最新中考数学突破训练之填空选择压轴题及解析
中考数学填空题压轴题(含答案)

根据考试大纲,填空压轴题仍将以探究规律类型题为主要考察方向。
题型一:数字规律【例1】一组按一定规律排列的式子:-,,-,,…,(0a ≠),则第n 个式子是 (n为正整数).【答案】【例2】按一定规律排列的一列数依次为:,916,79,54,31 ……,按此规律排列下去,这列数中的第5个数是 ,第n 个数是 .【答案】1125,122+n n【例3】一组按规律排列的整数5,7,11,19,…,第6个整数为____ _,根据上述规律,第n 个整数为____ (n 为正整数).【答案】67;32+n (n 为正整数)【例4】将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第一列第9行的数为 ,再结合第一行的偶数列的数的规律,判断2011所在的位置是第 行第 列.【答案】81;第45行第15列2a 52a 83a 114a 31(1)n na n --例题精讲填空题压轴题【例5】某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a )第n 年 1 2 3 4 5 … 老芽率 a a 2a 3a 5a … 新芽率 0 a a 2a 3a … 总芽率a2 a3a5a8a…照这样下去,第8年老芽数与总芽数的比值为 .【解析】由规律可以看出,从第3年开始,老芽率、新芽率,总芽率都分别是前两年之和,因此,第8年的老芽为21,总芽为34,因此答案为2134. 【解析】2134题型二:多边形上存在的点数【例6】如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .【解析】此类型题首先要找到边数的特点,然后找每条边上点的数目,第n 个图形是2n +边形,而且每个边上有n 个点。
【答案】(2)n n +或22n n +或2(1)1n +-【例7】用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子___________【答案】4n【例8】用“O”摆出如图所示的图案,若按照同样的方式构造图案,则第10个图案需要 个“O”.① ② ③ ④ 【答案】181第2个“口”第1个“口” 第3个“口”第n 个“口”………………第1个图形第2个图形第3个图形第4个图形题型三:藏头露尾型【例9】如下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.【解析】此类问题重点要找到“头是谁”“尾是谁”,①13+;②132+⨯;③133+⨯,……第n 个31n + 【答案】31n +【例10】搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②,图③的方式串起来搭建,则串7顶这样的帐篷需要 根钢管.图1 图2 图3【答案】83.题型四:成倍数变化型【例11】如图,ABC ∆中,90ACB ∠=︒,1AC BC ==,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与ABC ∆的BC 边重叠为止,此时这个三角形的斜边长为_____.【解析】注意每一次变化所变化的倍数 【答案】81;11(2)2n n - 【例12】如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,......依次作下去,图中所作的第三个四边形的周长为________; 所作的第n 个四边形的周长为_________________.【答案】2,24()2n【例13】如图,在ABC ∆中,A α∠=,ABC ∠的平分线与ACD ∠的平分线交于点1A ,得1A ∠,则1______A ∠=.1A BC ∠的平分线与1ACD ∠的平分线交于点2A ,得2A ∠,……,2009A BC ∠的平分线与2009A CD ∠的平分线交于点2010A ,得2010A ∠,则2010A ∠= .【答案】2α,20102α(1)(2)(3)……A 2A 1DC A【例14】如图,小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111A B C D ,正方形1111A B C D 的面积为 ; 再把正方形1111A B C D 的各边延长一倍得到正方形2222A B C D , 如此进行下去,正方形n n n n D C B A 的面积为 . (用含有n 的式子表示,n 为正整数)【答案】5,n5【例15】把一个正三角形分成四个全等的三角形,第一次挖去中间的一个小三角形,对剩下的三个小正三角形再重复以上做法……一直到第n 次挖去后剩下的三角形有 个.第一次 第二次 第三次 第四次【答案】3n题型五:相似与探究规律【例16】已知ABC AB AC m ∆==中,,72ABC ∠=︒,1BB 平分ABC ∠交AC 于1B ,过1B 作12B B //BC交AB 于2B ,作23B B 平分21AB B ∠,交AC 于3B ,过3B 作34//B B BC ,交AB 于4B ……依次进行下去,则910B B 线段的长度用含有m 的代数式可以表示为 .【答案】m 6215⎪⎪⎭⎫⎝⎛-【例17】如图,矩形纸片ABCD 中,6,10AB BC ==.第一次将纸片折叠,使点B 与点D 重合,折痕与BD交于点1O ;设1O D 的中点为1D ,第二次将纸片折叠使 点B 与点1D 重合,折痕与BD 交于点2O ;设21O D 的中点 为2D ,第三次将纸片折叠使点B 与点2D 重合,折痕与BD 交于点3O ,… .按上述方法折叠,第n 次折叠后的折痕与BD 交于点n O ,则1BO = ,n BO = .第一次折叠 第二次折叠 第三次折叠【答案】2;12332n n -- B AD C 1O 1O 2O 1D 1D 2D 1O 2O 3O B AD C B ADCBA DC【例18】如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线 交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于 点3A ,…,按此做法进行下去,点4A 的坐标为( , ); 点n A ( , ).【答案】(938,0)(1)332(-n ,0) 【例19】如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形1ABA ,再以等腰直角三角形1ABA 的斜边为直角边向外作第3个等腰直角三角形11A BB ,……,如此作下去,若1OA OB ==,则第n 个等腰直角三角形的面积n S = ________(n 为正整数).【解析】由题干可知:123124 (222)S S S ===,,可知22n n S -=【答案】22n -【例20】如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,…,1n n n B D C +∆的面积为n S ,则2S = ;n S =____ (用含n 的式子表示).【答案】233,31nn + 【例21】如图,P 为ABC ∆的边BC 上的任意一点,设BC a =,当1B 、1C 分别为AB 、AC 的中点时,1112B C a =,当2B 、2C 分别为1BB 、1CC 的中点时,2234B C a =,当3B 、3C 分别为2BB 、2CC 的中点时,3378B C a =,当4B 、4C 分别为3BB 、3CC 的中点时,441516B C a =当5B 、5C 分别为4BB 、4CC 的中点时,55_____B C =当n B 、n C 分别为1n BB -、1n CC -的中点时,则n n B C = ;设ABC ∆中BC 边上的高为h ,则n n PB C ∆的面积为______(用含a 、h 的式子表示).【答案】a 3231,a n n 212-, ah n n 12212+-D 4D 3D 2D 1C 5C 4C 3C 2C 1B 5B 4B 3B 2B 1A……B 2B 1A 1BOAC 3B 3B 2C 2C 1B 1CBA【例22】如图,在梯形ABCD 中,AB CD ∥,AB a =,CD b =,E 为边AD 上的任意一点,EF AB ∥,且EF 交BC 于点F .若E 为边AD 上的中点,则______EF =(用含有a ,b 的式子表示);若E 为边AD 上距点A 最近的n 等分点(2n ≥,且n 为整数),则______EF =(用含有n ,a ,b 的式子表示).【答案】2a b +;(1)b n an+-【例23】已知在ABC ∆中,BC a =.如图1,点1B 、1C 分别是AB 、AC 的中点,则线段11B C 的长是_______; 如图2,点1B 、2B ,1C 、2C 分别是AB 、AC 的三等分点,则线段1122B C B C +的值是__________;如图3, 点12......、、、n B B B ,12......、、、n C C C 分别是AB 、AC 的(1)n +等分点,则线段1122n n B C B C B C ++⋅⋅⋅+的值是 ______.【答案】1,2a a ,12na 【例24】已知:如图,在Rt ABC ∆中,点1D 是斜边AB 的中点,过点1D 作11D E AC ⊥于点1E ,连接1BE 交1CD 于点2D ;过点2D 作22D E AC ⊥于点2E ,连接2BE ,交1CD 于点3D ;过点3D 作33D E AC ⊥于点3E ,如此继续,可以依次得到点4D 、5D 、…n D , 分别记11BD E ∆、22BD E ∆、33BD E ∆、…n n BD E ∆的面积 为1S 、2S 、3S …n S .设ABC ∆的面积是1,则1______S =, ______n S =(用含n 的代数式表示).【答案】14,21(1)n +题型六:折叠与探究规律【例25】如图,将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .设2AB =,当12CE CD =时,则________AMBN=. 若1CE CD n =(n 为整数),则_______AM BN=.(用含n 的式子表示) 【答案】15;1)1(22+-n n【例26】如图,正方形ABCD ,E 为AB 上的动点,(E 不与A 、B 重合)连接DE ,作DE 的中垂线,交图3图2图12n-1B 2C 2A BCB 1C 1C 1B 1CBA FE D CBANMFEDCBAB321AD 于点F .⑴若E 为AB 中点,则______DFAE= ⑵若E 为AB 的n 等分点(靠近点A ),则________DFAE= 【答案】251,42n n+题型七:其他类型【例27】图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+3中线段AB 的长为 .图1 图2 图31+【例28】如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形34,,,,n P P P ,记纸板n P 的面积为n S ,试计算求出=-23S S ;并猜想得到1n n S S --=()2n ≥【答案】1)41(2,32---n ππ【例29】如图,图①是一块边长为1,周长记为1P 的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第)3(≥n n 块纸板的周长为n P ,则=-34P P ;1--n n P P = .P 3P 2P 1【答案】81,121-⎪⎭⎫⎝⎛n【例30】已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如图所示).