色谱分离技术
第七章 色谱分离技术

④ 设备简单,操作方便,且不含强烈的操作条件, 因而不容易使物质变性,特别适于不稳定的大分子 有机化合物。
缺点: 处理量小、操作周期长、不能连续操作,因此 主要用于实验室,工业生产上应用较少。
3.色谱法的分类 吸附色谱法
分配色谱法
分离机理
离子交换色谱法 凝胶色谱法
亲和色谱法
(一)基本原理
溶液中某组分的分子在运动中碰到一个固体表 面时,分子会贴在固体表面上,发生吸附作用。
1.发生吸附作用的原理:
固体表面分子(或原子)与固体内部分子(或原子) 所处的状态不同:
固体内部分子(或原子)受临近四周分子的作用力是 对称的,作用力总和为零,即彼此互相抵消,故分子处 于平衡状态。
界面上的分子所受的力不对称,作用力总和不等于零, 合力指向固体内部。
小分子
(二)凝胶过滤介质
基本要求:
不能与原料组分发生除排阻之外的任何其他相 互作用,如电荷作用、化学作用、生物学作用
高物理强度、高化学稳定性 耐高温高压、耐强酸强碱 高化学惰性 内孔径分布范围窄 颗粒大小均一度高
常用的凝胶过滤介质 葡聚糖凝胶 琼脂糖凝胶 聚丙烯酰胺凝胶
1. 葡聚糖凝胶
pH、缓冲液浓度、离子强度
③ 柱操作 柱的大小、长短 ④ 流速的控制 高速度、高效率 ⑤ 清洗 除去不结合的所有物质 ⑥ 洗脱 特异性洗脱(竞争性置换目的物) ⑦ 柱的再非生特异性洗脱(调节pH、离子强度和种类、温度)
(五)亲和色谱法的应用
1.亲和色谱法的特点: 专一、高效、简便、快速
2.应用 ① 分离和纯化各种生物分子 纯化生物大分子,适于从组织或发酵液中分离
色谱法应运而生。
色谱分离是一组相关技术的总称,又叫做色 谱法、层析法,是一种高效而有用的生物分离 技术。
色谱分离技术

二、离子交换树脂的性能 1. 交联度(degree of cross linking): 离子交换 交联度( ): 树脂上胶联剂的含量称为交联度。 树脂上胶联剂的含量称为交联度。交联度用重量百分 比表示, 标号树脂, 比表示,如“×4”标号树脂,其交联度为 标号树脂 其交联度为4%。应根据 。 试样性质进行选择。 试样性质进行选择。 2.交换容量:每千克干树脂能参加交换反应的活 交换容量: 交换容量 性基团数, 表示。 性基团数,用mmol/g or mmol/ml表示。 表示 粒度:离子交换树脂颗粒的大小, 粒度:离子交换树脂颗粒的大小,用树脂溶胀态 所能通过的筛孔数表示。 所能通过的筛孔数表示。 三、流动相 离子交换色谱流动相最常用的是水缓冲液。 离子交换色谱流动相最常用的是水缓冲液。有酸 性缓冲溶液和碱性缓冲液,有时也用有机溶剂(甲醇、 性缓冲溶液和碱性缓冲液,有时也用有机溶剂(甲醇、 乙醇)同水缓冲液混合使用。流动相的pH, 乙醇)同水缓冲液混合使用。流动相的 ,缓冲液的 类型,离子强度, 类型,离子强度,以及加入的有机溶剂都会影响组分 的分离。 的分离。
