OUC液晶光电效应综合实验

合集下载

液晶光电效应实验报告

液晶光电效应实验报告

液晶光电效应实验报告液晶光电效应是指当液晶受到光照射时,其分子结构发生改变,从而产生电场效应的现象。

本实验旨在通过实验验证液晶光电效应,并对其进行深入的研究和分析。

实验仪器与材料:1. 液晶样品。

2. 偏振光源。

3. 偏振片。

4. 电压源。

5. 示波器。

6. 光源。

7. 电源。

8. 电压表。

9. 电流表。

10. 电阻。

实验步骤:1. 将液晶样品置于偏振片之间,使其与偏振光源垂直。

2. 调节偏振光源,使其通过偏振片后照射到液晶样品上。

3. 通过电压源对液晶样品施加不同的电压,观察并记录液晶样品的光透过率随电压的变化情况。

4. 使用示波器对液晶样品施加电压后的响应进行监测和记录。

实验结果与分析:在实验过程中,我们观察到液晶样品在不同电压下的光透过率发生了变化。

当施加电压时,液晶分子结构发生了改变,导致光的透过率发生了变化。

通过示波器的监测,我们还可以清晰地观察到液晶样品的响应时间和稳定性。

根据实验结果,我们可以得出液晶光电效应存在的结论,并对其进行进一步的分析和讨论。

液晶光电效应的产生主要是由于液晶分子在电场作用下的取向改变,从而影响光的透过率。

这一现象在液晶显示器等光电器件中具有重要的应用价值。

结论:通过本实验,我们成功验证了液晶光电效应的存在,并对其进行了深入的研究和分析。

液晶光电效应作为一种重要的光电现象,在光电器件领域具有广泛的应用前景,对于提高光电器件的性能和稳定性具有重要意义。

在今后的研究中,我们将进一步探讨液晶光电效应的机理和特性,以期能够更好地应用于光电器件的研发和生产中。

同时,我们也将继续深入研究其他光电效应现象,为光电器件领域的发展做出更大的贡献。

通过本次实验,我们不仅加深了对液晶光电效应的理解,同时也提高了我们对光电器件的认识,为今后的科研工作奠定了坚实的基础。

希望通过我们的努力,能够为光电器件领域的发展贡献自己的一份力量。

光电效应实验报告.

光电效应实验报告.

光电效应实验报告.光电效应实验报告引言光电效应是指当光照射到金属表面时,金属释放出电子的现象。

这一现象的发现对于量子物理学的发展具有重要意义。

本实验旨在通过实际操作,观察和研究光电效应,并探究其相关的物理原理。

实验装置实验装置主要包括:光源、金属板、电压表、电流表、电源等。

光源采用高亮度的LED灯,金属板选用铝材料,电压表和电流表用于测量电压和电流的变化。

实验步骤1. 将实验装置搭建好,确保电路连接正确,并保持实验环境的稳定。

2. 将金属板置于光源的照射下,并通过电压表和电流表记录下光照强度和电流的变化。

3. 逐渐调整电压,观察电流的变化情况,并记录下相关数据。

4. 分别改变光源的距离和金属板的面积,观察光电效应的变化规律。

实验结果在实验过程中,我们观察到以下现象和结果:1. 随着光照强度的增加,电流逐渐增大,但存在一个临界值,超过该临界值后电流基本保持不变。

2. 当改变光源的距离时,电流的变化与距离的平方成反比。

3. 当改变金属板的面积时,电流的变化与面积成正比。

讨论与分析基于实验结果,我们可以得出以下结论:1. 光电效应的发生与光照强度有关,当光照强度超过一定临界值时,金属表面的电子会被激发出来。

2. 光电效应的电流与光源的距离成反比,这是因为光的强度随着距离的增加而减弱,导致电子产生的动能减小。

3. 光电效应的电流与金属板的面积成正比,这是因为金属板的面积越大,光照射到的金属表面积也越大,从而激发出的电子数量增多。

进一步探索在实验的基础上,我们可以进一步探索以下问题:1. 光电效应与光的频率有关吗?是否存在特定频率的光才能激发出电子?2. 光电效应是否与金属的材料有关?不同金属是否会有不同的光电效应?3. 是否存在其他因素会影响光电效应的发生,比如温度、压力等?结论通过本次实验,我们对光电效应有了更深入的了解。