当8n =时,共向外作出了 个小等边三角形;当n k =时,共向外作出了 个小等边三角形,这些小等边三角形的面积和是 (用含k 的式子表示).【答案】18; 【例31】在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(10),,点D 的坐标为(02),.延长CB 交x 轴于点1A ,作正方形111A B C C ;延长11C B 交x 轴于点2A ,作正方形2221A B C C …按这样 的规律进行下去,第3个正方形的面积为________;第n 个正方形的面积为___________(用含n 的代数式表示).【答案】4235)(,22235-⎪⎭⎫ ⎝⎛n【例32】如图所示,111()P x y ,、222()P x y ,,……()n n n P x y ,在函数4y x=(0x >)的图象上,11OP A ∆,212P A A ∆,323P A A ∆…1n n n P A A -∆都是等腰三角形,斜边1OA 、12A A …1n n A A -,都在x 轴上, 则1_____y =,12______n y y y ++⋅⋅⋅+=【答案】2 , 2n【例33】如图所示,直线1+=x y 与y 轴交于点1A ,以1OA 为边作正方形111OA B C ,然后延长11C B 与直线1+=x y 交于点2A ,得到第一个梯形112AOC A ;再以12C A 为边作正方形1222C A B C ,同样延长22C B 与直线1+=x y 交于点3A 得到第二个梯形2123A C C A ;,再以23C A 为边作正方形2333C A B C ,延长33C B ,得到第三个梯形;……则第2个梯形2123A C C A 的面积是 ;第n (n 是正整数)个梯形的面积是 (用含n 的式子表示).3(-2)k 23(2)k s k-n =3n =5……n =4① ② ③ ④C 2B 2A 2C 1B 1A 1DC B AO yx【答案】6;2n 2223-⨯或1n 423-⨯【例34】在平面直角坐标系中,我们称边长为1且顶点的横纵坐标均为整数的正方形为单位格点 正方形,如图,菱形ABCD 的四个顶点坐标分别是(80)-,,(04),,(80),,(04)-,,则菱形ABCD 能覆盖的单位格点正方形的个数是_______个;若菱形n n n n A B C D 的四个顶点坐标分别为(20)-,n , (0),n ,(20),n ,(0)-,n (n 为正整数), 则菱形n n n n A B C D 能覆盖的单位格点正方形的 个数为_________(用含有n 的式子表示).【答案】单位格点个数为48,单位格点个数为n n 442-【例35】在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形1111A B C D 、2222A B C D 、3333A B C D 每个正方形四条边上的整点的个数.按此规律推算出正方形10101010A B C D 四条边上的整点共有 个.【答案】80【例36】对于每个正整数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于n A ,n B 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示);112220112011A B A B A B +++的值为 .【答案】()20122011,11+n nyxOD 1D 2D 3C 1C 2C 3B 1B 2B 3A 3A 2A 1123-1-2-3-3-2-1321-8-448ODC BAyx。
中考数学选择、填空压轴题专题讲练(含答案)

. . ..“ . .初三中考数学压轴题专题选择题中的压轴题和一般选择题相比,具有综合性较强、数形兼备、解题方法多样化、充满思辨性等特点,要求学生综合运用多种知识解题,思维要有一定的广度和深度,并会运用多种不同的方法灵活解题.这类题目重点考察学生综合分析问题、解决问题的能力.解题方法:解答这类题目的方法除常用的直选法、观察法外,重点要掌握排除法和代入法根据题目条件从四个选项中逐次排除选项的方法,包括分析排除法和反例排除法两种若用一般方法不能 求解时,可采用代入法,就是根据题目的有关条件,采用某些特殊情况分析问题,或采用某些特殊值代入计算分析,或将题目中不易求解的字母用符合条件的某些具体的数字代入,化一般为特殊来分析问题,通常包括已知代入法、选项代入法和特殊值代入法等特别注意:这些方法在通常都是要 综合灵活运用,不能生搬硬套.填空题与选择题相比,没有选项,因此没有错误选项的干扰,但也就缺少了有关信息提示,给解题增加了一定难度,要求学生要有扎实、熟练的基础知识和基本技能还要灵活运用多种不同的解 题方法.解题方法:解答填空题常用的方法有直接求解法、数形结合法、构造法、分类讨论法与转化法等.直接求解法就是从已知出发,逐步计算推出未知的方法,或者说由 因”索“果”的方法.很多题目都需要将题目中的条件与相关图形或图象结合起来考察,这就是数形结合法有时在分析解题过程中所 需要或所缺少的有关条件可通过作辅助线或建立模型等方法来解决问题的方法就是构造法 .在题目的相关条件或信息不够明确具体时,则应分情况求解,也就是分类讨论法.把不易解决的问题或难点,通过第三个等价的量,转化为已知的或易于解决的问题来解题的方法就是转化法苏州市中考真题赏析1.(2014•苏州)如图,△AOB 为等腰三角形,顶点 A 的坐标(2,),底边 OB 在 x 轴上.将△AOB 绕点 B 按顺时针方向旋转一定角度后得△A ′O ′B ′,点 A 的对应点 A ′在 x 轴上,则点 O ′的坐标为()A . (,)B . (,)C . (,)D . (,4)(第 1 题)(第 2 题)2.(2015•苏州)如图,在一笔直的海岸线 l 上有 A 、B 两个观测站,AB =2km ,从 A 测得船 C 在北( )( )(偏东 45°的方向,从 B 测得船 C 在北偏东 22.5°的方向,则船 C 离海岸线 l 的距离(即 CD 的长)为()A . 4 kmB . 2 + 2 km C. 2 2 km D . 4 - 2 km3.(2016•苏州)9.矩形 OABC 在平面直角坐标系中的位置如图所示,点 B 的坐标为(3,4),D是 OA 的中点,点 E 在 AB 上,当△ CDE 的周长最小时,点 E 的坐标为()A .(3,1)B .(3, )C .(3, )D .(3,2)(第 3 题)(第 4 题)4.(2016•苏州)如图,在四边形 ABCD 中,∠ABC =90°,AB =BC =2,E 、F 分别是 AD 、CD 的中点,连接 BE 、BF 、EF .若四边形 ABCD 的面积为 6△,则BEF 的面积为()A .2B .C .D .35.如图,在矩形 ABCD 中,= ,以点 B 为圆心,BC 长为半径画弧,交边 AD 于点 E .若 AE •ED = ,则矩形 ABCD 的面积为.(第 5 题)(第 6 题)6.如图,直线 l 与半径为 4 的⊙O 相切于点 A ,P 是⊙O 上的一个动点(不与点 A 重合),过点 P作 PB ⊥l ,垂足为 B ,连接 P A .设 P A =x ,PB =y ,则(x ﹣y )的最大值是.7△.如图,在 ABC 中,CD 是高,CE 是中线,CE =CB ,点 A 、D 关于点 F 对称,过点 F 作 FG ∥CD ,交 AC 边于点 G ,连接 GE .若 AC =18,BC =12,则△CEG 的周长为.8. 3 分)(2015•苏州)如图,四边形 A BCD 为矩形,过点 D 作对角线 BD 的垂线,交 BC 的延长线于点 E ,取 BE 的中点 F ,连接 DF ,DF =4.设 AB =x ,AD =y ,则 x 2 + ( y - 4)2 的值为.B ⊥A3 x9.如图,在△ ABC 中,AB =10,∠B =60°,点 D 、E 分别在 AB 、BC 上,且 BD =BE =4△,将 BDE 沿DE 所在直线折叠得到△ B ′DE (点 B ′在四边形 ADEC 内),连接 AB ′,则 AB ′的长为.(第 9 题)(第 10 题)10.如图,在平面直角坐标系中,已知点 A 、B 的坐标分别为(8,0)、(0,2),C 是 AB 的中点,过点 C 作 y 轴的垂线,垂足为 D ,动点 P 从点 D 出发,沿 DC 向点 C 匀速运动,过点 P作 x 轴的垂线,垂足为 E ,连接 BP 、EC .当 BP 所在直线与 EC 所在直线第一次垂直时,点 P的坐标为.模拟试题演练:1. (蔡老师模拟)如图,反比例函数 y =kx(x >0)的图象经过矩形 OABC 对角线的交点 M ,分别与 AB 、BC 交于点 D 、E ,若四边形 ODBE 的面积为 9,则 k 的值为……………()A.1B.2C.3D.4yCEBMkD y= (x >0)xOA x(第 1 题) (第 2 题)32.(2016•太仓模拟)如图,点 A 在反比例函数 y = - ( x < 0) 的图像上移动,连接 OA ,作 O O x,并满足 ∠OAB = 30︒ .在点 A 的移动过程中,追踪点 B 形成的图像所对应的函数表达式为( )A. y = 3 1 1( x > 0) ; B. y = ( x > 0) ; C. y = ( x > 0) ; D. y = ( x > 0)x x 3x3. (2016•太仓模拟)如图,在 ∆ABC 中,AB =4, D 是 AB 上的一点(不与点 A 、B 重合),DE // BC ,交 AC 于点 E ,则SS∆DEC 的最大值为 .∆ABCA.-5.0<t≤5时,y=cos∠CBE=4(第3题)(第4题)4.(2016•苏州模拟)如图,OA在x轴上,OB在y轴上,OA=4,OB=3,点C在边OA上,kAC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)x的图象经过圆心P,则k的值是()55B.-C.-D.-24325.(2016•苏州模拟)如图,∆ABC中,AB=2,AC=4,将∆ABC绕点C按逆时针方向旋转得到∆A'B'C,使AB//B'C,分别延长AB、CA'相交于点D,则线段BD的长为.6.(2016•苏州模拟)如图,CA⊥AB,DB⊥AB,己知AC=2,AB=6,点P射线BD上一动点,以CP为直径作⊙O,点P运动时,若⊙O与线段AB有公共点,则BP最大值为.7.(2016•苏州模拟)如图(1)所示,E为矩形ABCD的边AD上一点动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE-ED-DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,∆BPQ的面积为y cm2已知y与t的函数关系图象如图(2)(其中曲线O G为抛物线的一部分,其余各部分均为线段),则下列结论:①4t2;当t=6秒时,∆ABE≌∆PQB;5②29;当t=秒时,∆ABE∽∆QBP;52③段NF所在直线的函数关系式为:y=-4x+96.其中正确的是.(填序号)参考答案1.考点:坐标与图形变化---旋转.分析:过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,根据点A的坐标求出OC、AC,再利用勾股定理列式计算求出OA,根据等腰三角形三线合一的性质求出OB,根据旋转的性质可得BO′=OB,∠A′BO′=∠ABO,然后解直角三角形求出O′D、BD,再求出OD,然后写出点O′的坐标即可.