二、纸色谱法 (一)基本原理 纸色谱法是用滤纸作载体的平面色谱法。 纸色谱法是用滤纸作载体的平面色谱法 。 固定相 为纸纤维吸附的水或吸留的甲醇胺、缓冲液等。 为纸纤维吸附的水或吸留的甲醇胺 、 缓冲液等 。 流动 相为与水不相混溶的有机溶剂。 相为与水不相混溶的有机溶剂 。 因为吸附在纤维上 20%的水分中,有约 的水分中, 的水分中 有约6%可通过氢键与纸纤维素上的羟 可通过氢键与纸纤维素上的羟 基结合生成复合物,与亲水性溶剂可形成两相。 基结合生成复合物 , 与亲水性溶剂可形成两相 。 纸色 谱法属分配色谱, 谱法属分配色谱 , 是利用样品组分在两相间分配系数 的不同达到分离的目的。实际上,纸色谱的分离机制 的不同达到分离的目的。 实际上, 较复杂,除分配外, 较复杂 , 除分配外 , 可能还有溶质与纸纤维素间的吸 附作用,与纸纤维素上某些基团( 附作用 , 与纸纤维素上某些基团 ( 造纸时引入到纤维 素上的)之间的离子交换作用。 素上的)之间的离子交换作用。
第7章 色谱分离技术

2. 按树脂骨架的物理结构
(1) 凝胶型树脂 (2) 大网格树脂 (3) 均孔树脂
3. 按活性基团分类
1) 阳离子交换树脂 活性基团为酸性, 对阳离子具有交换能力。
(1) 强酸性阳离子交换树脂
超临界流体色谱—流动相是在接近它 的临界温度和压力下工作的液体
三、色谱法的分类
根据固定相的附着方式分类 —固定相装在圆柱管中—柱色谱 —液体固定相涂在纸上—纸色谱(平板色谱)
—固定相涂敷在玻璃或金属板上—薄层色谱
三、色谱法的分类
按分离机理不同,可分为: 吸附色谱法 分配色谱法 离子交换色谱法 凝胶色谱法 亲和色谱法
第7章 色谱分离技术
一、色谱分离技术的概念 色谱(chromatography)分离技术是 一类分离方法的总称,又称色谱法、层析法、 层离法等。它是利用不同组分在固定相和流 动相中的物理化学性质的差别,使各组分在 两相中以不同的速率移动而进一步分离的技 术。
二、色谱分离系统的组成
在色谱法中,表面积较大的固体或附着 在固体上且不运动的液体,静止不动的 一相(称为固定相 ;自上而下运动的一 相(一般是气体或液体)称为流动相 。
展开剂
常用溶剂极性次序为:己烷<环己烷<四 氯化碳<甲苯<苯<氯仿<乙醚<乙酸乙酯< 丙酮<正丙醇<乙醇<甲醇<水<冰醋酸
(2)柱色谱的吸附剂与洗脱剂
吸附剂的选择
一般地说,所选的吸附剂应有最大的比 表面积和足够的吸附能力,它对欲分离 的不同物质应该有不同的解吸能力;与 洗脱剂、溶剂及样品组分不会发生化学 反应;还要求所选的吸附剂颗粒均匀, 在操作过程中不会破裂。
生化分离工程4.色谱分离

Willstätter的观点,即过分强调制备工作,也反映出 当时有机化学家的一种普遍态度。因此,茨维特的
吸附作用力可以是物理吸附作用,也可以是化 学吸附作用。物理吸附的特点是选择性低,吸 附速度较快,吸附过程可逆;化学吸附的特点 是有一定选择性,吸附速度较慢,不易解吸。 物理吸附和化学吸附可以同时发生,在一定条 件下也可以互相转化。
吸附色谱是各种色谱分离技术中应用最早的 一类,传统的吸附色谱以各种无机材料为吸 附剂。
凝胶色谱分为两大类:凝胶过滤色谱(gel filtration chromatography,GFC)和凝胶渗透 色谱(gel permeation chromatography, GPC) 。
பைடு நூலகம்
电色谱
电色谱(electrochromatography)是电泳和液 相色谱的融合技术。所谓电色谱是采用电渗流 来推动流动相,使得峰扩展只与溶质扩散系数 有关,因而使电色谱的理论塔板数远远高于液 相色谱。同时由于引入了高效液相色谱的固定 相,使电色谱具备了高效液相色谱固定相所具 有的选择性,使它不仅能分离带电物质。也能 分离中性化合物。
1935年,Adams和Holmes 合成了离子交换树 脂,并用于色谱分离,从而诞生了离子交换色 谱法。
