2.3 二维离散型随机变量及其分布律
合集下载
32二维离散型随机变量的分布律及性质

P { X x , Y y }p i j ij P { X x Y y } ,i 1 , 2 , (2.4) i j P { Y y } p j j
易知,上述条件概率满足概率分布的性质
(1) P { X x y } 0 , i 1 , 2 , iY j
(2)
p 1 j p 1 i j p p i 1 p 1 j j i j
p i j
P { X x } 0 同理,设 p ,则可得到在 X xi i i 时随机变量 Y的条件概率分布为:
P { X x , Y y } p i j i j P { Y y X x } ,j 1 , 2 ,( 2 . 5 ) j i P { X x } p i i
{ X x , Y y } P { X x } P { Y y } 即P (2.7) i j i j
例4
X ,Y
相互独立,填如下表3-8空白处的值
解:
例5 设 X 表示把硬币掷三次时头两次掷出正面的 Y 表示这三次投掷中出现正面的总次数那么, 次数, 二维随机变量 ( X ,Y ) 概率分布如表3-9所示.问随机 变量 X与Y 是不是相互独立?
且
(1) P { Y y x } 0 ,j 1 , 2 , jX i
(2)
p 1 i p 1 ij p p i i i i j 1p 1 p ij
i 1 , 2 , ,
例3 设二维离散形随机变量 ( X ,Y ) 的概率分布如表3-7, 1时关于 X 的条件概率分布及 X 0 时关于 Y 的 求 Y 条件概率分布。
解:
四、 独立性
易知,上述条件概率满足概率分布的性质
(1) P { X x y } 0 , i 1 , 2 , iY j
(2)
p 1 j p 1 i j p p i 1 p 1 j j i j
p i j
P { X x } 0 同理,设 p ,则可得到在 X xi i i 时随机变量 Y的条件概率分布为:
P { X x , Y y } p i j i j P { Y y X x } ,j 1 , 2 ,( 2 . 5 ) j i P { X x } p i i
{ X x , Y y } P { X x } P { Y y } 即P (2.7) i j i j
例4
X ,Y
相互独立,填如下表3-8空白处的值
解:
例5 设 X 表示把硬币掷三次时头两次掷出正面的 Y 表示这三次投掷中出现正面的总次数那么, 次数, 二维随机变量 ( X ,Y ) 概率分布如表3-9所示.问随机 变量 X与Y 是不是相互独立?
且
(1) P { Y y x } 0 ,j 1 , 2 , jX i
(2)
p 1 i p 1 ij p p i i i i j 1p 1 p ij
i 1 , 2 , ,
例3 设二维离散形随机变量 ( X ,Y ) 的概率分布如表3-7, 1时关于 X 的条件概率分布及 X 0 时关于 Y 的 求 Y 条件概率分布。
解:
四、 独立性
离散型随机变量及其分布律

路口1
路口2
P{X=0}=P(A1)=1/2,
路口3
X表示该汽车首次遇到红灯前已通过的路口的个数
路口1
路口2
路口3
P{X=1}=P( A1 A2
)
1 2
1 2
= 1/4
路口1
路口2
路口3
P{X=2}=P(A1A2 A3
)
1 2
1 2
1 2
=1/8
X表示该汽车首次遇到红灯前已通过的路口的个数
例6 “抛硬币”试验,观察正、反两面情况.
X
X (e)
0,
1,
当e 当e
正面, 反面.
随机变量 X 服从 (0—1) 分布.
其分布律为
X0 1
1
1
pk
2
2
例7 200件产品中,有190件合格品,10件不合格品, 现从中随机抽取一件,那末,若规定
X
1, 0,
取得不合格品, 取得合格品.
其中(ai a j ), (i j) ,则称 X 服从等可能分布. 例 抛掷骰子并记出现的点数为随机变量 X,
则有 X pk
12 11
66
34 11
66
56 11 66
3. 伯努利试验和二项分布 看一个试验 将一枚均匀骰子抛掷3次.