解答:解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(2,),∴OC=2,AC=,由勾股定理得,OA===3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4×=,BD=4×=,∴OD=OB+BD=4+=,∴点O′的坐标为(,).故选C.点评:本题考查了坐标与图形变化﹣旋转,主要利用了勾股定理,等腰三角形的性质,解直角三角形,熟记性质并作辅助线构造出直角三角形是解题的关键.(第1题)(第2题)2.考点:解直角三角形的应用-方向角问题.分析:根据题意在CD上取一点E,使BD=DE,进而得出EC=BE=2,再利用勾股定理得出DE 的长,即可得出答案.解答:解:在CD上取一点E,使BD=DE,可得:∠EBD=45°,AD=DC,∵从B测得船C在北偏东22.5°的方向,∴∠BCE=∠CBE=22.5°,∴BE=EC,∵AB=2,∴EC=BE=2,∴BD=ED=,∴DC=2+.故选:B.点评:此题主要考查了解直角三角形的应用,得出BE=EC=2是解题关键.3.【考点】矩形的性质;坐标与图形性质;轴对称-最短路线问题.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.(第3题)(第4题)4.【考点】三角形的面积.【分析】连接AC,过B作EF的垂线,利用勾股定理可得AC,易得△ABC的面积,可得BG△和ADC 的面积,三角形ABC与三角形ACD同底,利用面积比可得它们高的比,而GH△又是ACD以AC为底的高的一半,可得GH,易得BH,由中位线的性质可得EF的长,利用三角形的面积公式可得结果.【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥△AC,∴ABG△,BCG为等腰直角三角形,∴AG=BG=2。
中考数学填空题压轴题精选(含答案),初中数学50道经典难题汇总及答案解析

名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
中考数学专题突破一:填空压轴题型(含答案)

专题突破(一) 填空压轴题型1. 阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.图Z1-1求作:线段AB 的垂直平分线.小芸的作法如下:如图,图Z1-2(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于C ,D 两点; (2)作直线CD .所以直线CD 就是的所求作的垂直平分线.老师说:“小芸的作法正确.”请回答:小芸的作图依据是______________________.2. 在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的伴随点,已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,这样依次得到点A 1,A 2,A 3…,A 4…,若点A 1的坐标为(3,1),则点A 3的坐标为________,点A 2014的坐标为________;若点A 1的坐标为(a ,b ),对于任意正整数n ,点A n 均在x 轴上方,则a ,b 应满足的条件为__________________.3. 如图Z1-3,在平面直角坐标系xOy 中,已知直线l :t =-x -1,双曲线y =1x.在l 上取点A 1,过点A 1作x 轴的垂线交双曲线于点B 1,过点B 1作y 轴的垂线交l 于点A 2,请继续操作并探究:过点A 2作x 轴的垂线交双曲线于点B 2,过点B 2作y 轴的垂线交l 于点A 3,…,这样依次得到l 上的点A 1,A 2,A 3,…,A n ,….记点A n 的横坐标为a n ,若a 1=2,则a 2=________,a 2013=________;若要将上述操作无限次地进行下去,则a 1不能取...的值是________图Z1-34. 在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点,已知点A (0,4),点B 是x 轴正半轴上的整点,记△AOB 内部(不包括边界)的整点个数为m .当m =3时,点B 的横坐标的所有可能值是________;当点B 的横坐标为4n (n 为正整数)时,m =________________(用含n 的代数式表示).图Z1-45. 在下表中,我们把第i 行第j 列的数记为a i ,j (其中i ,j 都是不大于5的正整数),对于表中的每个数a i ,j 规定如下:当i ≥j 时,a i ,j =1;当i <j 时,a i ,j =0.例如:当i =2,j =1时,a i ,j =a 2,1=1.按此规定,a 1,3=________;表中的25个数中,共有______个1;计算a 1,1·a i ,1+a 1,2·a i ,2+a 1,3·a i ,3+a 1,4·a i ,4+a 1,5·a i ,5的值为________.一、与数与式有关的规律探究1.模] 一组按规律排列的式子:2a ,-5a 2,10a 3,-17a 4,26a5,…,其中第7个式子是________,第n 个式子是________(用含n 的式子表示,n 为正整数).二、与图形有关的规律探究2.模] 如图Z1-5,数轴上点A 的初始位置表示的数为1,现点A 做如下移动:第1次点A 向左移动3个单位长度至点A 1,第2次从点A 1向右移动6个单位长度至点A 2,第3次从点A 2向左移动9个单位长度至点A 3,…,按照这种移动方式进行下去,点A 4表示的数是________,如果点A n 与原点的距离不小于20,那么n 的最小值是________.图Z1-53.一模] 如图Z1-6,点E ,D 分别是正三角形ABC 、正四边形ABCM 、正五边形ABCMN 中以C 点为顶点的一边延长线和另一边延长线上的点,且BE =CD ,DB 的延长线交AE 于点F ,则图①中∠AFB 的度数为________;若将条件“正三角形、正四边形、正五边形”改为“正n 边形”,其他条件不变,则∠AFB 的度数为________.(用含n 的代数式表示,其中,n ≥3且n 为整数)图Z1-64.一模]已知:四边形ABCD的面积为1.如图Z1-7①,取四边形ABCD各边的中点,则图中阴影部分的面积为________;如图Z1-7②,取四边形ABCD各边的三等分点,则图中阴影部分的面积为________;…;取四边形ABCD各边的n(n为大于1的整数)等分点,则图中阴影部分的面积为________.图Z1-7三、平面直角坐标系中的规律探究5.一模]在平面直角坐标系xOy中,已知直线l:y=x,作A1(1,0)关于直线y=x的对称点B1,将点B1向右平移2个单位得到点A2;再作A2关于直线y=x的对称点B2,将点B2向右平移2个单位得到点A3;….请继续操作并探究:点A3的坐标是________,点B2014的坐标是________.6.模]如图Z1-8,在平面直角坐标系中放置了5个正方形,点B1(0,2)在y轴上,点C1,E1,E2,C2,E3,E4,C3在x轴上,C1的坐标是(1,0),B1C1∥B2C2∥B3C3.则点A1到x 轴的距离是________,点A2到x轴的距离是________,点A3到x轴的距离是________.图Z1-87.模]在平面直角坐标系xOy中,记直线y=x+1为l.点A1是直线l与y轴的交点,以A1O为边作正方形A1OC1B1,使点C1落在x轴正半轴上,作射线C1B1交直线l于点A2,以A2C1为边作正方形A2C1C2B2,使点C2落在x轴正半轴上,依次作下去,得到如图Z1-9所示的图形.则点B4的坐标是________,点B n的坐标是________.图Z1-98.模]如图Z1-10,已知直线l:y=33x,点A1坐标为(0,1),过点A1作y轴的垂线交直线l 于点B 1,以原点O 为圆心,OB 1长为半径画弧交y 轴于一点A 2;再过点A 2作y 轴的垂线交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画弧交y 轴于点A 3,…,按此作法进行下去,点A 4的坐标为(________,________);点A n 的坐标为(________,________).图Z1-109.模] 如图Z1-11,所有正三角形的一边平行于x 轴,一顶点在y 轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A 1,A 2,A 3,A 4,…表示,其中x 轴与边A 1A 2,边A 1A 2与A 4A 5,A 4A 5与A 7A 8,…均相距一个单位长度,则顶点A 3的坐标为________,A 31的坐标为________,A 3n -2(n 为正整数)的坐标为________.图Z1-1110.模] 如图Z1-12,在反比例函数y =4x(x ≥0)的图象上,有点P 1,P 2,P 3,P 4,…,P n (n 为正整数,且n ≥1),它们的横坐标依次为1,2,3,4,…,n (n 为正整数,且n ≥1).分别过这些点作x 轴与y 轴的垂线,连接相邻两点,图中所构成的阴影部分(近似看成三角形)的面积从左到右依次为S 1,S 2,S 3,…,S n -1(n 为正整数,且n ≥2),那么S 1+S 2+S 3=________,S 1+S 2+S 3+S 4+…+S n -1=________(用含有n 的代数式表示).图Z1-1211.模] 如图Z1-13,在平面直角坐标系中,已知点P 0的坐标为(1,0),将线段OP 0绕点O 按顺时针方向旋转45°,再将其长度伸长为OP 0的2倍,得到线段OP 1;又将线段OP 1绕点O 按顺时针方向旋转45°,再将其长度伸长为OP 1的2倍,得到线段OP 2,…,这样依次得到线段OP 3,OP 4,…,OP n .则点P 2的坐标为________;当n =4m +1(m 为自然数)时,点P n 的坐标为________________.图Z1-1312.模] 如图Z1-14,在平面直角坐标系xOy 中,点A (1,0),B (2,0),正六边形ABCDEF 沿x 轴正方向无滑动滚动,当点D 第一次落在x 轴上时,点D 的坐标为________;在运动过程中,点A 的纵坐标的最大值是________;保持上述运动过程,经过点(2014,3)的正六边形的顶点是________.图Z1-1413.模] 如图Z1-15,已知A 1,A 2,…,A n ,A n +1在x 轴上,且OA 1=A 1A 2=A 2A 3=…=A n A n +1=1,分别过点A 1,A 2,…,A n ,A n +1作x 轴的垂线交直线y =x 于点B 1,B 2,…,B n ,B n +1,连接A 1B 2,B 1A 2,A 2B 3,B 2A 3,…,A n B n +1,B n A n +1,依次相交于点P 1,P 2,P 3,…,P n ,△A 1B 1P 1,△A 2B 2P 2,…,△A n B n P n 的面积依次记为S 1,S 2,…,S n ,则S 1=________,S n =________.图Z1-15四、定义新运算14.模] 现定义运算“★”,对于任意实数a ,b ,都有a ★b =a 2-3a +b ,如:3★5=32-3×3+5,根据定义的运算求2★(-1)=________.若x ★2=6,则实数x 的值是________.15.