实验4 基于MATLAB的FIR数字滤波器设计
实验四 参考 基于MATLAB的FIR数字滤波器设计

实验4 基于MATLAB 的FIR 数字滤波器设计一、 实验目的(1) 加深对数字滤波器的常用指标理解。
(2) 学习数字滤波器的设计方法。
二、 实验原理 低通滤波器1()1()P P P SS H H δδδπ⎧-≤Ω≤+Ω≤Ω⎪⎨Ω≤Ω≤Ω≤⎪⎩低通滤波器的常用指标:1、 通带边缘频率P Ω,2、 阻带边缘频率SΩ ,3、 通带起伏P δ,4、通带峰值起伏])[1(log2010dB p pδα--=,5、阻带起伏sδ,最小阻带衰减])[(log 2010dB s S δα-=。
三、 要求 (1)在MA TLAB 中,熟悉函数fir1、kaiserord 、remezord 、remez 的使用;B = fir1(n,Wn,'high','noscale')设计滤波器;[n,Wn,beta,ftype] = kaiserord(f,a,dev)估计滤波器阶数;[n,fo,ao,w] = remezord (f,a,dev ,fs)计算等波纹滤波器阶数n 和加权函数w(ω); B=remez(n,f,a)进行等波纹滤波器的设计(2)阅读附录中的实例,学习FIR 滤波器的设计方法及其在MA TLAB 中的实现;(3)给出FIR 数字滤波器的冲激响应,绘出它们的幅度和相位频响曲线,讨论它们各自的实现形式和特点。
四、 实验内容利用MA TLAB 编程,分别用窗函数法和等波纹滤波器法设计两种FIR 数字滤波器,指标要求如下:通带边缘频率:π45.01=ΩP ,π65.02=ΩP ,通带峰值起伏:][1dB p≤α。
阻带边缘频率:π3.01=ΩS ,π75.02=ΩS ,最小阻带衰减:][40dB S ≥α。
附录:例1 用凯塞窗设计一FIR 低通滤波器,通带边界频率π3.0=Ωp ,阻带边界频率π5.0=Ωs ,阻带衰减 不小于50dB 。
S Ω-PΩ-P SΩPassband StopbandTransitionbandFig 1 Typical magnitudespecification for a digital LPF解首先由过渡带宽和阻带衰减来决定凯塞窗的N和π2.0=Ω-Ω=∆Ωps,,上图给出了以上设计的频率特性,(a) 为N=30直接截取的频率特性(b)为凯塞窗设计的频率特性。
基于matlab的fir数字滤波器的设计

一、引言数字滤波器是数字信号处理中至关重要的组成部分,它能够对数字信号进行滤波处理,去除噪音和干扰,提取信号中的有效信息。
其中,fir数字滤波器作为一种常见的数字滤波器类型,具有稳定性强、相位响应线性等特点,在数字信号处理领域得到了广泛的应用。
本文将基于matlab软件,探讨fir数字滤波器的设计原理、方法和实现过程,以期能够全面、系统地了解fir数字滤波器的设计流程。
二、fir数字滤波器的基本原理fir数字滤波器是一种有限长冲激响应(finite impulse response, FIR)的数字滤波器,其基本原理是利用线性相位特性的滤波器来实现对数字信号的筛选和处理。
fir数字滤波器的表达式为:$$y(n) = \sum_{k=0}^{M}h(k)x(n-k)$$其中,y(n)为输出信号,x(n)为输入信号,h(k)为滤波器的系数,M为滤波器的长度。
fir数字滤波器的频率响应特性由其系数h(k)决定,通过设计合适的系数,可以实现对不同频率成分的滤波效果。
三、fir数字滤波器的设计方法fir数字滤波器的设计方法主要包括窗函数法、频率抽样法、最小最大法等。
在matlab中,可以通过信号处理工具箱提供的fir1函数和firls函数等来实现fir数字滤波器的设计。
下面将分别介绍这两种设计方法的基本原理及实现步骤。
1. 窗函数法窗函数法是fir数字滤波器设计中最为常见的方法之一,其基本原理是通过对理想滤波器的频率响应进行窗函数加权来满足设计要求。
在matlab中,可以使用fir1函数实现fir数字滤波器的设计,其调用格式为:h = fir1(N, Wn, type)其中,N为滤波器的阶数,Wn为滤波器的截止频率,type为窗函数的类型。
通过调用fir1函数,可以灵活地设计出满足特定要求的fir数字滤波器。
2. 频率抽样法频率抽样法是fir数字滤波器设计中的另一种重要方法,其基本原理是在频域上对理想滤波器的频率响应进行抽样,并拟合出一个最优的滤波器。
基于Matlab的FIR数字滤波器设计

龙源期刊网
基于Matlab的FIR数字滤波器设计
作者:王春兴张彬
来源:《现代电子技术》2011年第18期
摘要:提出FIR数字滤波器的设计方案,并基于Matlab实现滤波仿真。
通过使用Matlab 信号处理工具箱提供的函数,选择适当的窗函数编写程序,其中窗函数按照实际信号的处理需求,参数折中选择。
实验获得了比较理想的滤波器特性,可以实现较好的滤波作用。
而且在实际应用中只需按需求修改滤波器参数,并结合程序的相应改动,即可实现不同功能的滤波器。
另外,介绍了利用FDATool设计滤波器的方法,简单修改参数即可实现多种滤波器。
基于MATLAB设计FIR滤波器

基于MATLAB设计FIR滤波器FIR(Finite Impulse Response)滤波器是一种数字滤波器,它具有有限的冲激响应长度。
基于MATLAB设计FIR滤波器可以使用signal工具箱中的fir1函数。
fir1函数的语法如下:b = fir1(N, Wn, window)其中,N是滤波器的阶数,Wn是截止频率,window是窗函数。
要设计一个FIR低通滤波器,可以按照以下步骤进行:步骤1:确定滤波器的阶数。
阶数决定了滤波器的截止频率的陡峭程度。