令X 表示3次中出现“4”点的次数
X的分布律是:
P{ X
在生物学、医学、工业统计、保险科学及 公用事业的排队等问题中 , 泊松分布是常见的. 例如地震、火山爆发、特大洪水、交换台的电 话呼唤次数等, 都服从泊松分布.
我们把在随机时刻相继出现的事件所形成的序列, 叫做随机事件流.
多维随机变量函数的分布

i ,k : g ( x i , y j ) = z k
∑
p ij
=pk ,
(x1,y1) (x1,y2) … p11 p12
(xi,yj) pij g(xi,yj)
…
Z=g(X,Y)
g(x1,y1) g(x1,y2)
例1 设(X,Y)的联合分布列如下所列: 试求(1)Z1=X+Y (2)Z2=X-Y (3)Z3=max{X,Y}的分布列
练习:设随机变量X与Y独立,且均服从0-1 分布,其分布律均为
X P 0 q 1 p
(1) 求W=X+Y的分布律; (2) 求V=max(X, Y)的分布律; (3) 求U=min(X, Y)的分布律。 (4)求w与V的联合分布律。
(X,Y) pij
W=X+Y
V=max(X, Y) U=min(X, Y)
−∞ 或 ∞ −∞
−∞
∫f
X
( z − y ) f Y ( y )dy = ∫ f X ( x) f Y ( z − x)dx.
例2 设X和Y相互独立,并且服从[-1,1]上的均匀分 布,求Z=X+Y的密度函数。
解:
1 f Y ( x) = 2 0
+∞
当 −1 ≤ x ≤ 1 其他
其中α>0,β>0,试分别就以上两 种联结方式写出L的寿命Z的概率 密度.
αe − αx , x > 0, f X ( x) = x ≤ 0, 0,
βe − βy , y > 0, fY ( y ) = y ≤ 0, 0,
其中 α > 0, β > 0 且 α ≠ β . 试分别就以上三种联 接方式写出 L 的寿命 Z 的概率密度 .
离散型随机变量及其分布律

取值为0,1,…, n,且其分布律为
其中0<p<1,则称随机变量X服从以n, p为参数的
二项分布
记为X~B(n, p)
事件A发生 的概率
试验进行 的次数
p
事件A发生 的次数
X
n
X~B(n, p)
事件A的概率在 各次试验中相同
各次试验独立
中奖率为0.01
1
…
100
每张彩券的购买是独立的
p =0.01
解 X 所取的可能值是 1, 2, 3,.
设 Ai 表示“抽到的第 i 个产品是正品”,
P{ X k} P( A1A2 Ak1 Ak )
P( A1) P( A2 ) P( Ak1) P( Ak )
(1 p)(1 p) (1 p) p qk1 p.
( k 1)
所以 X 服从几何分布.
n=100
X: 中奖的彩券数 X~B(100, 0.01 )
P(X
k)
Ck 100
0.01k
0.99100k
k= 0,1,…, 100
X: 中奖的彩券数 X~B(100, 0.01 )
P(X
k)
Ck 100
0.01k
0.99100k
P( X 0) 0.99100=P (没有彩券中奖)
P (有彩券中奖)=1-P (没有彩券中奖)
C2 1000
0.00022
0.9998998
n:购买的彩票数,n=?
购
A:事件——彩票中奖
买
彩 票
p:中奖率,p=0.01
X:随机变量——中奖的彩票数
P( X 1) 99%
n λ
p
P( X 1)
p
其中0<p<1,则称随机变量X服从以n, p为参数的
二项分布
记为X~B(n, p)
事件A发生 的概率
试验进行 的次数
p
事件A发生 的次数
X
n
X~B(n, p)
事件A的概率在 各次试验中相同
各次试验独立
中奖率为0.01
1
…
100
每张彩券的购买是独立的
p =0.01
解 X 所取的可能值是 1, 2, 3,.