模] 定义:对于任意一个不为1的有理数a ,把11-a称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数为11-(-1)=12.记a 1=12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,则a 2=________,a 2015=________.16.模] 若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC 是等径三角形,则等径角的度数为________.17.模] 在一次数学游戏中,老师在A ,B ,C 三个盘子里分别放了一些糖果,糖果数依次为a 0,b 0,c 0,记为G 0=(a 0,b 0,c 0).游戏规则如下:若三个盘子中的糖果数不完全相同,则从糖果数最多的一个盘子中拿出两个,给另外两个盘子各放一个(若有两个盘子中的糖果数相同,且都多于第三个盘子中的糖果数,则从这两个盘子字母序在前的盘子中取糖果),记为一次操作.若三个盘子中的糖果数都相同,则游戏结束.n 次操作后的糖果数记为G n =(a n ,b n ,c n ).(1)若G 0=(4,7,10),则第________次操作后游戏结束;(2)小明发现:若G 0=(4,8,18),则游戏永远无法结束,那么G 2014=________.18.拟] 对于正整数n ,定义F (n )=⎩⎪⎨⎪⎧n 2,n <10f (n ),n ≥10,其中f (n )表示n 的首位数字、末位数字的平方和.例如:F (6)=62=36,F (123)=f ()123=12+32=10.规定F 1(n )=F (n ),F k +1(n )=F (F k (n ))(k 为正整数).例如:F 1()123=F ()123=10,F 2(123)=F (F 1(123))=F (10)=1.(1)求:F 2(4)=________,F 2015(4)=________;(2)若F 3m (4)=89,则正整数m 的最小值是________.19.模] 五子棋是一种两人对弈的棋类游戏,规则是:在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子者为胜.如图Z1-16,这一部分棋盘是两个五子棋爱好者的对弈图.观察棋盘,以点O 为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点,若黑子A 的坐标为(7,5),则白子B 的坐标为________;为了不让白方在短时间内获胜,此时黑方应该下在坐标为________的位置处.图Z1-16参考答案1.2.(-3,1) (0,4) -1<a <1且0<b <2[解析] ∵A 1的坐标为(3,1),∴A 2(0,4),A 3(-3,1),A 4(0,-2),A 5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2014÷4=503……2,∴点A 2014的坐标与A 2的坐标相同,为(0,4);∵点A 1的坐标为(a ,b ),∴A 2(-b +1,a +1),A 3(-a ,-b +2),A 4(b -1,-a +1),A 5(a ,b ),…,以此类推,每4个点为一个循环组依次循环,∵对于任意的正整数n ,点A n 均在x 轴上方,∴⎩⎪⎨⎪⎧a +1>0,-a +1>0,⎩⎪⎨⎪⎧-b +2>0,b >0, 解得-1<a <1,0<b <2.3.-32 -13 0,-1 [解析] 当a 1=2时,B 1的纵坐标为b 1=12, B 1的纵坐标和A 2的纵坐标相同,则A 2的横坐标为a 2=-32, A 2的横坐标和B 2的横坐标相同,则B 2的纵坐标为b 2=-23, B 2的纵坐标和A 3的纵坐标相同,则A 3的横坐标为a 3=-13, A 3的横坐标和B 3的横坐标相同,则B 3的纵坐标为b 3=-3,B 3的纵坐标和A 4的纵坐标相同,则A 4的横坐标为a 4=2,A 4的横坐标和B 4的横坐标相同,则B 4的纵坐标为b 2=12, 即当a 1=2时,a 2=-32,a 3=-13,a 4=2,a 5=-32, b 1=12,b 2=-23,b 3=-3,b 4=12,b 5=-23, ∵20133=671,∴a 2013=a 3=-13; 点A 1不能在y 轴上(此时找不到B 1),即x ≠0,点A 1不能在x 轴上(此时A 2在y 轴上,找不到B 2),即y =-x -1≠0,解得x ≠-1.综上可得a 1不可取0,-1.4.3或4 6n -3 [解析] 如图:当点B 在(3,0)点或(4,0)点时,△AOB 内部(不包括边界)的整点为点(1,1),(1,2),(2,1),共三个点,所以当m =3时,点B 的横坐标的所有可能值是3或4.当点B 的横坐标为8时,n =2,△AOB 的内部(不包括边界)的整点个数m =(4×2+1-2)×3-32=9. 当点B 的横坐标为12时,n =3,△AOB 的内部(不包括边界)的整点个数m =(4×3+1-2)×3-32=15. 所以当点B 的横坐标为4n (n 为正整数)时,m =(4×n +1-2)×3-32=6n -3. 5.0 15 1 [解析] 由题意当i <j 时,a i ,j =0,当i ≥j 时,a i ,j =1;由图表中可以很容易知道等于1的数有15个.由题意,很容易发现,从i 与j 之间大小关系分析:当i <j 时,a i ,j =0;当i ≥j 时,a i ,j =1,∴a 1,1·a ,+a ,·a ,+a ,·a ,+a ,·a ,+a ,·a ,=1×1+0+0+0+0=1.一、与数与式有关的规律探究1.50a 7 (-1)n +1·n 2+1an [解析] 观察分母的变化为a 的1次幂、2次幂、3次幂、…、n 次幂;分子的变化为:2,5,10,17,…,n 2+1;分式符号的变化为:+,-,+,-,…,(-1)n +1.∵2a =(-1)2·12+1a1, -5a 2=(-1)3·22+1a2, 10a 3=(-1)4·32+1a3, …∴第7个式子是50a7,第n 个式子为:(-1)n +1·n 2+1a n . 二、与图形有关的规律探究2.7 13 [解析] 序号为奇数的点在点A 的左边,各点所表示的数依次减少3,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,于是可得到A 13表示的数以及A 12表示的数,则可判断A n 与原点的距离不小于20时n 的最小值.第1次点A 向左移动3个单位长度至点A 1,则A 1表示的数为1-3=-2; 第2次点A 1向右移动6个单位长度至点A 2,则A 2表示的数为-2+6=4; 第3次点A 2向左移动9个单位长度至点A 3,则A 3表示的数为4-9=-5; 第4次点A 3向右移动12个单位长度至点A 4,则A 4表示的数为-5+12=7. 第5次点A 4向左移动15个单位长度至点A 5,则A 5表示的数为7-15=-8; …则点A 7表示的数为-8-3=-11,点A 9表示的数为-11-3=-14,A 11表示的数为-14-3=-17,A 13表示的数为-17-3=-20,A 6表示的数为7+3=10,A 8表示的数为10+3=13,A 10表示的数为13+3=16,A 12表示的数为16+3=19,所以如果点A n 与原点的距离不小于20,那么n 的最小值是13.3.60° (n -2)·180°n[解析] (1)在①中的正三角形ABC 中,AB =BC ,∠ABC =∠ACB =60°,∴∠ABE =∠BCD =120°,又∵BE =CD ,∴△ABE ≌△BCD ,∴∠E =∠D ,又∵∠FBE =∠CBD ,∴∠AFB =∠E +∠FBE =∠D +∠CBD =∠ACB =60°.由以上不难得到②中△AEB ≌△BDC ,进一步证出③中△BEF ∽△BDC ,得出,②中∠AFB 的度数等于∠DCB =90°,同理可得③中∠AFB 度数等于∠BCM =108°.(2)由正三角形、正四边形、正五边形时,∠AFB 的度数分别为60°,90°,108°,可得出正n 边形中,其他条件不变,则∠AFB 的度数为(n -2)·180°n. 4.12 79 1-2n 2 [解析] 如图①,连接AC ,BD.∵点A 1,D 1是边AB ,AD 的中点,∴A 1,D 1是△ABD 的中位线,∴A 1D 1∥BD ,A 1D 1=12BD , ∴△AA 1D 1∽△ABD ,∴S △AA 1D 1S △ABD=⎝⎛⎭⎫A 1D 1BD 2=14, ∴S △AA 1D 1=14S △AB D . 同理,S △CB 1C 1=14S △BCD ,S △BA 1B 1=14S △ABC ,S △DD 1C 1=14S △ACD , ∴S 阴影=S 四边形ABCD -(S △AA 1D 1+S △CB 1C 1+S △BA 1B 1+S △DD 1C 1)=1-14(S △ABD+S △BCD +S △ABC +S △ACD )=1-24S 四边形ABCD =1-12=12. 如图②同理可得S 阴影=1-19(S △ABC +S △BCD +S △ABC +S △ACD )=1-29S 四边形ABCD =1-29=79. 当取四边形ABCD 各边的n (n 为大于1的整数)等分点时,则S 阴影=1-1n 2(S △ABD +S △BCD +S △ABC +S △ACD )=1-2n 2S 四边形ABCD =1-2n 2. 三、平面直角坐标系中的规律探究5.(3,2) (2013,2014) [解析] 根据题意画出图象,进而得出各点坐标变化规律进而得出答案.如图所示:点A 3的坐标是(3,2),∵B 1(0,1),B 2(1,2),B 3(2,3),∴B 点横坐标比纵坐标小1,∴点B 2014的坐标是:(2013,2014).故答案为:(3,2),(2013,2014).6.3 32 347.(15,8) (2n -1,2n -1) [解析] 根据一次函数,得出点A 1,A 2的坐标,继而得知B 1,B 2等点的坐标,从中找出规律,进而可求出B n 的坐标.把x =0代入y =x +1,可得y =1,所以可得点B 1的坐标是(1,1).把x =1代入直线y =x +1,可得y =2,所以可得点B 2的坐标是(3,2),同理可得点B 3的坐标是(7,4);点B 4的坐标是(15,8);由以上得出规律是B n 的坐标为(2n -1,2n -1).[点评] 本题考查了正方形的性质,解此题的关键是根据一次函数的图象上点的坐标得出规律,题目比较好,但是一道比较容易出错的题目.8.0 8 0 2n -1 [解析] 已知直线y =33x ,点A 1坐标为(0,1),过点A 1作y 轴的垂线交直线l 于点B 1,可知B 1点的坐标为(3,1),以原点O 为圆心,OB 1长为半径画弧交y 轴于点A 2,OA 2=OB 1=2OA 1=2,点A 2的坐标为(0,2),这种方法可求得B 2的坐标为(2 3,2),故点A 3的坐标为(0,4),点A 4的坐标为(0,8),此类推便可求出点A n 的坐标为(0,2n -1).9.(0,1-3) (-11,11) (-n ,n ) [解析] ∵从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A 1,A 2,A 3,A 4,…表示,其中x 轴与边A 1A 2,边A 1A 2与A 4A 5,A 4A 5与A 7A 8,…均相距一个单位长度, ∴A 1A 2=2,A 1E =1,A 1(-1,1),∴EA 3=3,则OA 3=3-1,则顶点A 3的坐标为:(0,1-3).