一般情况下,阶数越高,滤波器的陡峭度越高,但计算复杂度也会增加。
步骤2:确定滤波器的截止频率。
截止频率是指在滤波器中将信号的频率限制在一定范围内的频率。
根据应用的需求,可以选择适当的截止频率。
步骤3:选择窗函数。
窗函数是为了在时域上窗口函数中心增加频率衰减因子而使用的函数。
常用的窗函数有Hamming、Hanning等。
窗函数可以用来控制滤波器的幅度响应特性,使得它更平滑。
步骤4:使用fir1函数设计滤波器。
根据以上步骤确定滤波器的阶数、截止频率和窗函数,可以使用fir1函数设计FIR滤波器。
具体代码如下:N=50;%设定阶数Wn=0.5;%设定截止频率window = hanning(N + 1); % 使用Hanning窗函数步骤5:使用filter函数对信号进行滤波。
设计好FIR滤波器后,可以使用filter函数对信号进行滤波。
具体代码如下:filtered_signal = filter(b, 1, input_signal);其中,input_signal是输入信号,filtered_signal是滤波后的信号。
以上,便是基于MATLAB设计FIR滤波器的简要步骤和代码示例。
根据具体需求和信号特性,可以进行相应的调整和优化。
基于MATLAB与DSP的FIR数字滤波器的设计

1 引言
个实际的应用 系统 中,由于设备或 者 是外界环境 的原 因,总存在各种 干扰 ,
h, j ;t ( d) 1 fd (= 7
 ̄
P
=
h nl \ 去 ” : f ( £ — T 2 , )
DPMTA I糯滤波器 s;A LBF
由于 h () 是无限长序列 , n 且是非因果
的 。要得到有限长 的 h n ,需要用一个有 ()
4 F 数字滤波器的 D P I R S 设计
应滤波器( R) I 滤波器是有限长单位 I 。FR I 冲激响应滤波器,在结构上是非递归型的, 有限冲激响应滤波器(I ,具有以下的优 FR) 点 :( )可以在幅度特性随意设计的同时 , 1 保证精确 、 严格的线性相位,() 2 由于 FR I
[ y,f ,n is s b t 】= wa r a (十. ved ‘ wa ’ v) %WA V文档的读取 wa wrt ( v ie Y,f ,nb t ‘ s is, 十. wa ’ v) %WAV文档的写入 wa p a ( v l Y Y,f )%W AV 文档的 s 播放 su d) o n s( o n (、su dc)也是 WAV文档
此 类 文 件 ,具 体 格 式 如 下 :
2 F 滤波器的设计方法分析 I R
数字滤波 器依据冲激响应的宽度划分 为有限冲激响应 (I 滤波器和无限冲激响 F R)
公司 ( )生产的第三代 D P 产品 ,本 TI S
基于MATLAB的FIR和IIR数字滤波器的设计

基于MATLAB的FIR和IIR数字滤波器的设计一、本文概述随着数字信号处理技术的飞速发展,数字滤波器作为其中的核心组件,已经广泛应用于通信、音频处理、图像处理、生物医学工程等诸多领域。
在数字滤波器中,有限脉冲响应(FIR)滤波器和无限脉冲响应(IIR)滤波器是最常见的两种类型。
它们各自具有独特的优点和适用场景,因此,对这两种滤波器的深入理解和设计掌握是工程师和研究人员必备的技能。
本文旨在通过MATLAB这一强大的工程计算工具,详细介绍FIR 和IIR数字滤波器的设计原理、实现方法以及对比分析。
我们将简要回顾数字滤波器的基本概念和分类,然后重点阐述FIR和IIR滤波器的设计理论,包括窗函数法、频率采样法、最小均方误差法等多种设计方法。
接下来,我们将通过MATLAB编程实现这些设计方法,并展示如何根据实际应用需求调整滤波器参数以达到最佳性能。
本文还将对FIR和IIR滤波器进行性能对比,分析它们在不同应用场景下的优缺点,并提供一些实用的设计建议。
我们将通过几个典型的应用案例,展示如何在MATLAB中灵活应用FIR和IIR滤波器解决实际问题。
通过阅读本文,读者将能够深入理解FIR和IIR数字滤波器的设计原理和实现方法,掌握MATLAB在数字滤波器设计中的应用技巧,为未来的工程实践和研究工作打下坚实的基础。
二、FIR滤波器设计有限脉冲响应(FIR)滤波器是一种数字滤波器,其特点是其脉冲响应在有限的时间后为零。
因此,FIR滤波器是非递归的,没有反馈路径,从而保证了系统的稳定性。
在设计FIR滤波器时,我们主要关注的是滤波器的阶数、截止频率和窗函数的选择。
在MATLAB中,有多种方法可以用来设计FIR滤波器。
其中,最常用的方法是使用fir1函数,该函数可以设计一个线性相位FIR滤波器。
该函数的基本语法是b = fir1(n, Wn),其中n是滤波器的阶数,Wn是归一化截止频率,以π为单位。
该函数返回一个长度为n+1的滤波器系数向量b。
用MAtlab实现FIR数字滤波器的设计

设计方法
• 一、窗函数设计法 • 二、频率抽样设计法 • 三、最小二乘逼近设计法
FIR 数 字 滤 波 器 的 文 件
一、fir1.m
• 本文件采用窗函数法设计FIR数字滤波器,其调用格式是
• 1)b=fir1(N ,W c)
• 2)b=fir1(N,W c ,’high’) • 3)b=fir1(N,W c ,’stop’)
实践课题
FIR 数 字 滤 波 器 的 设 计
实践目的
通过实践加深对Matlab软件的认识。 能熟练应用并基本掌握Matlab软件, 通过实践对课本以外的内容有初步的 了解。 通过设计FIR数字滤波器,对滤波器 的功能和原理有初步的认识和了解。
实践课题简介