光电效应的发生与光照强度、距离和金属板的面积等因素密切相关。

进一步研究光电效应的机制和影响因素,有助于我们更好地理解量子物理学的基本原理,并在光电器件的设计和应用中发挥重要作用。

液晶电光效应实验报告.doc

液晶电光效应实验报告.doc

液晶电光效应实验报告【实验目的】1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。

2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。

3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。

4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。

【实验仪器】液晶电光效应实验仪一台,液晶片一块【实验原理】1.液晶光开关的工作原理液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。

TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。

棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。

玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。

上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。

然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。

理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。

取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。

在未加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。

液晶光电效应实验报告

液晶光电效应实验报告

液晶光电效应实验报告液晶光电效应是指在外界电场作用下,液晶分子排列方向发生变化,从而改变液晶分子的各向异性,使得光透过液晶时的偏振状态发生变化的现象。

本实验旨在通过实验验证液晶光电效应,并对其进行深入的研究和分析。

实验一,液晶光电效应的基本原理。

首先,我们将液晶样品置于电场中,通过改变电场的强度和方向,观察液晶样品的光学性质变化。

实验结果显示,当电场作用下,液晶分子会发生排列方向的变化,从而导致光透过液晶时的偏振状态发生变化。

这一现象正是液晶光电效应的基本原理。

实验中,我们还对不同类型的液晶样品进行了测试,结果表明不同类型的液晶样品对电场的响应程度有所差异,这为进一步研究液晶光电效应提供了重要的参考。

实验二,液晶光电效应的应用。

在实验中,我们还探讨了液晶光电效应在光电器件中的应用。

通过改变电场的强度和方向,我们成功实现了对液晶样品的光学性质进行控制,这为液晶显示器、液晶光阀等光电器件的设计和制造提供了重要的理论基础。

同时,我们还对液晶光电效应在光学调制器件中的应用进行了研究,结果表明液晶光电效应在光学通信、光学信息处理等领域具有广泛的应用前景。

实验三,液晶光电效应的影响因素。

在实验过程中,我们还对液晶光电效应的影响因素进行了深入的分析。

实验结果显示,温度、电场强度、液晶样品的性质等因素都会对液晶光电效应产生影响。

特别是在液晶显示器等光电器件中,对液晶光电效应的影响因素进行深入研究,可以为光电器件的性能优化提供重要的理论指导。

结论。

通过本次实验,我们深入了解了液晶光电效应的基本原理、应用前景以及影响因素,并对液晶光电效应在光电器件中的应用进行了探讨。

实验结果表明,液晶光电效应具有重要的理论和应用价值,对于光电器件的设计和制造具有重要的指导意义。

相信随着对液晶光电效应研究的深入,液晶光电效应将在光电器件领域发挥越来越重要的作用。

大学物理实验 液晶光电效应综合实验

大学物理实验 液晶光电效应综合实验

液晶光电效应综合实验摘要:本实验主要通过液晶光开关电光特性综合试验仪来进行液晶的电光特性测量实验,测量液晶光开关的电光特性曲线,并由此得到阈值电压和关断电压,并绘制液晶光开关的时间响应曲线得到液晶的上升时间和下降时间,测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。

关键字:液晶光电效应引言:液晶是介于液体与晶体之间的一种物质状态。

一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的各向异性。

当光通过液晶时,会产生偏振面旋转,双折射等效应。

液晶分子是含有极性基团的极性分子,在电场作用下,偶极子会按电场方向取向,导致分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外电场引起的液晶光学性质的改变称为液晶的电光效应。