同理可得出:A 4(-2,2),A 7(-3,3),…∵4=2×3-2,7=3×3-2,10=4×3-2,…,31=11×3-2,∴A 31的坐标为:(-11,11),∴A 3n -2(n 为正整数)的坐标为(-n ,n ).10.32 2-2n[解析] 当x =1时,P 1的纵坐标为4, 当x =2时,P 2的纵坐标为2,当x =3时,P 3的纵坐标为43, 当x =4时,P 4的纵坐标为1,当x =5时,P 5的纵坐标为45, …则S 1=12×1×(4-2)=1=2-1; S 2=12×1×(2-43)=13=1-23; S 3=12×1×(43-1)=16=23-24; ∴S 1+S 2+S 3=2-1+1-23+23-24=2-24=32; S 4=12×1×(1-45)=110=24-25; …S n -1=2n -1-2n; ∴S 1+S 2+S 3+S 4+…+S n -1=2-1+1-23+23-24+…+2n -1-2n=2-2n. 故答案为32,2-2n .11.(0,-4) (-2·2n -1,2·2-)(m 为正奇数)或(2·2n -1,-2·2n -1)(m 为0和正偶数) [解析] 根据点P 0坐标可求出OP 0,然后分别求出OP 1,OP 2,OP 3,OP 4,…,OP n ,再根据点P 2在y 轴负半轴上写出P 2的坐标即可;分n 是正奇数和n 是0和正偶数两种情况确定出点P n 所在的象限,然后根据等腰直角三角形的性质写出坐标即可,∵P 0的坐标为(1,0),∴OP 0=1.∴OP 1=2,OP 2=2×2=22,OP 3=22×2=23,OP 4=23×2=24,…,OP n =2n -1×2=2n .∵每次旋转45°,点P 0在x 轴正半轴上,∴点P 2在y 轴负半轴上.∴点P 2的坐标为(0,-4).∵OP n 为所在象限的平分线,①m 为正奇数时,点P n 在第二象限,②m 为0和正偶数时,点P n 在第四象限. 综上所述,点P n 的坐标为(-2·2n -1,2·2n -1)(m 为正奇数), (2·2n -1,-2·2n -1)(m 为0和正偶数)12.(4,0) 2 A 或C [解析] ∵点A (1,0),B (2,0),∴OA =1,OB =2,∴正六边形的边长为:AB =1,∴当点D 第一次落在x 轴上时,OD =2+1+1=4,此时点D 的坐标为:(4,0).如图所示:当滚动到A ′D ⊥x 轴时,E ,F ,A 的对应点分别是E ′,F ′,A ′,连接 A ′D ,过点F ′,E ′作F ′G ⊥A ′D ,E ′H ⊥A ′D ,垂足分别为G ,H ,∵六边形ABCDEF 是正六边形,∴∠A ′F ′G =30°,∴A ′G =12A ′F ′=12,同理可得:HD =12, ∴A ′D =2,∴在运动过程中,点A 的纵坐标的最大值是2.∵正六边形滚动6个单位长度时正好滚动一周,∴A 点从点(1,0)开始到点(2014,3),正六边形正好滚动2013个单位长度. ∵20136=335……3, ∴恰好滚动335周多3个,A ′点的纵坐标为3,∴会过点(2014,3)的是点A ,当点E 在(2014,0)位置时,则点F 在(2015,0)位置,此时C 点在E 点的正上方,CE =3,所以C 点也符合题意. 13.16 n 24n +2[解析] ∵A 1,A 2,A 3,…,A n ,A n +1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n +1=1,分别过点A 1,A 2,A 3,…,A n ,A n +1作x 轴的垂线交直线y =x 于点B 1,B 2,…,B n ,B n +1,∴依题意得:B 1(1,1),B 2(2,2),B 3(3,3),…,B n (n ,n ).∵A 1B 1∥A 2B 2,∴△A 1B 1P 1∽△B 2A 2P 1,∵A 1B 1A 2B 2=12, ∴△A 1B 1P 1与△A 2B 2P 1对应高的比为1∶2.∵A 1A 2=1,∴A 1B 1边上的高为13, ∴S △A 1B 1P 1=13×1×12=16, 同理可得:S △A 2B 2P 2=25,S △A 3B 3P 3=914, ∴S n =n 24n +2. 故答案为16,n 24n +2.四、定义新运算14.-3 -1或4 [解析] ∵a ★b =a 2-3a +b ,x ★2=6,∴x 2-3x +2=6,解得x =-1或x =4.15.2 2 [解析] 首先根据a 1=12,可得a 2=11-a 1=11-12=2,a 3=11-a 2=11-2=-1,a 4=11-a 3=11-(-1)=12,…,所以这列数是12,2,-1,12,2,-1,…,每3个数是一个循环,然后用2015除以3,求出一共有多少个循环,还剩下几个数,进而判断出a 2015的值是多少即可.16.30°或150° [解析] 根据边长等于半径时,边长所对的圆心角为60°,根据圆周角与圆心角的关系和圆内接四边形的性质求出等径角的度数.如图,边AB 与半径相等时,则∠AOB =60°,当等径角的顶点为C 时,∠C =12∠AOB =30°, 当等径角顶点为D 时,∠C +∠D =180°,∠D =150°,故答案为:30°或150°.17.(1)3 (2)(11,9,10) [解析] (1)若G 0=(4,7,10),第一次操作结果为G 1=(5,8,8),第二次操作结果为G 2=(6,6,9),第三次操作结果为G 3=(7,7,7),所以经过3次操作后游戏结束.(2)若G 0=(4,8,18),则G 1=(5,9,16),G 2=(6,10,14),G 3=(7,11,12),G 4=(8,12,10),G 5=(9,10,11),G 6=(10,11,9),G 7=(11,9,10),G 8=(9,10,11),G 9=(10,11,9),G 10=(11,9,10),…由此看出从G 5开始3个一循环,(2014-4)÷3=670,所以G 2014与G 7相同,也就是(11,9,10).18.(1)37 26 (2)6 [解析] 通过观察前8个数据,可以得出规律,这些数字7个一循环,根据这些规律计算即可.(1)F 2(4)=F (F 1(4))=F (16)=12+62=37;F 1(4)=F (4)=16,F 2(4)=37,F 3(4)=58,F 4(4)=89,F 5(4)=145,F 6(4)=26,F 7(4)=40,F 8(4)=16,…,通过观察发现,这些数字7个一个循环,2015是7的287倍余6,因此F 2015(4)=F 6(4)=26.(2)由(1)知,这些数字7个一个循环,F 4(4)=89=F 18(4),因此3m =18,所以m =6.19.(5,1) (3,7)或(7,3)[解析] 根据题意得,白子点B 的坐标为(5,1).因为白方已把(4,6),(5,5),(6,4)三点凑在一条直线上,黑方只有在此三点两端任加一点即可保证不会让白方在短时间内获胜,即位置(3,7)或(7,3).。
九年级数学选择填空压轴题训练含答案

九年级数学综合训练一、选择题(本大题共9小题,共27.0分)yxlyxlxAyBl,交交+3,轴于点:=-3轴于点+9,:直线=-3,条直线为2如图,在平面直角坐标系中1.112lxDBxlCAEyyaxbxc2+,点=、直线轴的平行线交交于点轴于点轴对称,抛物线,过点关于作+22EBC三点,下列判断中:过、、abcabcxbcS=5,,+ =5;③抛物线关于直线①);⑤-=1+;②2=0对称;④抛物线过点(+ABCD四边形其中正确的个数有()A. B. C. D. 25 3 4个不同的正偶数按下图排列,箭头上如图,102.,方的每个数都等于其下方两数的和,如aaaa)表示 =的最小值为(+ ,则1123A. 32B. 36C. 38D. 40xBMyyxxyA)的图象上位于直线上方的(=是反比例函数-6分别交0轴,轴于>,=如图,直线,3.BDDACABCMDMCABkMCx=4于,,轴交⊥于,则一点,的值为()交∥?D.B.A.C.xOy45°角的直角三角板如图放置,直角中,将一块含有在平面直角坐标系4.BCA恰好落在第一),顶点0,的坐标为(1,0),顶点2顶点的坐标为(Ax恰好落在该象限的双曲线上,现将直角三角板沿轴正方向平移,当顶点CC)′的坐标为(双曲线上时停止运动,则此时点的对应点D.A.B.C.ECDADEBCABCDABE顺时针如图,在矩形边的中点,将△中,<为,绕点5.BCAFFEMEADC交,过点⊥的对应点为180°,点旋转作的对应点为,点NBDMAM,现有,连接、交于点于点下列结论:MCADAM +;①=BMAMDE②=;+CMDEAD2;?=③.NABM的外心.④点为△其中正确的个数为()A. B. C. D. 4个3个2个 1个bxca2axx≠0)有两个实数根,且其中一个根是另一个根的2+=0+(的一元二次方程规定:如果关于 6.倍,则称这样的方程为“倍根方程”.现有下列结论:xx2-8=0是倍根方程;①方程+2xxaxa2=±3;的方程 +2=0+②若关于是倍根方程,则xaxaxcayaxaxcx22轴的公共点的坐标是(2≠0)是倍根方程,则抛物线③若关于+的方程=,-6与+(=0-60)和(4,0);xmxxmnyn2=0)在反比例函数是倍根方程.+5=的图象上,则关于④若点(的方程,+上述结论中正确的有()A.B.C.D.ABCDEFDABABDE,则下列结论成立的个数是(如图,六边形=的内角都相等,∠)=60°,7.ACDFBCAFCDDEABEFAD是;③;④四边形①∥∥;②=∥ABCDEF既是中心对称图形,又是轴平行四边形;⑤六边形对称图形.D. A. B. C. 54 3 2ABCCABCRtABC的一边为边画等腰三角形,使得它的第三个顶点在△△=90°,以△如图,在中,∠8.)的其他边上,则可以画出的不同的等腰三角形的个数最多为(D. C. B. A. 76 5 4EABCDBDECFABCDAE的于点平分∠⊥,如图,矩形,交中, 9.CADBCCDBAEF;=4,=∠=2延长线于点,给出下列结论:①∠,且AFDBCAE);④②∠=30°;③=2,其中正确结论的个数有(=D. C. B. A. 个3个个1 2个 4分)小题,共二、填空题(本大题共1030.0ADEADDBACRtABCABAC如图,为边作等边△△中,∠以直角边=30°,以为直径作半圆交于点,,在10.BCBCFED,则图中阴影部分的面积为______ .(结果不取近似值)延长交于点,=2ac=每个小粗线宫中的数字不重复,则×至6的数字后,使每行、每列、如图,在6×6的网格内填入111.______ .CGGDBGAEAFMNAFBGABCDBEEFFC,如图,正方形于=,.下列结论:①=2中,,⊥分别交=,; 2.1SBNSNF.其中正确的结论的序号是______②=;④==.;③ANGDCGNF四边形四边形AOBAOBAOcmBOcmAOBO,按顺时针方向旋已知:如图,在△,中,∠.将△=90°,=4=3绕顶点13.AOBOBABDABBDcm.处,此时线段的中点,则线段与= ______ 的交点恰好为转到△1111ABCDEFOAFxABCDEF绕重合,轴,将正六边形如图,边长为4的正六边形∥的中心与坐标原点14.OnnA的坐标为______.原点=2017顺时针旋转时,顶点次,每次旋转60°.当RtABCBCBACABOMON上的两个端点分别在相互垂直的射线中,,∠=2、如图,在=30°,斜边△15.滑动,下列结论:COABOA=2①若对称,则、;两点关于CO两点距离的最大值为4、;②ABCOABCO;③若平分⊥,则DAB运动路径的长为;④斜边的中点其中正确的是______(把你认为正确结论的序号都填上).AOBOBxPOANOB上的一定点,0)是的边(与3轴正半轴重合,点,是上的一动点,点如图,∠16.MONAOBPMPNP的坐标为______点+是.