在数字信号处理的许多领域中, 如图像处理、数字通信等领域,常 常要求滤波器具有线性相位。FIR数 字滤波器的最大优点就是容易设计 成线性相位特性,而且它的单位冲 激响应是有限长的,所以它永远是 稳定的。
•
Hale Waihona Puke 上式中N为滤波器的阶次,W c是通带截止频率,其值在0~1之间, 1对应采样频率的一半,b是设计好的滤波器系数(单位冲激响应序 列)其长度为N+1。
对于格式(1)若W c是一标量,则可用来设计低通滤波器;若W c 是 的向量,则用来设计带通滤波器。 格式(2)用来设计高通滤波器。 格式(3)用来设计带阻滤波器。
部分滤波器的例子(频率抽样法)
部分滤波器的例子(最小二乘逼近设计法)
Fircls1设计的低通滤波器,归一化截止频率 为0.3,通带波纹为0.02,阻带波纹为0.008。
实践总结
通过这次实践课题的设计与制作,使我 对Matlab这个软件有了进一步的了解,并且 加深了课本上的知识。与此同时,使我对 滤波器有了初步的认识。提高了我的理解 以及分析能力,理论和实践相结合,不仅 巩固了我的理论知识,同时更提高了我的 实践能力,使我受益匪浅。
基于MATLAB的FIR数字低通滤波器设计综述

陕西理工学院课程设计基于MATLAB的FIR数字低通滤波器设计作者:周龙刚(陕西理工学院物理与电信工程学院通信工程专业 2011级4班,陕西汉中 723003)指导老师:井敏英[摘要]FIR数字滤波器是数字信号处理的一个重要组成部分,由于FIR数字滤波器具有严格的线性相位,因此在信息的采集和处理过程中得到了广泛的应用。
本文介绍了FIR数字滤波器的概念和线性相位的条件,分析了窗函数法、频率采样法和等波纹逼近法设计FIR滤波器的思路和流程。
在分析三种设计方法原理的基础上,借助Matlab仿真软件工具箱中的fir1实现窗函数法中的哈明窗设计FIR低通滤波器。
[关键词]FIR数字滤波器;线性相位窗函数;法哈明窗;MatlabDesigning FIR low-pass digital filter based on VHDLZhoulonggang(Grade11,Class4,Major of Communication Engineering,School of Physics and Telecommunication Engineering , Shaanxi University of Technology,Hanzhong 723003,Shaanxi)Tutor:JingYingMinAbstract:FIR digital filter is an important part of digital signal processing,the FIR digitalfilter with linear phase, so it has been widely applied in the collection and processing of information in the course of. This paper introduces the concept of FIR digital filter with linear phase conditions, analysis of the window functionmethod and frequency sampling method and the ripple approximation method ofFIR filter design ideas and processes. Based on analyzing the principle of three kinds of design method, using Matlab simulation software fir1 toolbox in design and implementation of FIR Hamming window window function method in the low pass filter.Keywords:FIR digital filter, linear phase,the window function method,Hamming window,Matlab目录引言 (1)1. 基本原理 ............................................................................................................................................... - 1 -1.1 FIR数字滤波器概述 ................................................................................................................... - 1 -1.2 FIR数字滤波器线性相位定义 ................................................................................................... - 2 -1.3 FIR数字滤波器线性相位时域条件 ........................................................................................... - 2 -2. 