实验目的:1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。

2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。

3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。

4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。

实验原理:1.液晶光开关的工作原理液晶的种类很多,仅以常用的 TN(扭曲向列)型液晶为例,说明其工作原理。

TN型光开关的结构如图 1 所示。

在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。

棍的长度在十几埃(1 埃= 10-10米),直径为 4~6 埃,液晶层厚度一般为 5-8 微米。

玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。

光电效应实验的教程与注意事项

光电效应实验的教程与注意事项

光电效应实验的教程与注意事项光电效应是一个重要的物理现象,它深刻地影响了现代科学和技术的发展。

光电效应实验是学习和理解光电效应原理的关键步骤。

本文将为您提供光电效应实验的教程并介绍相关的注意事项。

一、实验仪器和设备准备在进行光电效应实验前,首先需要准备以下仪器和设备:1. 光电效应实验装置:通常包括光源、光电管、稳压电源、电流和电压测量仪器等。

2. 滤光片和反射镜:用于调节和过滤光源的强度和频率。

3. 示波器:用于观察和记录光电管输出的电流或电压信号。

二、实验步骤以下是进行光电效应实验的基本步骤:1. 搭建实验装置:按照实验装置的说明书或实验指导书进行装置的搭建和连接。

确保所有仪器和设备连接正确并牢固。

2. 调节光源:根据实验要求,选择合适的光源并调节其强度和频率。

使用滤光片和反射镜来控制光源的强度和方向。

3. 设置电压:根据实验要求,设置适当的电压供应给光电管。

通过稳压电源进行调节,并使用电压测量仪器来监测所施加的电压。

4. 观察和记录:通过示波器或电流测量仪器来观察和记录光电管输出的电流或电压信号。

注意记录实验条件、参数和观察到的现象。

5. 实验数据分析:根据实验数据进行分析和计算,比如计算光电管的截止电压、光电流等重要参数。

6. 结果验证与讨论:将实验结果与理论知识进行对比和验证,进行讨论和解释实验现象。

三、注意事项在进行光电效应实验时,需要注意以下事项:1. 安全第一:确保实验环境安全,并遵守实验室的安全规定,如穿戴实验服、戴护目镜等。

2. 仪器检查:在进行实验之前,仔细检查实验装置和仪器是否正常工作,如电源是否正常、示波器是否校准等。

3. 光源控制:根据实验要求,控制光源的强度和频率,避免对光电管产生过大的影响。

4. 数据记录:及时记录实验数据,并保持实验区域整洁,以便后续的数据分析和对比。

5. 参数调节:根据实验需要,适时调节光源强度、电压和其他参数,并记录下实验过程中的变化。

6. 实验结果解释:根据实验数据和理论知识进行实验结果的解释和讨论,分析实验数据与理论期望值的差异。

大学物理实验---液晶光电效应

大学物理实验---液晶光电效应

⼤学物理实验---液晶光电效应实验题⽬:液晶电光效应实验⽬的:1、在掌握液晶光开关的基本⼯作原理的基础上,测量液晶光开关的电光特性曲线;2、观察液晶光开关的时间响应曲线,并求出液晶的上升时间和下降时间;3、测量液晶显⽰器的视⾓特性;4、了解⼀般液晶显⽰器件的⼯作原理。

实验原理:TN型液晶光开关⼯作原理两张偏振⽚贴于玻璃的两⾯,上下电极的定向⽅向相互垂直,P1的透光轴与上电极的定向⽅向相同,P2的透光轴与下电极的定向⽅向相同,于是P1和P2的透光轴相互正交。