的中点,∠=30°,要使最小,则点ABCCABA两地之间,甲车从三地,、、、在一条笔直的公路上有地位于17.ABC在甲车地沿这条公路匀速驶向地沿这条公路匀速驶向地,地,乙车从kmyCC)与甲地的过程中,甲、乙两车各自与出发至甲车到达(地的距离hht时,车行驶时间2()之间的函数关系如图所示.下列结论:①甲车出发hkmh时,两车;③乙车出发2两车相遇;②乙车出发1.5时,两车相距170kmC(填写所40______ 相遇;④甲车到达.其中正确的是地时,两车相距有正确结论的序号).BxOABOAAByA如图,若两点.=(>0)的图象经过反比例函数在平面直角坐标系中,=,∠=90°,,18.knA.),则点的坐标为(,1的值为______PBACABC,),点00,0-2),((1如图,在平面直角坐标系中,△),的顶点坐标分别为(-1,1,(19.PPCBPAPP,旋转2)绕点旋转180°得到点,点180°得到点绕点旋转180°得到点,点绕点32211PAPP.______ ,…,按此作法进行下去,则点绕点点旋转180°得到点的坐标为201734答案和解析1.C【答案】【解析】解:∵直线l:y=-3x+3交x轴于点A,交y轴于点B,1∴A(1,0),B(0,3),∵点A、E关于y轴对称,∴E(-1,0).∵直线l:y=-3x+9交x轴于点D,过点B作x轴的平行线交l于点C,22∴D(3,0),C点纵坐标与B点纵坐标相同都是3,把y=3代入y=-3x+9,得3=-3x+9,解得x=2,∴C(2,3).2+bx+c过E、By=ax、C三点,∵抛物线,解得,∴2+2x+3.-x ∴y=2+bx+c过E(-1,0①∵抛物线y=ax),∴a-b+c=0,故①正确;②∵a=-1,b=2,c=3,∴2a+b+c=-2+2+3=3≠5,故②错误;③∵抛物线过B(0,3),C(2,3)两点,∴对称轴是直线x=1,∴抛物线关于直线x=1对称,故③正确;)点,3,2(C,抛物线过c=3,b=2④∵.∴抛物线过点(b,c),故④正确;⑤∵直线l∥l,即AB∥CD,又BC∥AD,21∴四边形ABCD是平行四边形,∴S=BC?OB=2×3=6≠5,故⑤错误.ABCD四边形综上可知,正确的结论有3个.故选:C.根据直线l的解析式求出A(1,0),B(0,3),根据关于y轴对称的两点坐标特征求出E1(-1,0).根据平行于x轴的直线上任意两点纵坐标相同得出C点纵坐标与B点纵坐标相同都是3,再根据二次函数图象上点的坐标特征求出C(2,3).利用待定系数法求出抛物线的2+2x+3,进而判断各选项即可.解析式为y=-x 本题考查了抛物线与x轴的交点,一次函数、二次函数图象上点的坐标特征,关于y轴对称的两点坐标特征,平行于x轴的直线上任意两点坐标特征,待定系数法求抛物线的解析式,平行四边形的判定及面积公式,综合性较强,求出抛物线的解析式是解题的关键.2.D【答案】【解析】解:∵a=a+a 312=a+a+a+a 6455=a+a+a+a+a+a+a+a 107988899=a+3(a+a)+a,10879∴要使a取得最小值,则a+a应尽可能的小,981取a=2、a=4,98∵a=a+a=6,985则a、a ,6中不能有107.若a=8、a=10,则a=10=a,不符合题意,舍去;107104若a=10、a=8,则a=12、a=4+8=12,不符合题意,舍去;61047若a=10、a=12,则a=10+2=12、a=4+12=16、a=12+6=18、a=6+16=22、a=18+22=40,13746210符合题意;综上,a的最小值为40,1故选:D.由a=a+3(a+a)+a知要使a取得最小值,则a+a应尽可能的小,取a=2、a=4,根据98199101878a=a+a=6,则a、a中不能有6,据此对于a、a,分别取8、10、12检验可得,从而得出89108775答案.本题主要考查数字的变化类,根据题目要求得出a取得最小值的切入点是解题的关键.13.A【答案】【解析】F,作CF⊥x轴于点,过点解:过点D作DE⊥y轴于点ECx-6,代入y= 令x=0,∴y=-6 ∴B(0,-6),∴OB=6,,x-6y=令y=0代入∴x=2, 02∴(,),,∴OA=2∴勾股定理可知:, AB=4=AB==,cos∠O ∴sin∠OAB= 设M(x,y),∴CF=-y,ED=x,∴sin∠OAB=,,-y∴AC=∵cos∠OAB=cos∠EDB=,∴BD=2x,∵AC?BD=4,,- ∴y×2x=4∴xy=-3,∵M在反比例函数的图象上,∴k=xy=-3,故选(A)过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,然后求出OA与OB的长度,即可求出∠OAB的正弦值与余弦值,再设M(x,y),从而可表示出BD与AC的长度,根据AC?BD=4列出即可求出k的值.本题考查反比例函数与一次函数的综合问题,解题的关键是根据∠OAB的锐角三角函数值求出BD、AC,本题属于中等题型.4.C【答案】【解析】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),y=,∴设反比例函数的解析式为y=,)代入(3,1将B∴k=3,∴y=,y=,∴把y=2代入∴x=,当顶点A恰好落在该双曲线上时,移动了个单位长度,A 此时点也移动了个单位长度,∴CC′的坐标为(,0的对应点)此时点C故选:C.过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求的对C的坐标即可得知平移的单位长度,从而求出A出反比例函数的解析式,根据解析式与应点.本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.5.B【答案】【解析】解:∵E为CD边的中点,∴DE=CE,又∵∠D=∠ECF=90°,∠AED=∠FEC,∴△ADE≌△FCE,,∴AD=CF,AE=FE 又∵ME⊥AF, AF,∴ME垂直平分∴AM=MF=MC+CF,∴AM=MC+AD,故①正确;,使得∠BAG=∠DAE,至G如图,延长CB AM=MF,AD∥BF,可得∠DAE=∠F=∠EAM,由可设∠BAG=∠DAE=∠EAM=α,∠BAM=β,则∠AED=∠EAB=∠GAM=α+β,由∠BAG=∠DAE,∠ABG=∠ADE=90°,可得△ABG∽△ADE,∴∠G=∠AED=α+β,∴∠G=∠GAM,∴AM=GM=BG+BM,=,由△ABG∽△ADE,可得BC=AD,而AB< DE,∴BG< DE+BM,∴BG+BM<,即AM<DE+BM∴AM=DE+BM不成立,故②错误;∵ME⊥FF,EC⊥MF,2=CM×CF,∴EC又∵EC=DE,AD=CF,2=AD?CM,故③正确;∴DE∵∠ABM=90°,∴AM是△ABM的外接圆的直径,∵BM<AD,,1BM∥AD∴当<时,= 的中点,不是AM∴N 不是△ABM的外心,故④错误.∴点N 个,综上所述,正确的结论有2 故选:B.;根据AM=MC+AD根据全等三角形的性质以及线段垂直平分线的性质,即可得出,即可得出AM=GM=BG+BM,再根据DE<BG,即可得出BC<AB△ABG∽△ADE,且.2=CM×CF,据此EC不成立;根据ME⊥FF,EC⊥MF,运用射影定理即可得出AM=DE+BM2=AD?CM成立;根据N不是AM的中点,可得点N不是△ABM可得DE的外心.本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,矩形的性质以及旋转的性质的综合应用,解决问题的关键是运用全等三角形的对应边相等以及相似三角形的对应边成比例进行推导,解题时注意:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,故外心到三角形三个顶点的距离相等.6.C【答案】【解析】2-2x-8=0,得解:①由x(x-4)(x+2)=0,解得x=4,x=-2,21∵x≠2x,或x≠2x,12122-2x-8=0不是倍根方程.x ∴方程故①错误;2+ax+2=0是倍根方程, x②关于的方程x∴设x=2x,122=2,?x∴x=2x 112∴x=±1,1当x=1时,x=2,21当x=-1时,x=-2,21∴x+x=-a=±3,21∴a=±3,故②正确;2(a≠0)是倍根方程,-6ax+c=0ax的方程x③关于∴x=2x,122-6ax+c的对称轴是直线x=3,∵抛物线y=ax2-6ax+c与x轴的交点的坐标是(2,0)和(∴抛物线y=ax4,0),故③正确;y=的图象上, m,n)在反比例函数④∵点(∴mn=4,2=-, =-解mx,+5x+n=0得xx21,∴x=4x122 +5x+n=0不是倍根方程;的方程∴关于xmx 故选:C.①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;2,于是得到结论;=-2x=-1时,x=2=1?x,得到②设x=2xx=2x=2,得到当x时,x,当212221111③根据“倍根方程”的定义即可得到结论;2即可得,④若点(mn)在反比例函数y=的图象上,得到mn=4,然后解方程+5x+n=0mx 到正确的结论;正确的理解倍根方程的定义是本题考查了反比例函数图象上点的坐标特征,根与系数的关系,解题的关键.7.D【答案】【解析】解:∵六边形ABCDEF的内角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°,∵∠DAB=60°,∴∠DAF=60°,∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,∴AD∥EF∥CB,故②正确,∴∠FED+∠EDA=180°,∴∠EDA=∠ADC=60°,∴∠EDA=∠DAB,∴AB∥DE,故①正确,∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,是等腰梯形,,四边形BCDA∴四边形EFAD ,∴AF=DE,AB=CD ∵AB=DE,∴AF=CD,故③正确,.DB、、BEO交于点,连接DF、AC、AECF连接与AD ∵∠CDA=∠DAF,,∴AF∥CD,AF=CD 是平行四边形,故④正确,∴四边形AFDC AEDB同法可证四边形是平行四边形,互相平分,与,ADBE 与∴ADCF ,,OA=OD∴OF=OC,OE=OB ABCDEF既是中心对称图形,故⑤正确,∴六边形.故选D中心的内角都相等,∠DAB=60°,平行线的判定,平行四边形的判定,根据六边形ABCDEF 对称图形的定义一一判断即可.本题考查平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.D【答案】【解析】解:如图:故选:D.①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI和△ACI是等腰三角形.本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.9.C【答案】【解析】解:在矩形ABCD中,∵∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠ADE+∠DAE=∠DAE+∠BAE=90°,∴∠BAE=∠ADB,∵∠CAD=∠ADB,∴∠BAE=∠CAD,故①正确; CD=2,∵BC=4,∴tan∠DBC=,= ∴∠DBC≠30°,故②错误;,∵BD==2,∵AB=CD=2,AD=BC=4 ∵△ABE∽△DBA,∴,,即;故③正确;∴AE= 平分∠BCD,∵CF ∴∠BCF=45°,∠ACB,∴∠ACF=45°- ∵AD∥BC,∴∠DAC=∠BAE=∠ACB, 2∠ACB,-∴∠EAC=90°.