系统设计 ............................................................................................................................................... - 3 -2.1 FIR数字滤波器的窗函数设计方法 ........................................................................................... - 3 -2.1.1 窗函数法的设计思路....................................................................................................... - 3 -2.1.2 常见窗函数介绍............................................................................................................... - 3 -2.1.3 吉布斯效应....................................................................................................................... - 5 -2.2 FIR数字滤波器频率采样设计法 ............................................................................................ - 5 -2.3 FIR数字滤波器等波纹逼近设计法 ........................................................................................... - 6 -3 详细设计 ................................................................................................................................................ - 7 -3.1 程序设计流程.............................................................................................................................. - 7 -3.2 Matlab简介 .................................................................................................................................. - 7 -3.3窗函数法的Matlab实现 ............................................................................................................. - 8 -3.3.1 fir1函数介绍..................................................................................................................... - 8 -3.3.2基于fir1函数的窗函数法FIR滤波器设计.................................................................... - 8 -4 总结 .................................................................................................................................................. - 11 - 致谢 ...................................................................................................................................................... - 11 - 参考文献 .................................................................................................................................................. - 11 - 附录A . (14)引言随着信息科学和计算机技术的不断发展,数字信号处理(DSP ,Digital Signal Processing)的理论和技术也得到了飞速的发展,并逐渐成为一门重要的学科,它的重要性在日常通信、图像处理、遥感、声纳、生物医学、地震、消费电子、国防军事、医疗方面等显得尤为突出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验4 基于MATLAB 的FIR 数字滤波器设计实验目的:加深对数字滤波器的常用指标和设计过程的理解。
实验原理:低通滤波器的常用指标:P P P for H Ω≤Ω+≤Ω≤-,1)(1δδπδ≤Ω≤Ω≤ΩS S for H ,)(通带边缘频率P Ω,阻带边缘频率S Ω ,通带起伏P δ,通带峰值起伏])[1(log 2010dB p pδα--=,阻带起伏s δ,最小阻带衰减])[(log 2010dB s S δα-=。