1941年A. J. P. Martin和R. L. M. Synge发明了 分配色谱法(partition chromatography)。 1952年获诺贝尔化学奖。
色谱分离技术及其应用

色谱分离技术及其应用色谱分离技术是指利用固定相和流动相间的相互作用,在物质混合物中将各种组分分离开的技术。
色谱分离技术已成为分离、检测和分析生物、化学和环境样品中物质的重要工具。
色谱分离技术的基本原理是将混合物分离成若干性质相近或相同,但成分不同的组分。
这是通过固定相和流动相的相互作用来实现的。
在固定相和流动相的相互作用中,固定相可以是一种具有表面活性、具有亲疏水性、或化学亲和作用的材料。
而流动相则可以是一种液体或气体,它们可以通过了固定相,使得混合物中的组分在固定相上吸附或溶解,从而实现各组分的分离。
色谱分离技术在生物、化学和环境科学等领域应用广泛。
例如,在生物学和医学中,在基因显微分析、捕获蛋白质、酶和细胞的单细胞检测中,广泛采用了色谱分离技术。
此外,还可以用于药物筛选、质量控制和制造的过程控制。
在环境领域,色谱分离技术可用于寻找化学毒物和环境污染物,并对环境废物进行检测和处理。
高效液相色谱(HPLC)是最常用的色谱分离技术之一,它可以处理各种类型的混合物,并对具有取向和激发导向性分子进行分离。
在HPLC分离中,利用固定相与流动相间的相互作用来移动样品混合物。
固定相一般是一种高度纯化的压缩载体,使得各个样品成分分离时可以得到更高的纯度。
而流动相一般应适合所需要分离的物质类型。
在汽相色谱(GC)中,气相与液相的相互作用,使得分子在流动相中具有更高的活性和协同性。
此外,它还可以用于食品质量检测中。
例如,气相色谱技术常用于检测食品中的农药、有机物和污染物。
而在高效液相色谱技术中,可以利用蛋白质和植物次生物质进行分离,用于食品中的物质鉴定和质量评估。
总之,色谱分离技术已成为一个广泛应用的分析和分离技术。
随着科技的不断进步,色谱分离技术将更好地应用于各个领域的分析和分离中,为人类的健康和环境保证做出重要贡献。
色谱分离技术

▪ 色谱分离技术概述 色谱技术的基本概念 色谱技术的理论基础 色谱法的分类 色谱技术的操作方法
▪ 吸附色谱法 ▪ 分配色谱法 ▪ 亲和色谱法
第一节 色谱分离技术概要
色谱技术的起源: ▪ 1903年Tswett首创 ▪ 叶绿素的石油醚溶液通过碳酸钙管柱,
并继续以石油醚淋洗,由于碳酸钙对叶 绿素中各种色素的吸附能力不同,色素 被逐渐分离,在管柱中出现了不同颜色 的谱带。
ቤተ መጻሕፍቲ ባይዱ
色谱技术的发展
分离对象: 不限于有色物质
色谱柱: 材料:玻璃、不锈钢、聚四氟乙烯
形状:直形、U形、螺旋形
二维平面形(纸、薄层色谱)
冲洗剂: 液体、气体
填料:
近千种 固体、液体
检测:
眼睛、各种检测器
操作:
手工 全自动 联用技术
气相色谱(1952年)
1-载气钢瓶; 2-减压阀;
3-净化干燥管;
4-针形阀;
▪ 加入洗脱剂使各组分分层的操作称为展开。 ▪ 洗脱时从柱中流出的液体称为洗脱液。 ▪ 展开后各组分的分布情况称为色谱图。 ▪ 将样品加到柱上的操作称为上样或加样。
A+B+C
信 号
ACB C B A
C
B
C
A
B
C
A
B
C
图11-1 色谱洗脱过程与色谱图
t,min
(一)固定相 ▪ 可以是固体物质(吸附剂,凝胶,离子交换剂),也可以