设 Ai 表示“抽到的第 i 个产品是正品”,
P{ X k} P( A1A2 Ak1 Ak )
P( A1) P( A2 ) P( Ak1) P( Ak )
(1 p)(1 p) (1 p) p qk1 p.
( k 1)
所以 X 服从几何分布.
n=100
X: 中奖的彩券数 X~B(100, 0.01 )
P(X
k)
Ck 100
0.01k
0.99100k
k= 0,1,…, 100
X: 中奖的彩券数 X~B(100, 0.01 )
P(X
k)
Ck 100
0.01k
0.99100k
P( X 0) 0.99100=P (没有彩券中奖)
P (有彩券中奖)=1-P (没有彩券中奖)
C2 1000
0.00022
0.9998998
n:购买的彩票数,n=?
购
A:事件——彩票中奖
买
彩 票
p:中奖率,p=0.01
X:随机变量——中奖的彩票数
P( X 1) 99%
n λ
p
P( X 1)
p
二维离散型随机变量及其分布

P{ X xi } P{ X xi , } P{ X xi , (Y y j )}
j 1
P{ ( X xi , Y y j )} P{ X xi , Y y j } pij
j 1 j 1 j 1
Two-dimension Discrete Random Variable and Distribution
所以,关于X的边缘分布律为:
X
pi.
x1
x2 …
xi …
pi. …
p1. p2. …
关于Y的边缘分布律为:
Y p.j y1 p.1 y2 … yj …
p.2 … p.j …
Two-dimension Discrete Random Variable and Distribution
[例2]见例1,试求(X,Y)关于X和关于Y的边缘 分布律。
1 2/5
Two-dimension Discrete Random Variable and Distribution
联合分布律 边缘分布律
Two-dimension Discrete Random Variable and Distribution
1、统计学中有两种抽样:不放回抽样和有放 回抽样。将例1中“不放回地取两次球”改为 “有放回地取两次球”,试求(X,Y)的联合分 布律、(X,Y)分别关于X,Y的边缘分布律及判断 X,Y是否相互独立? 2、上述我们解决了:已知二维离散型随机变 量(X,Y)的联合分布律,如何求(X,Y)关于X 或关于Y的边缘分布律的问题。那么,已知X,Y的 边缘分布律,能否求(X,Y)的联合分布律呢?
0, Y 1,
表示第二次取红球 表示第二次取白球
j 1
P{ ( X xi , Y y j )} P{ X xi , Y y j } pij
j 1 j 1 j 1
Two-dimension Discrete Random Variable and Distribution
所以,关于X的边缘分布律为:
X
pi.
x1
x2 …
xi …
pi. …
p1. p2. …
关于Y的边缘分布律为:
Y p.j y1 p.1 y2 … yj …
p.2 … p.j …
Two-dimension Discrete Random Variable and Distribution
[例2]见例1,试求(X,Y)关于X和关于Y的边缘 分布律。
1 2/5
Two-dimension Discrete Random Variable and Distribution
联合分布律 边缘分布律
Two-dimension Discrete Random Variable and Distribution
1、统计学中有两种抽样:不放回抽样和有放 回抽样。将例1中“不放回地取两次球”改为 “有放回地取两次球”,试求(X,Y)的联合分 布律、(X,Y)分别关于X,Y的边缘分布律及判断 X,Y是否相互独立? 2、上述我们解决了:已知二维离散型随机变 量(X,Y)的联合分布律,如何求(X,Y)关于X 或关于Y的边缘分布律的问题。那么,已知X,Y的 边缘分布律,能否求(X,Y)的联合分布律呢?
0, Y 1,
表示第二次取红球 表示第二次取白球
离散型随机变量及其分布

m>1时,X的全部取值为:m,m+1,m+2,…
P{X=m+1}=P{第m+1次试验时成功并 且在前m次试验中成功了m-1次}
7
常见的离散型随机变量的分布 (1) 0 – 1 分布
X = xk 1
0
Pk
p 1-p
0<p<1
应用场合 凡试验只有两个可能的结果,常用 0 – 1分布描述,如产品是否合格、人口性别统 计、系统是否正常、电力消耗是否超标等等.