数字滤波器有IIR 和FIR 两种类型,它们的特点和设计方法不同。
在MATLAB 中,可以用b=fir1(N,Wn,’ftype’,taper) 等函数辅助设计FIR 数字滤波器。
N 代表滤波器阶数;Wn 代表滤波器的截止频率(归一化频率),当设计带通和带阻滤波器时,Wn 为双元素相量;ftype 代表滤波器类型,如’high ’高通,’stop ’带阻等;taper 为窗函数类型,默认为海明窗,窗系数需要实现用窗函数blackman, hamming,hanning chebwin, kaiser 产生。
例1 用凯塞窗设计一FIR 低通滤波器,通带边界频率π3.0=Ωp ,阻带边界频率π5.0=Ωs ,阻带衰减不小于50dB 。
解 首先由过渡带宽和阻带衰减来决定凯塞窗的N 和π2.0=Ω-Ω=∆Ωp s ,,S PP SPassband StopbandTransition bandFig 1 Typical magnitude specification for a digital LPF上图给出了以上设计的频率特性,(a) 为N=30直接截取的频率特性(b)为凯塞窗设计的频率特性。
凯塞窗设计对应的MATLAB程序为:wn=kaiser(30,4.55);nn=[0:1:29];alfa=(30-1)/2;hd=sin(0.4*pi*(nn-alfa))./(pi*(nn-alfa));h=hd.*wn;[h1,w1]=freqz(h,1);或者:b = fir1(29,0.4,kaiser(30,4.55));[h1,w1]=freqz(b,1);plot(w1/pi,20*log10(abs(h1)));axis([0,1,-80,10]);grid;xlabel('归一化频率/ ') ;ylabel('幅度/dB') ;还可以使用[n,Wn,beta,ftype] = kaiserord(f,a,dev)函数来估计滤波器阶数等,得到凯塞窗滤波器:fcuts = [0.3 0.5]; %归一化频率omega/pimags = [1 0];devs = [0.05 10^(-2.5)];[n,Wn,beta,ftype] = kaiserord(fcuts,mags,devs); %计算出凯塞窗N,beta的值hh = fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');freqz(hh);实际中,一般调用MATLAB信号处理工具箱函数remezord来计算等波纹滤波器阶数N和加权函数W(ω),调用函数remez可进行等波纹滤波器的设计,直接求出滤波器系数。
函数remezord中的数组fedge 为通带和阻带边界频率,数组mval是两个边界处的幅值,而数组dev 是通带和阻带的波动,fs是采样频率单位为Hz。
例2 利用雷米兹交替算法设计等波纹滤波器,设计一个线性相位低通FIR数字滤波器,其指标为:通带边界频率f c=800Hz,阻带边界f r=1000Hz,通带波动=4000Hz。
阻带最小衰减At=40dB,采样频率f解在MATLAB中可以用remezord 和remez两个函数设计,其结果如图2,MATLAB程序如下:fedge=[800 1000];mval=[1 0];dev=[0.0559 0.01];fs=4000;[N,fpts,mag,wt]=remezord(fedge,mval,dev,fs);b=remez(N,fpts,mag,wt);[h,w]=freqz(b,1,256);plot(w*2000/pi,20*log10(abs(h)));grid;xlabel('频率/Hz') ;ylabel('幅度/dB');一、实验内容: 利用MATLAB 编程设计一个数字带通滤波器,指标要求如下:通带边缘频率:π45.01=ΩP ,π65.02=ΩP ,通带峰值起伏:][1dB p ≤α。
阻带边缘频率:π3.01=ΩS ,π75.02=ΩS ,最小阻带衰减:][40dB S ≥α。
分别用窗函数法和等波纹滤波器法设计两种FIR 数字滤波器。
实验要求:给出FIR 数字滤波器的冲激响应,绘出它们的幅度和相位频响曲线,讨论它们各自的实现形式和特点。
1-1)用窗函数法实现:调用函数[n,wn,bta,ftype]=kaiserord (f ,a ,dev ,fs )参数:f=[0.3 0.45 0.65 0.8]为对应数字频率π3.01=ΩS ,π45.01=ΩP ,π65.02=ΩP ,,π75.02=ΩSa=[0 1 0]为由f 指定的各个频带上的幅值向量,一般只有0和1表示;和f 长度关系为(2*a 的长度)—2=(f 的长度)devs=[0.01 0.1087 0.01]用于指定各个频带输出滤波器的频率响应与其期望幅值之间的最大输出误差或偏差,长度与a 相等,计算公式:阻带衰减误差=,通带波动衰减误差=fs 缺省值为2HZ>> [n,wn,bta,ftype]=kaiserord([0.3 0.45 0.65 0.8],[0 1 0],[0.01 0.1087 0.01]);%用kaiserord 函数估计出滤波器阶数n 和beta 参数 >> h1=fir1(n,wn,ftype,kaiser(n+1,bta),'noscale'); >> [hh1,w1]=freqz(h1,1,256); >> figure(1) >> subplot(2,1,1)>> plot(w1/pi,20*log10(abs(hh1))) >> grid>> xlabel('归一化频率w');ylabel('幅度/db'); >> subplot(2,1,2) >> plot(w1/pi,angle(hh1)) >> grid>> xlabel('归一化频率w');ylabel('相位/rad');h1 =Columns 1 through 80.0041 0.0055 -0.0091 -0.0018 -0.0056 -0.0000 0.0391 -0.0152 Columns 9 through 16-0.0381 0.0077 -0.0293 0.0940 0.0907 -0.2630 -0.0517 0.3500 Columns 17 through 24-0.0517 -0.2630 0.0907 0.0940 -0.0293 0.0077 -0.0381 -0.0152 Columns 25 through 310.0391 -0.0000 -0.0056 -0.0018 -0.0091 0.0055 0.0041图4-1如果直接用freqz(h1,1,256);画图得:1-2)用等波纹法设计:调用函数[n,fpts,mag,wt]=remezord(f,a,dev)f=[0.3 0.45 0.65 0.8]a=[0 1 0]dev=[0.01 0.1087 0.01]其含义同函数[n,wn,bta,ftype]=kaiserord(f,a,dev,fs)中的参数相同。
>> [n,fpts,mag,wt]=remezord([0.3 0.45 0.65 0.8],[0 1 0],[0.01 0.10870.01]);%用remezord函数估算出remez函数要用到的阶n、归一化频带边缘矢量fpts、频带内幅值响应矢量mag及加权矢量w,使remez 函数设计出的滤波器满足f、a及dev指定的性能要求。
>> h2=remez(n,fpts,mag,wt);%设计出等波纹滤波器>> [hh2,w2]=freqz(h2,1,256);>> figure(2)>> subplot(2,1,1)>> plot(w2/pi,20*log10(abs(hh2)))>> grid>> xlabel('归一化频率w');ylabel('幅度/db');>> subplot(2,1,2)>> plot(w2/pi,angle(hh2))>> grid>> xlabel('归一化频率w');ylabel('相位/rad');>> h2h2 =Columns 1 through 9-0.0013 0.0092 -0.0255 -0.0642 0.1177 0.0922 -0.2466 -0.0466 0.3116Columns 10 through 17-0.0466 -0.2466 0.0922 0.1177 -0.0642 -0.0255 0.0092 -0.0013图4-2 用freqz(h2,1,256);直接得图:二、对课本作业9.23画图。
2-1)用汉宁窗实现:1)手动计算>> n=0.001:58.001;>> hd=sin(0.18125*pi*(n-29))./(pi*(n-29));>> win=0.5+0.5*cos(2*pi*(n-29)/58);>> h1=2*cos(pi*(n-29)/2).*hd.*win;>> [hh1,w1]=freqz(h1,1,256);>> figure(1)>> subplot(2,1,1)>> plot(w1,20*log10(abs(hh1)))>> grid>> xlabel('数字频率w/rad');ylabel('幅度/db');>> subplot(2,1,2)>> plot(w1,angle(hh1))>> grid>> xlabel('数字频率w/rad');ylabel('相位/rad');图4-32-2)用自带的fir1函数:>> n=59;>> wn=[3/8 5/8];>> h2=fir1(n,wn,'bandpass',hann(n+1));>> [hh2,w2]=freqz(h2,1,256);>> figure(2)>> subplot(2,1,1)>> plot(w2,20*log10(abs(hh2)))>> xlabel('数字频率w/rad');ylabel('幅度/db');>> grid>> subplot(2,1,2)>> plot(w2,angle(hh2))>> xlabel('数字频率w/rad');ylabel('相角/rad');>> grid图4-42-3)用等波纹法设计:调用函数[n,fpts,mag,wt]=remezord(f,a,dev)f=[0.2625 0.375 0.625 0.7375]a=[0 1 0]dev=[0.01 0.1087 0.01]>> [n,fpts,mag,wt]=remezord([0.2625 0.375 0.625 0.7375],[0 1 0],[0.01 0.1087 0.01]); >> h2=remez(n,fpts,mag,wt);>> [hh2,w2]=freqz(h2,1,256);>> figure(2)>> subplot(2,1,1)>> plot(w2/pi,20*log10(abs(hh2)))>> grid>> xlabel('归一化频率w');ylabel('幅度/db');>> subplot(2,1,2)>> plot(w2/pi,angle(hh2))>> grid>> xlabel('归一化频率w');ylabel('相位/rad');>> h2画图为:另外带通滤波器还可以用低通和高通级联的方法实现,因为步骤过多,这里不作讨论。