)求点P 的轨迹方程;(2)设点Q 在直线x=﹣3 上,且•=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F.21.(12 分)设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0 时,f(x)≤ax+1,求a 的取值范围.选考题:共10 分。

2017年贵州省高考数学试卷(文科)(全国新课标Ⅲ)(附答案解析)

2017年贵州省高考数学试卷(文科)(全国新课标Ⅲ)(附答案解析)
6.函数 的最大值为( )
A. B. C. D.
7.函数 的部分图象大致为
A. B.
C. D.
8.执行如图的程序框图,为使输出 的值小于 ,则输入的正整数 的最小值为()
A. B. C. D.
9.已知圆柱的高为 ,它的两个底面的圆周在直径为 的同一个球的球面上,则该圆柱的体积为()
A. B. C. D.
证明: 的中点坐标为 ,可得 的中垂线方程为 .
由 可得 ,
所以 的中垂线方程为 .
联立
又 ,可得
所以过 三点的圆的圆心坐标为 ,半径 .
故圆在 轴上截得的弦长为 ,即过 三点的圆在 轴上截得的弦长为定值.
【答案】
解:因为 ,且 的定义域为 ,
所以

①当 时, 恒成立,此时 在 上单调递增;
②当 时,由于 ,所以 恒成立,
【解答】解Βιβλιοθήκη 函数 ,可知: 是奇函数,
所以函数的图象关于原点对称,
则函数 的图象关于 对称,
当 , ,
排除 , ,点 时, ,排除 .
故选 .
8.
【答案】
D
【考点】
程序框图
【解析】
本题考查程序框图.
【解答】
解:由题可知初始值 , , ,
要使输出 的值小于 ,应满足“ ”,
则进入循环体,从而 , , ,
(2)通过(1)可知 ,进而转化可知问题转化为证明:当 时 .进而令 ,利用导数求出 的最大值即可.
【解答】
解:因为 ,且 的定义域为 ,
所以

①当 时, 恒成立,此时 在 上单调递增;
②当 时,由于 ,所以 恒成立,
此时 在 上单调递增;
③当 时,令 ,解得: .

2017年(文科数学)(新课标Ⅱ)试卷真题+参考答案+详细解析

2017年(文科数学)(新课标Ⅱ)试卷真题+参考答案+详细解析

2017年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合{1,2,3}A =,{2,3,4}B =,则(A B = )A .{1,2,3,4}B .{1,2,3}C .{2,3,4}D .{1,3,4}2.(5分)(1)(2)(i i ++= ) A .1i -B .13i +C .3i +D .33i +3.(5分)函数()sin(2)3f x x π=+的最小正周期为( )A .4πB .2πC .πD .2π 4.(5分)设非零向量a ,b 满足||||a b a b +=-,则( ) A .a b ⊥B .||||a b =C .//a bD .||||a b >5.(5分)若1a >,则双曲线2221x y a-=的离心率的取值范围是( )A.)+∞B.C.D .(1,2)6.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π7.(5分)设x ,y 满足约束条件2330233030x y x y y +-⎧⎪-+⎨⎪+⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .98.(5分)函数2()(28)f x ln x x =--的单调递增区间是( ) A .(,2)-∞-B .(,1)-∞-C .(1,)+∞D .(4,)+∞9.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩10.(5分)执行如图的程序框图,如果输入的1a =-,则输出的(S = )A .2B .3C .4D .511.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110B .15C .310D .2512.(5分)过抛物线2:4C y x =的焦点F ,3C 于点(M M 在x 轴上方),l 为C 的准线,点N 在l 上,且MN l ⊥,则M 到直线NF 的距离为( ) A 5B .22C .23D .33二、填空题,本题共4小题,每小题5分,共20分 13.(5分)函数()2cos sin f x x x =+的最大值为 .14.(5分)已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f = . 15.(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 . 16.(5分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos cos b B a C c A =+,则B = .三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=. (1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S .18.(12分)如图,四棱锥P ABCD-中,侧面PAD为等边三角形且垂直于底面ABCD,12AB BC AD==,90BAD ABC∠=∠=︒.(1)证明:直线//BC平面PAD;(2)若PCD∆面积为27,求四棱锥P ABCD-的体积.19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量50kg <箱产量50kg旧养殖法 新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较. 附:2()P K K0.050 0.010 0.001 K3.8416.63510.8282()()()()K a b c d a c b d =++++.20.(12分)设O为坐标原点,动点M在椭圆22:12xC y+=上,过M作x轴的垂线,垂足为N,点P满足2NP NM=.(1)求点P的轨迹方程;(2)设点Q在直线3x=-上,且1OP PQ=.证明:过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)设函数2()(1)x f x x e =-. (1)讨论()f x 的单调性;(2)当0x 时,()1f x ax +,求实数a 的取值范围.(二)选考题:共10分。