(n 1) p 1 k (n 1) p
14
当( n + 1) p = 整数时,在 k = ( n + 1) p与 ( n + 1) p – 1 处的概率取得最大值
当( n + 1) p 整数时, 在 k = [( n + 1) p ]
处的概率取得最大值
对固定的 n、p, P ( X = k) 的取值呈不 对称分布 固定 p, 随着 n 的增大,其取值的分布 趋于对称
场 ⑤ 放射性物质发出的 粒子数;
合 ⑥ 一匹布上的疵点个数;
⑦ 一个容器中的细菌数;
⑧ 一本书一页中的印刷错误数;
23
都可以看作是源源不断出现的随机 质点流 , 若它们满足一定的条件, 则称为 Poisson 流, 在 长为 t 的时间内出现的质
点数可X见t ~泊P松( 分t )布的应用是相当广泛的,
而且由下面定理可以看到二项分布与泊松
分布有着密切的联系。
泊松定理 在二项分布 B(n, pn ) 中,如果
lim npn ( 0 是常数),则成立
lim
n
Cnk
pnk
(1
P{X=m+1}=P{第m+1次试验时成功并 且在前m次试验中成功了m-1次}
7
常见的离散型随机变量的分布 (1) 0 – 1 分布
X = xk 1
0
Pk
p 1-p
0<p<1
应用场合 凡试验只有两个可能的结果,常用 0 – 1分布描述,如产品是否合格、人口性别统 计、系统是否正常、电力消耗是否超标等等.
(n 1) p 1 k (n 1) p
14
当( n + 1) p = 整数时,在 k = ( n + 1) p与 ( n + 1) p – 1 处的概率取得最大值
当( n + 1) p 整数时, 在 k = [( n + 1) p ]
处的概率取得最大值
对固定的 n、p, P ( X = k) 的取值呈不 对称分布 固定 p, 随着 n 的增大,其取值的分布 趋于对称
场 ⑤ 放射性物质发出的 粒子数;
合 ⑥ 一匹布上的疵点个数;
⑦ 一个容器中的细菌数;
⑧ 一本书一页中的印刷错误数;
23
都可以看作是源源不断出现的随机 质点流 , 若它们满足一定的条件, 则称为 Poisson 流, 在 长为 t 的时间内出现的质
点数可X见t ~泊P松( 分t )布的应用是相当广泛的,
而且由下面定理可以看到二项分布与泊松
分布有着密切的联系。
泊松定理 在二项分布 B(n, pn ) 中,如果
lim npn ( 0 是常数),则成立
lim
n
Cnk
pnk
(1
二维离散型随机变量

F
(
x,
y)
1 3
,
1 x 2, y 2, 或 x 2,1 y 2,
1, x 2, y 2.
说明 离散型随机变量 ( X ,Y ) 的分布函数归纳为
F ( x, y) pij ,
xi x y j y
其中和式是对一切满足xi x, y j y 的i, j求和.
注意 联合分布
pij 1.
i1 j1
二维随机变量 ( X,Y ) 的分布律也可表示为
X Y
y1 y2
yj
x1
x2 xi
p11 p21
p12 p22
pi1
pi 2
p1 j p2 j pij
3、离散型随机变量的边缘分布律
定义设二维离散型随机变量( X ,Y )的联合分布
律为
P{X xi ,Y y j } pij , i, j 1, 2, .
3 7
pj (Y ) P{Y yj}
4
7 3
7
1
例2 设随机变量 X 在 1,2,3,4四个整数中等可能地 取值, 另一个随机变量Y 在 1 ~ X 中等可能地取一 整数值.试求 ( X ,Y ) 的分布律.