∴∠EAC=2∠ACF,∵∠EAC=∠ACF+∠F,∴∠ACF=∠F,∴AF=AC,∵AC=BD=2,,故④正确;∴AF=2.故选C根据余角的性质得到∠BAE=∠ADB,等量代换得到∠BAE=∠CAD,故①正确;根据三角函,于是得到∠DBC≠30°,故②错误;由勾股定理得到tan∠DBC==数的定义得到AE=BD==2,根据相似三角形的性质得到;故③正确;根据角平分线的定义得到∠BCF=45°,求得∠ACF=45°-∠ACB,推出∠EAC=2∠ACF,根据外角的性质得到∠EAC=∠ACF+∠F,得到∠ACF=∠F,根据等腰三角形的判定得到AF=AC,于是得到AF=2,故④正确.本题考查了矩形的性质,相似三角形的判定和性质,三角形的外角的性质,角平分线的定义,熟练掌握相似三角形的判定和性质是解题的关键.10.-π3 【答案】【解析】,G于点D作DG⊥AB,过解:如图所示:设半圆的圆心为O,连接DO N,于点D 过作DN⊥CB 中,∠BAC=30°,∵在Rt△ABC ∴∠ACB=60°,∠ABC=90°,为边作等边△ADE,∵以AD ∴∠EAD=60°,∴∠EAB=60°+30°=90°,可得:AE∥BC,则△ADE∽△CDF,∴△CDF是等边三角形,∵在Rt△ABC中,∠BAC=30°,BC=2,,∠DOG=60°,∴AC=4,AB=6则AO=BO=3,DG=DO?sin60°=,故,,DC=AC-AD=则AD=3DN=DC?sin60°==,×故则S=S-S-S-S △DCF扇形△AODDOB阴影△ABC×××6=×2---×3×-π. =33故答案为:π. -根据题意结合等边三角形的性质分别得出AB,AC,AD,DC的长,进而利用S阴影=S-S-S-S求出答案.△DCF扇形△AODDOB△ABC此题主要考查了扇形面积求法以及等边三角形的性质和锐角三角函数关系等知识,正确分割图形是解题关键.11.【答案】2【解析】解:对各个小宫格编号如下:先看己:已经有了数字3、5、6,缺少1、2、4;观察发现:4不能在第四列,2不能在第五列,而2不能在第六列;所以2只能在第六行第四列,即a=2;则b 和c有一个是1,有一个是4,不确定,如下:观察上图发现:第四列已经有数字2、3、4、6,缺少1和5,由于5不能在第二行,所以5在第四行,那么1在第二行;如下:再看乙部分:已经有了数字1、2、3,缺少数字4、5、6,观察上图发现:5不能在第六列,所以5在第五列的第一行;4和6在第六列的第一行和第二行,不确定,分两种情况:①当4在第一行时,6在第二行;那么第二行第二列就是4,如下:再看甲部分:已经有了数字1、3、4、5,缺少数字2、6,观察上图发现:2不能在第三列,所以2在第二列,则6在第三列的第一行,如下:观察上图可知:第三列少1和4,4不能在第三行,所以4在第五行,则1在第三行,如下:观察上图可知:第五行缺少1和2,1不能在第1列,所以1在第五列,则2在第一列,即c=1,,如下:b=4所以.观察上图可知:第六列缺少1和2,1不能在第三行,则在第四行,所以2在第三行,如下:再看戊部分:已经有了数字2、3、4、5,缺少数字1、6,观察上图发现:1不能在第一列,所以1在第二列,则6在第一列,如下:观察上图可知:第一列缺少3和4,4不能在第三行,所以4在第四行,则3在第三行,如下:观察上图可知:第二列缺少5和6,5不能在第四行,所以5在第三行,则6在第四行,如下:观察上图可知:第三行第五列少6,第四行第五列少3,如下:所以,a=2,c=1,ac=2;②当6在第一行,4在第二行时,那么第二行第二列就是6,如下:再看甲部分:已经有了数字1、3、5、6,缺少数字2、4,观察上图发现:2不能在第三列,所在第三列,如下:4列,2在第2以.观察上图可知:第三列缺少数字1和6,6不能在第五行,所以6在第三行,则1在第五行,所以c=4,b=1,如下:观察上图可知:第五列缺少数字3和6,6不能在第三行,所以6在第四行,则3在第三行,如下:观察上图可知:第六列缺少数字1和2,2不能在第四行,所以2在第三行,则1在第四行,如下:观察上图可知:第三行缺少数字1和5,1和5都不能在第一列,所以此种情况不成立;综上所述:a=2,c=1,a×c=2;故答案为:2.粗线把这个数独分成了6块,为了便于解答,对各部分进行编号:甲、乙、丙、丁、戊、己,先从各部分中数字最多的己出发,找出其各个小方格里面的数,再根据每行、每列、每小宫格都不出现重复的数字进行推算.本题是六阶数独,比较复杂,关键是找出突破口,先推算出一个区域或者一行、一列,再逐步的进行推算.12.【答案】①③【解析】解:①∵四边形ABCD为正方形,∴AB=BC=CD,∵BE=EF=FC,CG=2GD,∴BF=CG,中,∵在△ABF和△BCG,∴△ABF≌△BCG,∴∠BAF=∠CBG,∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF⊥BG;①正确;中,,②∵在△BNF和△BCG=∴△BNF∽△BCG,,∴=;②错误;∴BN=NF ,BE=EF=CF=1,③作EH⊥AF,令AB=3,则BF=2AF==,AF?BN=AB?BF,=∵S △ABFBN=,∴BN=, NF=-NF=,∴AN=AF∵E是BF中点,∴EH是△BFN的中位线,NH=,BN∥EH,,∴EH=MN=∴AH=,,,解得:=MG=BG-BM=-MN=,,∴BM=BN =;③正确;∴④连接AG,FG,根据③中结论,NG=BG-BN=,则NF?NG=1+=S+SCG?CF+=∵S=,△GNF△CGNFCFG四边形AD?DG==+SAN?GN+, +=S=S△ADGANGD△ANG四边形≠S,④错误;∴S ANGDCGNF四边形四边形故答案为①③.①易证△ABF≌△BCG,即可解题;②易证△BNF∽△BCG,即可求得的值,即可解题;③作EH⊥AF,令AB=3,即可求得MN,BM的值,即可解题;④连接AG,FG,根据③中结论即可求得S和S,即可解题.ANGD四边形四边形CGNF本题考查了全等三角形的判定和性质,考查了相似三角形的判定和对应边成比例的性质,本题中令AB=3求得AN,BN,NG,NF的值是解题的关键.13.【答案】1.5【解析】解:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==5cm,∵点D为AB的中点,∴OD=AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△AOB处,11∴OB=OB=4cm,1∴BD=OB-OD=1.5cm.11故答案为1.5.先在直角△AOB中利用勾股定理求出再利用直角三角形斜边上的中线,=5cmAB=OD=AB=2.5cm.然后根据旋转的性质得到等于斜边的一半得出OB=OB=4cm,那么1BD=OB-OD=1.5cm.11本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理.14.2)2,【答案】(【解析】顺O解:2017×60°÷360°=336…1,即与正六边形ABCDEF绕原点的坐标是一样的.次时点A时针旋转1 点重合.60°时,与原F当点A按顺时针旋转 H;F 作FH⊥x轴,垂足为,过点连接OF EF=4,∠FOE=60°(正六边形的性质),由已知∴△OEF是等边三角形,∴OF=EF=4,),,2后点),即旋转2017A的坐标是(22∴F(2,2 ).2,故答案是:(点所在的位所在的位置就是原AF顺时针旋转将正六边形ABCDEF绕原点O2017次时,点置.旋转.此题难度适中,注意掌握辅助线-此题主要考查了正六边形的性质,坐标与图形的性质的作法,注意数形结合思想的应用.15.①②③【答案】【解析】Rt△ABC中,∵BC=2,∠BAC=30°,解:在 =2,∴AB=4,AC=1,两点关于AB对称,如图①若C、O 的垂直平分线,∴AB是OC ;则OA=AC=2所以①正确;,、CEAB,取的中点为E,连接OE②如图1 ∵∠AOB=∠ACB=90°,AB=2,∴OE=CE= 最大,经过点E时,OC当OC ;O两点距离的最大值为4则C、所以②正确; OE=CE,,则③如图2,同理取AB的中点E CO,∵AB平分∴OF=CF,∴AB⊥OC,所以③正确;为圆心,OD3④如图,斜边AB的中点运动路径是:以为半径的圆周的2,以=π.则:所以④不正确;综上所述,本题正确的有:①②③;故答案为:①②③.①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以OA=AC;②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;③如图2,根据等腰三角形三线合一可知:AB⊥OC;④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.本题是三角形的综合题,考查了直角三角形30°的性质、直角三角形斜边中线的性质、等腰三角形的性质、轴对称的性质、线段垂直平分线的性质、动点运动路径问题、弧长公式,熟练掌握直角三角形斜边中线等于斜边一半是本题的关键,难度适中.16.,)【答案】(【解析】,OA于POAN关于的对称点N′,连接N′M交解:作最小,则此时,PM+PN NN′,∵OA垂直平分∴ON=ON′,∠N′ON=2∠AON=60°,∴△NON′是等边三角形,的中点,是∵点MON ∴N′M⊥ON, 0),(∵点N3,∴ON=3,的中点,是∵点MON ∴OM=1.5,∴PM=,).,∴P(,故答案为:().作N关于OA的对称点N′,连接N′M交OA于P,则此时,PM+PN最小,由作图得到ON=ON′,∠N′ON=2∠AON=60°,求得△NON′是等边三角形,根据等边三角形的性质得到N′M⊥ON,解直角三角形即可得到结论.本题考查了轴对称-最短路线问题,等边三角形的判定和性质,解直角三角形,关键是确定P的位置.17.【答案】②③④【解析】解:①观察函数图象可知,当t=2时,两函数图象相交,∵C地位于A、B两地之间,∴交点代表了两车离C地的距离相等,并不是两车相遇,结论①错误;②甲车的速度为240÷4=60(km/h),乙车的速度为200÷(3.5-1)=80(km/h),∵(240+200-60-170)÷(60+80)=1.5(h),∴乙车出发1.5h时,两车相距170km,结论②正确;=2(h60+80)),)÷(③∵(240+200-602h∴乙车出发时,两车相遇,结论③正确;④∵80×(4-3.5)=40(km),∴甲车到达C地时,两车相距40km,结论④正确.综上所述,正确的结论有:②③④.故答案为:②③④.①观察函数图象可知,当t=2时,两函数图象相交,结合交点代表的意义,即可得出结论①错误;②根据速度=路程÷时间分别求出甲、乙两车的速度,再根据时间=路程÷速度和可求出乙车出发1.5h时,两车相距170km,结论②正确;③根据时间=路程÷速度和可求出乙车出发2h时,两车相遇,结论③正确;④结合函数图象可知当甲到C地时,乙车离开C地0.5小时,根据路程=速度×时间,即可得出结论④正确.综上即可得出结论.本题考查了一次函数的应用,根据函数图象逐一分析四条结论的正误是解题的关键.18.【答案】【解析】,轴于C过B点作BC⊥yF解:作AE⊥x轴于E,BF⊥x轴于, G,如图所示:交AE于则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB,,中,在△AOE和△BAG ),∴△AOE≌△BAG(AAS ∴OE=AG,AE=BG, 1),(∵点An,,∴AG=OE=n,BG=AE=1 1-n),,∴B(n+1 ),1-n)(n+1∴k=n×1=(.2+n-1=0,整理得:nn=(负值舍去),解得:∴n=,;∴k=故答案为:.作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE 于G,则AG⊥BC,先求得△AOE≌△BAG,得出AG=OE=n,BG=AE=1,从而求得B (n+1,1-n),根据k=n×1=(n+1)(1-n)得出方程,解方程即可.本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.19.【答案】(-2,0)【解析】解:如图所示,P(-2,0),P(2,-4),P(0,4),P(-2,-2),P(2,-2),P (0,6534212),次一个循环,发现6 ∵2017÷6=336…1, 0),(的坐标相同,即P-2,P ∴点P的坐标与201720171).-2故答案为(,0 P,寻找规律后即可解决问题.~画出P61属于中考解题的关键是循环探究问题的方法,本题考查坐标与图形的性质、点的坐标等知识,常考题型.]此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好[。