2017年新课标全国卷2高考文科数学试题及答案

2017年新课标全国卷2高考文科数学试题及答案

2017年新课标全国卷2高考文科数学试题及答案2017年普通高等学校招生全国统一考试(新课标II卷)文科数学注意事项:1.在答题卡和试卷上填写姓名和准考证号。

2.选择题用铅笔在答题卡上涂黑对应选项,非选择题写在答题卡上。

3.考试结束后,将试卷和答题卡一并交回。

一、选择题(共12小题,每小题5分,共60分)1.设集合A={1,2,3},B={2,3,4},则A∪B=A。

{1,2,3,4}B。

{1,2,3}C。

{2,3,4}D。

{13,4}2.计算(1+i)(2+i)=A。

1-iB。

1+3iC。

3+iD。

3+3i3.函数f(x)=sin(2x+π/3)的最小正周期为πA。

4πB。

2πC。

πD。

24.设非零向量a,b满足a+b=a-b,则A。

a⊥bB。

a=bC。

a∥bD。

a>b5.若a>1,则双曲线2y=1的离心率的取值范围是aA。

(1,2)B。

(2,+∞)C。

(2,2)D。

(1,2)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A。

90πB。

63πC。

42πD。

36π7.设x、y满足约束条件2x+3y-3≤02x-3y+3≥0y+3≥0则z=2x+y的最小值是A。

-15B。

-9C。

1D。

98.函数f(x)=ln(x2-2x-8)的单调递增区间是A。

(-∞,-2)B。

(-∞,-1)C。

(1,+∞)D。

(4,+∞)9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A。

乙可以知道两人的成绩B。

丁可能知道两人的成绩C。

乙、丁可以知道对方的成绩D。

乙、丁可以知道自己的成绩10.执行右面的程序框图,如果输入的a=-1,则输出的S=A。

2B。

3C。

4D。

511.从五张卡片中随机抽取两次,求第一次抽到的数大于第二次的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年贵州省高考数学试卷(文科)(全国新课标Ⅲ)
一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(★)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()
A.1 B.2 C.3 D.4
2.(★)复平面内表示复数z=i(-2+i)的点位于()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.(★)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是()
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
4.(★)已知sinα-cosα= ,则sin2α=()
A.- B.- C. D.
5.(★★)设x,y满足约束条件则z=x-y的取值范围是()
A.-3,0 B.-3,2 C.0,2 D.0,3
6.(★★)函数f(x)= sin(x+ )+cos(x- )的最大值为()A. B.1 C. D.
7.(★★)函数y=1+x+ 的部分图象大致为()
A. B.
C. D.
8.(★★)执行如图的程序框图,为使输出S的值小于91,
则输入的正整数N的最小值为()
A.5 B.4 C.3 D.2
9.(★★)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()
A.π B. C. D.
10.(★★)在正方体ABCD-A 1B 1C 1D 1中,E为棱CD的中点,则()
A.A1E⊥DC1 B.A1E⊥BD C.A1E⊥BC1 D.A1E⊥AC
11.(★★)已知椭圆C:=1(a>b>0)的左、右顶点分别为A 1,A 2,且以线段A
为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为()
1A 2
A. B. C. D.
12.(★★★)已知函数f(x)=x 2-2x+a(e x-1+e -x+1)有唯一零点,则a=()
A.- B. C. D.1
二、填空题
13.(★★)已知向量=(-2,3),=(3,m),且,则m= 2 .
14.(★★)双曲线(a>0)的一条渐近线方程为y= x,则a= 5 .
15.(★★)△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b= ,c=3,则A= 75°.
16.(★★★)设函数f(x)= ,则满足f(x)+f(x- )>1的x的取值范围是(,+∞).
三、解答题
17.(★★★)设数列{a n}满足a 1+3a 2+…+(2n-1)a n=2n.
(1)求{a n}的通项公式;
(2)求数列{ }的前n项和.
18.(★★★)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
最高气温10,15)15,20)20,25)25,30)30,35)35,40)
天数216362574
19.(★★★★)如图四面体ABCD中,△ABC是正三
角形,AD=CD.
(1)证明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.
20.(★★★★)在直角坐标系xOy中,曲线y=x 2+mx-2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:
(1)能否出现AC⊥BC的情况?说明理由;
(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.
21.(★★★★)已知函数f(x)=lnx+ax 2+(2a+1)x.
(1)讨论f(x)的单调性;
(2)当a<0时,证明f(x)≤- -2.
[选修4-4:坐标系与参数方程]
22.(★★★)在直角坐标系xOy中,直线l 1的参数方程为,(t为参数),直线l
2的参数方程为,(m为参数).设l
1
与l
2
的交点为P,当k变化时,P的轨迹为
曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l 3:ρ(cosθ+sinθ)- =0,M为l 3与C的交点,求M的极径.
[选修4-5:不等式选讲]
23.(★★★★★)已知函数f(x)=|x+1|-|x-2|.
(1)求不等式f(x)≥1的解集;
(2)若不等式f(x)≥x 2-x+m的解集非空,求m的取值范围.。

相关文档
最新文档