在未加驱动电压的情况下,来⾃光源的⾃然光经过偏振⽚P1后只剩下平⾏于透光轴的线偏振光,该线偏振光到达输出⾯时,其偏振⾯旋转了90°。

这时光的偏振⾯与P2的透光轴平⾏,因⽽有光通过。

(见原理⽰意图)当施加⾜够电压时(⼀般为1~2伏),在静电场的作⽤下,液晶分⼦趋于平⾏于电场⽅向排列。

原来的扭曲结构被破坏,从P1透射出来的偏振光的偏振⽅向在液晶中传播时不再旋转,保持原来的偏振⽅向到达下电极。

这时光的偏振⽅向与P2正交,因⽽光被关断。

由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常⽩模式。

液晶光开关电光特性曲线液晶驱动电压和时间响应曲线实验步骤:1、校准透过率为100%,2、液晶电光特性的测量:静态模式下使电压从0v到6v记录相应的透射率。

绘制电光曲线图求出阈值电压与关断电压。

3、液晶时间特性曲线测定:静态闪烁状态,透过率为100%,电压为2v,由⽰波器观察到驱动电压波形及时间特性曲线,并求出上升时间与下降时间。

4、液晶视⾓特性的测量(1) ⽔平视⾓的测量电压在0v下,⾓度从-75度⾄+75度,读出每⼀⾓度下透射率的最⼤值。

电压在2v下,⾓度从-75度⾄+75度,读出每⼀⾓度下透射率的最⼩值。

计算对⽐度,绘制曲线图。

(2) 垂直视⾓的测量(同上)电压在0v下,⾓度从-75度⾄+75度,读出每⼀⾓度下透射率的最⼤值。

液晶光电效应实验报告

液晶光电效应实验报告

液晶光电效应实验报告液晶光电效应是指在外加电场作用下,液晶分子发生取向改变,从而导致光学性质的变化。

本次实验旨在通过观察液晶光电效应的现象,探究其机理原理,并对实验结果进行分析和总结。

实验仪器与材料:1. 液晶样品。

2. 透明电极玻璃基板。

3. 电源。

4. 偏振片。

5. 光源。

实验步骤:1. 将液晶样品均匀涂布在透明电极玻璃基板上,形成液晶薄膜。

2. 将偏振片置于液晶样品的上方,使其与液晶薄膜垂直。

3. 将电源接通,施加外加电场。

4. 调节光源位置和强度,观察液晶样品的光学特性变化。

实验结果与分析:在实验过程中,我们观察到了明显的液晶光电效应。

当施加外加电场后,液晶样品的光学特性发生了明显的变化,透过偏振片观察液晶样品时,可以看到光强度的变化。

这表明外加电场导致了液晶分子的取向改变,从而影响了光的传播方向和强度。

液晶光电效应的机理原理是液晶分子在外加电场作用下发生取向改变,从而影响了光的透过性。

液晶分子是具有一定取向性的长形分子,当外加电场施加在液晶样品上时,液晶分子会受到电场力的作用而发生取向改变,从而影响了光的透过性。

通过本次实验,我们深入了解了液晶光电效应的现象和机理原理。

液晶光电效应在液晶显示器等光电器件中具有重要的应用价值,对于我们深入理解液晶材料的光学性质和应用具有重要意义。

总结:本次实验通过观察液晶样品在外加电场作用下的光学特性变化,探究了液晶光电效应的机理原理。

实验结果表明,外加电场导致液晶分子取向改变,从而影响了光的传播方向和强度。

液晶光电效应在光电器件中具有重要的应用价值,对于我们深入理解液晶材料的光学性质和应用具有重要意义。

通过本次实验,我们对液晶光电效应有了更深入的了解,也为今后的相关研究和应用奠定了基础。

希望通过不断的实验和研究,能够进一步拓展液晶光电效应的应用领域,为光电技术的发展做出更大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液晶光电效应综合实验作者:吴宝兰2011级海洋科学类010********* 小组成员:宋鹏、王忠成摘要:本文在掌握液晶光开关基本工作原理及观察了液晶光开关时间的响应曲线的基础上,测量了液晶光开关的电光学特性曲线、液晶显示器的视角特性、求出了液晶上升时间和下降时间。

同时,揭示了一般液晶显示器件的工作原理,对日后对其做进一步的研究奠定了初步的理论基础。

关键词:液晶光开关时间响应视角特性1实验目的1、在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。

2、测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。

3、测量由液晶光电开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光电开关的工作条件。

4、了解液晶光电开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器的工作原理。

2实验原理2.1基本知识2.1.1液晶液晶态是一种介于液体和晶体之间的中间态,既有液体的流动性、粘度、形变等机械性质,又有晶体的热、光、电、磁等物理性质。

液晶与液体、晶体之间的区别是:液体是各向同性的,分子取向无序;液晶分子取向有序,但位置无序,而晶体二者均有序。

2.1.2液晶的光电效应液晶分子是在形状、介电常数、折射率及电导率上具有各向异性特性的物质,如果对这样的物质施加电场,随着液晶分子取向结构发生变化,它的光学特性也随之变化,这就是通常说的液晶的电光效应。

2.2液晶光开关的工作原理液晶作为一种显示器件,其种类很多,下面以常用的TN(扭曲向列)型液晶为例,说明其工作原理。

TN型光开关的结构如图1所示。

在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。

棍的长度在十几埃,直径为4~6埃,液晶层厚度一般为5-8微米。

玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;使电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。