(三)分配系数,分配比和选择因子
▪ 1、分配系数:在一定条件下,某种组分在固定相和流 动相中含量(浓度)的比值。它是色谱中分离纯化物质 的主要依据。langmuir
▪ 无论色谱分离的机理如何,当溶质浓度较低时,固定相 浓度和流动相浓度成线性的平衡关系。
中药化学2.2 色谱分离技术

聚酰胺吸附力的影响因素: 1:形成氢键的能力与溶剂有关 水中>有机溶剂中>碱性溶剂中 常用溶剂对聚酰胺洗脱能力顺序如下: 水<甲醇或乙醇<丙酮<稀氢氧化钠液或稀氨溶 液<甲酰胺或二甲基甲酰胺<尿素水溶液。
注意温度超过150 ℃则游离硅醇基之间脱 水形成硅氧醚结构丧失游离硅醇基的吸附能力。 为酸性吸附剂适于分离中性或酸性成分。
常用硅胶:
硅胶H(不含黏合剂) 硅胶G(含黏合剂) 硅胶GF254(含煅石膏,另含有一种无机荧 光剂)。硅胶GF254nm紫外光下呈强烈黄绿色 荧光背景,在荧光背景下通过紫外光照射成分 斑点为暗斑,常用于一般显色手段不易显色的 成分的分离。
3、 洗脱:
洗脱操作的目的是要将加入的样品中各个 组分先后从上往下带出来,并能分开收集各成 分。 洗脱的过程中,上端溶剂不能干,分段收 集是关键;作定性检查合并相同成分。 TLC时Rf为0.2-0.3的溶剂系统是最佳的 洗脱系统,梯度洗脱。
4. 应用 柱色谱分离能力比薄层分离能力更强, 效果更好,尤其对结构相似、性质接近、 采用薄层难以分离的成分分离效果好。
(一)吸附剂
4、常用的吸附剂
(1)硅胶SiO2•xH2O 多孔性的硅氧烷交链结构,极性吸附剂, 吸附性较氧化铝稍低,既适于分离亲水性成分, 又可用于分离亲脂性成分。 其吸附作用的强弱取决于游离硅醇基的数 目,也与含水量有关,含水量达17%以上,则 失去吸附性,所以需110℃活化30分钟。
(一)吸附剂
例:求图中A、B、C三斑点Rf大小并判断三成分 极性大小顺序。
色谱分离的技术

7.1.2.2 按固定相形状不同分类
(1)柱色谱
进样量大,回收容易。 除用于分析外,还广泛用于生物样品 的制备和工业生物产品的分离与纯化。
(2)纸上色谱 广泛用于定性与定量分析,不用于制备和生产。
(3)薄层色谱
主要用于分析,也可用于小量样品的制备。
7.1.2.3 其他分类方法
(1) 根据流动相的物态分类 气相色谱 、液相色谱和超临界色谱
Ve Vo K d Vi
或
(7-29) (7-30)
Ve Vo Kd Vi
Kd=1,溶质分子完全不被排阻, 可自由进入所有凝胶颗粒微孔。 Kd=0,溶质分子完全被排阻于凝胶颗粒微孔之外,最先被洗脱。 对于中等分子,能进入部分凝胶空间,0<Kd<1。 当具有不同分子量物质的混合液流经凝胶柱时,其Kd值的大小就 决定了物质的流出顺序,即Kd值小的先流出,Kd值大的后流出。
7.1.4.2 吸附色谱
吸附色谱分离就是根据吸附剂(固定相)对不同物质的吸 附力不同而使混合物分离的。
离子交换色谱和亲和色谱也可归类于吸附色谱,前者主要 是静电引力的作用,而后者是生物专一亲和力的作用。
在一定温度下,分离物质在液相和固相中的浓度关系可用吸附 方程式来表示:
Ka A B A B Kd
极高的分辨率;
1944年 出现纸层析;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
亲和色谱
亲和色谱是专门用于纯化生物大分子的色谱分离技术,它是基于固定相的配基与生物分子间的特殊生物亲和能力的不同来进行相互分离的。