解 { X i,Y j}的取值情况是 : i 1,2,3,4,
j取不大于i的正整数. 且由乘法公式得
记
pi ( X ) pij P{X xi }, i 1, 2, ,
j 1
p j (Y ) pij P{Y y j }, j 1, 2, , i 1
分别称 pi ( X ) (i 1, 2, ) 和 p j (Y ) ( j 1, 2, ) 为 ( X ,Y )
关于 X 和关于 Y 的边缘分布律.
离散型随机变量及其分布律

λ
n! k n− k P{ X = k } = ( pn ) (1 − pn ) k!( n − k )!
n! λ 1 λ o(1) n− k k [ + o(1)] [1 − − ) = k ! ( n − k )! n n n n
[λ + o(1)]k λ o(1) n n( n − 1)⋯ ( n − k + 1) [1 − − ] = λ o(1) k k! n n k n [1 − − ] n n
的分布函数. 求随机变量 X 的分布函数 解
1 p{ X = 1} = p{ X = 0} = , 2
•
•
当x < 0时, 时
0
1
x
F ( x ) = P{ X ≤ x < 0} = P (φ ) = 0
•
•
0
当0 ≤ x < 1时,
1
x
1 F ( x ) = P { X ≤ x } = P { X = 0} = ; 2 当x ≥ 1时, 0, x < 0, F ( x ) = P{ X ≤ x } 1 = P{ X = 0}+ P{ X = 1} 得 F ( x ) = , 0 ≤ x < 1, 2 1 1 1, x ≥ 1. = + = 1. 2 2
( k −1 )
服从几何分布. 所以 X 服从几何分布
( k = 1,2,⋯)
首次成功” 说明 几何分布可作为描述某个试验 “首次成功” 的概率模型. 的概率模型
7.超几何分布 超几何分布
设X的分布律为 的分布律为
m n C M C N−−m M P{ X = m } = n CN
( m = 0,1,2,⋯ , min{ M , n})
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i 1
边缘分布律是分布律.
由联合分布 律得到边缘 分布律
相同的边缘 分布律,不同 的联合分布 律
表2.7-2.8
联合分布律<=|=边缘分布律
补例
二 条件分布律 1.定义 P{ X xi | Y y j } P ( xi , y j ) / P{Y y j }
p·j 2.条件分布律是分布律(满足分布律的特征) pij , j 1, 2,3,...
3.由例2.10求条件分布律
补例
三.随机变量的独立性 1.定义 随机变量的独立性 P{ X xi , Y y j } P ( X xi ) P{Y y j }
i, j 1, 2,3,...
若随机变量独立,则
P{ X xi | Y y j } P ( xi , y j ) / P{Y y j } P{ X xi } P{Y y j | X xi } P{Y y j }
2.联合分布律 1).定义2.4 pij P{xi , y j } P{ X xi , Y y j } (i 1, 2,L ; j 1, 2,L ) 表格形式(常见形式) Y y1 y2 。。。 y j X p11 p12 。。。 p1 j x
1
...
... 。。。
... 。。。
x2
..... 。。。
。。。... 。。。...
p2 j
。。。
...
... 。。。
... 。。。
xi
... 。。。
pi1 pi 2
... 。。。
... 。。。
pij
...
... 。。。
。。。...
。。。...
。。。
...
2).特征: 0 pij 1
p
解 ( X , Y ) 的可能取值为(1, 2), (2, 1), (2, 2).
P{X=1,Y=2}=(1/3) × (2/2)=1/3,
P{X=2,Y=1}=(2/3) ×(1/2)=1/3, P{X=2,Y=2}= (2/3) ×(1/2)=1/3,
Y
X
1
2
1 2
0 1/3
1/3 1/3
2.边缘分布律
与条件无关
独立的二维随机变量,边缘分布律=>联合分布律
2.补例1
练习题
第三节 二维离散型随机变量及其分布律
一、联合分布律与边缘分布律 1.定义.设X,Y为定义在同一样本空间Ω上的随 机变量,则称向量(X,Y )为Ω上的一个二维随 机变量。 二维随机变量(X,Y )的取值可看作平面上的点
A (x,y)
二维离散型随机变量:若二维随机变量(X,Y )的所 有可能取值只有限对或可列对,则称(X,Y )为二 维离散型随机变量。
i 1 j 1
ij
1
3). P{( X , Y ) G}
( xi , y j )G
pij
例2.10 看书
例
一个口袋中有三个球, 依次标有数字1, 2, 2, 从中任 取一个, 不放回袋中, 再任取一个, 设每次取球时, 各球被 取到的可能性相等.以X、Y分别记第一次和第二次取到的球 上标有的数字, 求( X , Y ) 的联合分布列.