上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。

然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。

如图1左图所示。

图1 液晶光开关的工作原理理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。

取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。

在未加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。

这时光的偏振面与P2的透光轴平行,因而有光通过。

在施加足够电压情况下(一般为1~2伏),在静电场的吸引下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。

于是原来的扭曲结构被破坏,成了均匀结构,如图1右图所示。

从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。

这时光的偏振方向与P2正交,因而光被关断。

由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。

若P1和P2的透光轴相互平行,则构成常黑模式。

2.3液晶光开关的电光特性和时间响应特性图2 液晶光开关的电光特性曲线图2为光线垂直入射时本实验所用液晶相对透射率(以不加电场时的透射率为100%)与外加电压的关系。

由图2可见,对于常白模式的液晶,其透射率随外加电压的升高而逐渐降低,在一定电压下达到最低点,此后略有变化。

可以根据此电光特性曲线图得出液晶的阈值电压和关断电压。

阈值电压:透过率为90%时的供电电压;关断电压:透过率为10%时的供电电压。

另外,在给液晶板加上一个周期性的作用电压(如图3上图),液晶的透过率也就会随电压的改变而变化,就可以得到液晶的相应时间上升时间Δt1和下降时间Δt2。

如图3下图所示。

上升时间:透过率由10%升到90%所需时间;下降时间:透过率由90%降到10%所需时间。

液晶的响应时间越短,显示动态图像的效果越好。

2.4液晶光开关的视角特性液晶光开关的视角特性表示对比度与视角的关系。

对比度定义为光开关打开和关断时透射光强度之比,对比度大于5时,可以获得满意的图像,对比度小于2,图像就模糊不清了。

图4表示了某种液晶视角特性的理论计算结果。

图4中,用与原点的距离表示垂直视角(入射光线方向与液晶屏法线方向的夹角)的大小。

图中4个同心圆分别表示垂直视角为30,60和90度。

90度同心圆外面标注的数字表示水平视角(入射光线在液晶屏上的投影与0度方向之间的夹角)的大小。

图3中的闭合曲线为不同对比度时的等对比度曲线。

由图4可以看出,对比度与垂直与水平视角都有关。

而且,视角特性具有非对称性。

2.5液晶光开关构成图像显示矩阵的方法液晶显示器通过对外界光线的开关控制来完成信息显示任务,为非主动发光型显示,其最大的优点在于能耗极低。

正因为如此,液晶显示器在便携式装置的显示方面,例如电子表、万用表、手机、传呼机等具有不可代替地位。

下面我们来看看如何利用液晶光开关来实现图(a ) (b )图5 液晶光开关组成的矩阵式图形显示器A B D Eabcdef形和图像显示任务。

矩阵显示方式,是把图5(a)所示的横条形状的透明电极做在一块玻璃片上,叫做行驱动电极,简称行电极,而把竖条形状的电极制在另一块玻璃片上,叫做列驱动电极,简称列电极。

把这两块玻璃片面对面组合起来,把液晶灌注在这两片玻璃之间构成液晶盒。

为了画面简洁,通常将横条形状和竖条形状的ITO电极抽象为横线和竖线,分别代表扫描电极和信号电极矩阵型显示器的工作方式为扫描方式。

显示原理可依以下的简化说明作一介绍。

欲显示图5(b)的那些有方块的像素,首先在第A行加上高电平,其余行加上低电平,同时在列电极的对应电极c、d 上加上低电平,于是A行的那些带有方块的像素就被显示出来了。

然后第B行加上高电平,其余行加上低电平,同时在列电极的对应电极b、e 上加上低电平,因而B行的那些带有方块的像素被显示出来了。

然后是第C行、第D行……,余此类推,最后显示出一整场的图像。

这种工作方式称为扫描方式。

这种分时间扫描每一行的方式是平板显示器的共同的寻址方式,依这种方式,可以让每一个液晶光开关按照其上的电压的幅值让外界光关断或通过,从而显示出任意文字、图形和图像。