亲和色谱的显著特点:
具有其他分离技术所不能比拟的高选择性,且色谱过程操作条件温和,能有效地保持生物大分子高级结构的稳定性,活性样品的回收率也比较高。
所以亲和色谱被广泛用于酶、治疗蛋白、抗体、核酸、辅助因子等生物大分子以及细胞、细胞器、病毒等超分子物质的分离与纯化。
特别是对分离含量极少而又不稳定的活性物质最有效,经一步亲和色谱即可提纯几百至几千倍。
亲和色谱的基本过程:
把具有特异亲和力的一对分子的任何一方作为配基,在不伤害其生物功能情况下,与不溶性载体结合,使之固定化,装入色谱柱,然后把含有目的物质的混合液作为流动相,在有利于固定相配基和目的物质形成络合物的条件下进入色谱柱。
目的物质被吸附,杂质直接流出。
变换过柱溶液,使配基与其亲和物分离,获纯化的目的产物。
亲和色谱分离中经常采用的生物亲和关系
①酶:底物、底物类似物、抑制剂、辅酶、金属离子;
②抗体:抗原、病毒、细胞;
③激素、维生素:受体蛋白、载体蛋白;
④外源凝集素:多糖、糖蛋白、细胞表面受体蛋白、细胞;
⑤核酸:互补碱基链段、组蛋白、核酸聚合酶、核酸结合蛋白;
⑥细胞:细胞表面特异蛋白、外源凝集素。
亲和色谱操作中的洗脱方法
在亲和色谱洗脱操作中,洗脱方法有两类,即普通洗脱法和专一性洗脱法。
普通洗脱法:与其他色谱分离方法一样,可以通过改变溶剂或缓冲液的类型,改变缓冲液的pH和离子强度,改变洗脱温度,以及添加促溶剂等措施进行洗脱。
专一性洗脱法:是指溶液中的配基、抑制剂或半抗原等物质与亲和层析剂上的配基,同时对生物活性物质产生竞争性的结合,从而达到洗脱的目的。
一般说来,专一性洗脱可以获得很高的分辨能力。
但是,专一性洗脱剂的价格都比较昂贵,所以常与普通洗脱条件配合作用。
离子交换色谱
离子交换色谱利用被分离组分与固定相之间发生离子交换的能力差异来实现分离。
离子交换色谱的固定相一般为离子交换树脂,树脂分子结构中存在许多可以电离的活性中心,待分离组分中的离子会与这些活性中心发生离子交换,形成离子交换平衡,从而在流动相与固定相之间形成分配。
固定相的固有离子与待分离组分中的离子之间相互争夺固定相中的离子交换中心,并随着流动相的运动而运动,最终实现分离。
离子交换色谱的分离原理:
离子交换色谱(IEC)以离子交换树脂作为固定相,树脂上具有固定离子基团及可交换的离子基团。
当流动相带着组分电离生成的离子通过固定相时,组分离子与树脂上可交换的离子基团进行可逆变换。
根据组分离子对树脂亲合力不同而得到分离。
离子交换色谱的固定相:
离子交换色谱常用的固定相为离子交换树脂。
目前常用的离子交换树脂分为三种形式,一是常见的纯离子交换树脂。
第二种是玻璃珠等硬芯子表面涂一层树脂薄层构成的表面层离子交换树脂,第三种为大孔径网络型树脂。
它们各有特点,例如第二种树脂有很高的柱效,但它的柱容量不大;第三种树脂适用于非水溶液中物质的分离,因为它们的孔径和内表面积大,不需要用水溶胀,便可满意地使用。
按结合的基团不同,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂。
阳离子交换树脂上具有与样品中阳离子交换的基团。
阳离子交换树脂又可分为强酸性和弱酸性树脂。
强酸性阳离子交换树脂所带的基团为磷酸基(一),其中和有机聚合物牢固结合形成固定部分,是可流动的能为其他阳离子所交换的离子。
阴离子交换树脂具有与样品中阴离子交换的基团。