1). 通过联合分布律,求各个分量的分布律. 定义2.5 ( X ,Y ) 关于分量X的边缘分布律
pi· P{X xi } = pij (i 1,2,L ); =
j 1
( X ,Y ) 关于分量Y的边缘分布律
p·j =P{Y y j } = pij ( j 1,2,L ).
边缘分布律是分布律.
由联合分布 律得到边缘 分布律
相同的边缘 分布律,不同 的联合分布 律
表2.7-2.8
联合分布律<=|=边缘分布律
补例
二 条件分布律 1.定义 P{ X xi | Y y j } P ( xi , y j ) / P{Y y j }
p·j 2.条件分布律是分布律(满足分布律的特征) pij , j 1, 2,3,...
3.由例2.10求条件分布律
补例
三.随机变量的独立性 1.定义 随机变量的独立性 P{ X xi , Y y j } P ( X xi ) P{Y y j }
i, j 1, 2,3,...
若随机变量独立,则
P{ X xi | Y y j } P ( xi , y j ) / P{Y y j } P{ X xi } P{Y y j | X xi } P{Y y j }
2.联合分布律 1).定义2.4 pij P{xi , y j } P{ X xi , Y y j } (i 1, 2,L ; j 1, 2,L ) 表格形式(常见形式) Y y1 y2 。。。 y j X p11 p12 。。。 p1 j x
1
...
... 。。。
... 。。。
x2
..... 。。。
。。。... 。。。...
p2 j
。。。
...
... 。。。
... 。。。
xi
... 。。。
pi1 pi 2
... 。。。
... 。。。
pij
...
... 。。。
。。。...
。。。...
。。。
...
2).特征: 0 pij 1
p
解 ( X , Y ) 的可能取值为(1, 2), (2, 1), (2, 2).
P{X=1,Y=2}=(1/3) × (2/2)=1/3,
P{X=2,Y=1}=(2/3) ×(1/2)=1/3, P{X=2,Y=2}= (2/3) ×(1/2)=1/3,
Y
X
1
2
1 2
0 1/3
1/3 1/3
2.边缘分布律
与条件无关
独立的二维随机变量,边缘分布律=>联合分布律
2.补例1
练习题
第三节 二维离散型随机变量及其分布律
一、联合分布律与边缘分布律 1.定义.设X,Y为定义在同一样本空间Ω上的随 机变量,则称向量(X,Y )为Ω上的一个二维随 机变量。 二维随机变量(X,Y )的取值可看作平面上的点
A (x,y)
二维离散型随机变量:若二维随机变量(X,Y )的所 有可能取值只有限对或可列对,则称(X,Y )为二 维离散型随机变量。
i 1 j 1
ij
1
3). P{( X , Y ) G}
( xi , y j )G
pij
例2.10 看书
例
一个口袋中有三个球, 依次标有数字1, 2, 2, 从中任 取一个, 不放回袋中, 再任取一个, 设每次取球时, 各球被 取到的可能性相等.以X、Y分别记第一次和第二次取到的球 上标有的数字, 求( X , Y ) 的联合分布列.
1). 通过联合分布律,求各个分量的分布律. 定义2.5 ( X ,Y ) 关于分量X的边缘分布律
pi· P{X xi } = pij (i 1,2,L ); =
j 1
( X ,Y ) 关于分量Y的边缘分布律
p·j =P{Y y j } = pij ( j 1,2,L ).