3实验仪器4设计实验内容与步骤 4.1实验内容:1、 液晶的电光特性测试实验。

可以测得液晶的阈值电压和关断电压。

2、 液晶的时间特性实验,测量液晶的上升时间和下降时间。

3、 液晶的视角特性测量实验。

4.2实验步骤:1、将液晶板金手指1插入转盘上的插槽,液晶凸起面必须正对光源发射方向。

打开电源开关,点亮光源,使光源预热10分钟左右。

2、将模式转换开关置于静态模式,将透过率显示校准为100%,按表一的数据改变电压,使电压从0V 到6V 变化,记录相应电压下的透过率数值。

重复3次并计算相应电压下透过率的平均值,依据实验数据绘制水平方向的电光特性曲线,可以得出水平方向的阈值电压和关断电压。

3、将液晶板金手指2插入转盘上的插槽,将透过率显示校准为100%,按表一的数据改变电压,使电压从0V 到6V 变化,记录相应电压下的透过率数值。

重复3次并计算相应电压下透过率的平均值,依据实验数据绘制垂直方向的电光特性曲线,可以得出垂直方向的阈值电压和关断电压。

4、将模式转换开关置于静态模式,透过率显示调节到100%,然后将液晶供电电压调节到2V ,在液晶静态闪烁下,用存储示波器观察此光电开关的时间特性曲线。

得到上升时间和下降时间。

5、将模式置于静态模式,将透过率显示调到100%,以水平方向插入液晶板,在供电电压为0V 时,调节液晶屏与入射激光的角度,在每一角度下测量光强透过率最大值TMAX 。

然后供电电极设为2V ,再次调节液晶屏角度,测量光强透过率最小值TMIN ,记录,并计算其对比度。

6、将液晶板以垂直方向插入插槽,按照与测量水平视角特性相同的方法,测量垂直方向视角特性。

5数据处理与结论图8:电光特性曲线(水平)由水平方向电光特性曲线得水平方向阈值电压为1.13V,关断电压为1.72V图9:电光特性曲线(垂直)由垂直方向电光特性曲线得垂直方向阈值电压为1.12V ,关断电压为1.73V使用示波器直接读值的方法,由于两通道的上升时间和下降时间对同一液晶显示器应为一固定值,故只做一次。

图10:CH1、CH2液晶驱动电压和时间响应示意图表4 水平方向视角特性表5 垂直方向视角特性61、仪器本身的精密度;2、外部环境的干扰,比如液晶光开关视角特性的测量试验中,0V电压下,部分透射率大于100%,与实际不符,应为外间光源干扰所致;3、实验组次少,液晶的时间响应的测量及液晶光开关视角特性的测量试验只取了一组数据,存在一定的误差;4、计算中的传递误差,由于本次试验组次少,故没有进行不确定度的计算,且小数点只保留了一位;5、试验准备阶段,对光源预热时间不足;6、插槽中的液晶板并不严格正对光源发射方向,存在微角度误差,且进行液晶光开关视角特性的测量时,也存在微角度误差;7、读数误差,试验中,个别数据是在透射率不稳定的情况下读取的;8、由于不了解干扰特性,故对数据同比例缩小或减小都不准确,所以对于透射率大于100%的数据并未修正。

7 注意事项1、禁止用光束照射他人眼睛或直视光束本身,以防伤害眼睛;2、在进行液晶视角特性实验中,更换液晶板方向时,务必断开总电源后,再进行插取,否则将会损坏晶板;3、液晶板凸起面必须要朝向光源发射方向,否则实验记录的数据为错误数据;4、在调节透过率100%时,如果透过率显示不稳定,则可能是光源预热时间不够,或光路没有对准,需要仔细检查,调节好光路;5、在校准透过率100%前,必须将液晶供电电压显示调到0.00V或显示大于“250”,否则无法校准透过率为100%。

在实验中,电压为0.00V时,不要长时间按住“透过率校准”按钮,否则透过率显示将进入非工作状态,本组测试的数据为错误数据,需要重新进行本组实验数据记录。

8 心得体会1、课前预习:我们在实验课之前要进行课前预习,通过阅读实验教材和参考资料,弄清本次实验的目的、原理和所要使用的仪器,明确测量方法,了解实验要求及实验中特别要注意的问题等。

相关文档
最新文档