阴离子交换树脂也可分为强碱性和弱碱性树脂。
阴离子交换树脂属强碱性,它是由有机聚合物骨架和一季胺碱基团所组成,它带有正电荷。
而与相反的是可以移动的部分,它能被其它阴离子所交换。
离子交换色谱的流动相:
离子交换色谱的流动相最常使用水缓冲溶液,有时也使用有机溶剂如甲醇,或乙醇同水缓冲溶液混合使用,以提供特殊的选择性,并改善样品的溶解度。
离子交换色谱所用的缓冲液,通常用下列化合物配制:钠、钾、被的柠檬酸盐,磷酸盐,甲酸盐与其相应的酸混合成酸性缓冲液或氢氧化钠混合成碱性缓冲液等。
离子交换色谱主要是用来分离离子或可离解的化合物。
它不仅广泛地应用于无机离子的分离,而且广泛地应用于有机和生物物质,如氨基酸、核酸、蛋白质等的分离。
凝胶色谱
凝胶色谱是基于溶质分子的流体力学体积大小进行分离的。
在凝胶介质颗粒内部, 含有十分丰富的多分散性微孔。
较小的分子能够进入更多的或者全部的微孔, 较大的分子只能进入部分微孔甚至完全排斥于孔外, 因而不同大小的分子流经凝胶柱时小分子被保留而大分子首先被排除, 凝胶孔起到筛分物质质点大小的作用。
根据构成凝胶的物质的极性不同, 可以分为亲水性凝胶和疏水性凝胶两大类。
亲水性凝胶具有“筛分”无机盐的能力。
一般认为凝胶色谱分离无机盐的机理除了体积排除效应以外, 还存在诸如离子排斥、物理吸附、两性离子交换等次级效应, 这种次级效应给无机盐的分离带来好处。
SCN- 就是一个十分典型的离子, 它在凝胶中存在比较明显的吸附趋向, 分配系数往往大于1,从而有利于与其它无机盐的分离。
也有学者认为SCN-离子在凝胶中能格外保留的原因还可能在于水化度及水化过程的热力学性质变化。
凝胶色谱不同于离子交换, 高价阳离子或形成络合物的离子不致被牢固地滞留于凝胶介质中, 因而即使长期使用也无需用化学试剂再生, 使用寿命比离
子交换树脂更长, 这是一种比较理想的溶剂净化手段。
凝胶色谱有许多其他色谱所不具备的特点。
例如由于它的分离主要并不依赖于相互作用力, 所以对流动相要求不高, 不需要使用梯度淋洗, 实验操作比较
简单, 重复性好。
吸附色谱
吸附色谱法是指混合物随流动相通过吸附剂时,由于该吸附剂对不同物质有不同的吸附力而使混合物分离的方法。
该法主要应用于某些分子量不大的物质的分离提纯,个别的如羟基磷灰石也适用于生物大分子的分离提纯,应用范围比较广。
分离原理:固定相是固体吸附剂,吸附剂是多孔性微粒物质表面有吸附中心。
样品组分与流动相竞争吸附中心。
各组分的吸附能力不同,使组分在固定相中产生保留时间不同和实现分离。
吸附介质根据其在不同色谱分离技术中的吸附机理主要可分为凝胶过滤介质, 离子交换树脂, 疏水色谱分离介质, 亲和色谱分离介质, 金属鳌合色谱分
离介质, 分配色谱分离介质。
按其材质可分为无机和有机两大类。
固定相:固定相通常是强极性的硅胶、氧化铝、活性炭、聚乙烯、聚酰胺等固体吸附剂。
活性硅胶最常用。
流动相:弱极性有机溶剂或非极性溶剂与极性溶剂的混合物,如正构烷烃(己烷、戊烷、庚烷等)、二氯甲烷/甲醇、乙酸乙酯/乙腈等。
应用:对于极性,结构异构体分离和族分离仍是最有效的方法,如农药异构体分离、石油中烷、烯、芳烃的分离。
缺点是容易产生不对称峰和拖尾现象。
亲和膜色谱
亲和膜色谱以膜为亲和载体,偶联亲和配基,选择性地吸收目标物质。
亲和膜色谱是在亲和色谱的基础上发展起来的,是现代膜分离技术与亲和色谱技术的结合。