九年级数学选择、填空压轴题训练(含答案)解析

九年级数学综合训练一、选择题(本大题共9小题,共27.0分)1.如图,在平面直角坐标系中2条直线为l1:y=-3x+3,l2:y=-3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B作x轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c 过E、B、C三点,下列判断中:①a-b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);⑤S四边形ABCD=5,其中正确的个数有()A. 5B. 4C. 3D. 22.如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A. 32B. 36C. 38D. 403.如图,直线y=√3x-6分别交x轴,y轴于A,B,M是反比例函数y=kx(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=4√3,则k的值为()A. −3B. −4C. −5D. −64.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A. (32,0) B. (2,0) C. (52,0) D. (3,0)5.如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF交BC于点M,连接AM、BD交于点N,现有下列结论:①AM=AD+MC;②AM=DE+BM;③DE2=AD•CM;④点N为△ABM的外心.其中正确的个数为()A. 1个B. 2个C. 3个D. 4个6.规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程x2+2x-8=0是倍根方程;②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;③若关于x 的方程ax 2-6ax +c =0(a ≠0)是倍根方程,则抛物线y =ax 2-6ax +c 与x 轴的公共点的坐标是(2,0)和(4,0);④若点(m ,n )在反比例函数y =4x 的图象上,则关于x 的方程mx 2+5x +n =0是倍根方程.上述结论中正确的有( ) A. ①② B. ③④ C. ②③ D. ②④7. 如图,六边形ABCDEF 的内角都相等,∠DAB =60°,AB =DE ,则下列结论成立的个数是( )①AB ∥DE ;②EF ∥AD ∥BC ;③AF =CD ;④四边形ACDF 是平行四边形;⑤六边形ABCDEF 既是中心对称图形,又是轴对称图形.A. 2B. 3C. 4D. 58. 如图,在Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A. 4B. 5C. 6D. 79. 如图,矩形ABCD 中,AE ⊥BD 于点E ,CF 平分∠BCD ,交EA 的延长线于点F ,且BC =4,CD =2,给出下列结论:①∠BAE =∠CAD ;②∠DBC =30°;③AE =45√5;④AF =2√5,其中正确结论的个数有( ) A. 1个 B. 2个 C. 3个 D. 4个二、填空题(本大题共10小题,共30.0分)10. 如图,在Rt △ABC 中,∠BAC =30°,以直角边AB 为直径作半圆交AC 于点D ,以AD 为边作等边△ADE ,延长ED 交BC 于点F ,BC =2√3,则图中阴影部分的面积为______ .(结果不取近似值)11. 如图,在6×6的网格内填入1至6的数字后,使每行、每列、每个小粗线宫中的数字不重复,则a ×c = ______ .12. 如图,正方形ABCD 中,BE =EF =FC ,CG =2GD ,BG 分别交AE ,AF 于M ,N .下列结论:①AF ⊥BG ;②BN =43NF ;③BM MG =38;④S 四边形CGNF =12S 四边形ANGD .其中正确的结论的序号是______.13. 已知:如图,在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm .将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,此时线段OB 1与AB 的交点D 恰好为AB 的中点,则线段B 1D = ______ cm .14.如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴,将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°.当n=2017时,顶点A的坐标为______.15.如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2√3;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;;④斜边AB的中点D运动路径的长为π2其中正确的是______(把你认为正确结论的序号都填上).16.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为______.17.在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h时,h时,两车两车相遇;②乙车出发1.5h时,两车相距170km;③乙车出发257相遇;④甲车到达C地时,两车相距40km.其中正确的是______ (填写所有正确结论的序号).18.如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=k(x>0)的图象经过A,B两点.若x点A的坐标为(n,1),则k的值为______.19.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-1,1),B(0,-2),C(1,0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2017的坐标为______ .答案和解析1.【答案】C【解析】解:∵直线l1:y=-3x+3交x轴于点A,交y轴于点B,∴A(1,0),B(0,3),∵点A、E关于y轴对称,∴E(-1,0).∵直线l2:y=-3x+9交x轴于点D,过点B作x轴的平行线交l2于点C,∴D(3,0),C点纵坐标与B点纵坐标相同都是3,把y=3代入y=-3x+9,得3=-3x+9,解得x=2,∴C(2,3).∵抛物线y=ax2+bx+c过E、B、C三点,∴,解得,∴y=-x2+2x+3.①∵抛物线y=ax2+bx+c过E(-1,0),∴a-b+c=0,故①正确;②∵a=-1,b=2,c=3,∴2a+b+c=-2+2+3=3≠5,故②错误;③∵抛物线过B(0,3),C(2,3)两点,∴对称轴是直线x=1,∴抛物线关于直线x=1对称,故③正确;④∵b=2,c=3,抛物线过C(2,3)点,∴抛物线过点(b,c),故④正确;⑤∵直线l1∥l2,即AB∥CD,又BC∥AD,∴四边形ABCD是平行四边形,∴S四边形ABCD=BC•OB=2×3=6≠5,故⑤错误.综上可知,正确的结论有3个.故选:C.根据直线l1的解析式求出A(1,0),B(0,3),根据关于y轴对称的两点坐标特征求出E(-1,0).根据平行于x轴的直线上任意两点纵坐标相同得出C点纵坐标与B点纵坐标相同都是3,再根据二次函数图象上点的坐标特征求出C(2,3).利用待定系数法求出抛物线的解析式为y=-x2+2x+3,进而判断各选项即可.本题考查了抛物线与x轴的交点,一次函数、二次函数图象上点的坐标特征,关于y轴对称的两点坐标特征,平行于x轴的直线上任意两点坐标特征,待定系数法求抛物线的解析式,平行四边形的判定及面积公式,综合性较强,求出抛物线的解析式是解题的关键.2.【答案】D【解析】解:∵a1=a2+a3=a4+a5+a5+a6=a7+a8+a8+a9+a8+a9+a9+a10=a7+3(a8+a9)+a10,∴要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,∵a5=a8+a9=6,则a7、a10中不能有6,若a7=8、a10=10,则a4=10=a10,不符合题意,舍去;若a7=10、a10=8,则a4=12、a6=4+8=12,不符合题意,舍去;若a7=10、a10=12,则a4=10+2=12、a6=4+12=16、a2=12+6=18、a3=6+16=22、a1=18+22=40,符合题意;综上,a1的最小值为40,故选:D.由a1=a7+3(a8+a9)+a10知要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,根据a5=a8+a9=6,则a7、a10中不能有6,据此对于a7、a8,分别取8、10、12检验可得,从而得出答案.本题主要考查数字的变化类,根据题目要求得出a1取得最小值的切入点是解题的关键.3.【答案】A【解析】解:过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,令x=0代入y=x-6,∴y=-6,∴B(0,-6),∴OB=6,令y=0代入y=x-6,∴x=2,∴(2,0),∴OA=2,∴勾股定理可知:AB=4,∴sin∠OAB==,cos∠OAB==设M(x,y),∴CF=-y,ED=x,∴sin∠OAB=,∴AC=-y,∵cos∠OAB=cos∠EDB=,∴BD=2x,∵AC•BD=4,∴-y×2x=4,∴xy=-3,∵M在反比例函数的图象上,∴k=xy=-3,故选(A)过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,然后求出OA与OB的长度,即可求出∠OAB的正弦值与余弦值,再设M(x,y),从而可表示出BD与AC的长度,根据AC•BD=4列出即可求出k的值.本题考查反比例函数与一次函数的综合问题,解题的关键是根据∠OAB的锐角三角函数值求出BD、AC,本题属于中等题型.4.【答案】C【解析】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:C.过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.5.【答案】B【解析】解:∵E为CD边的中点,∴DE=CE,又∵∠D=∠ECF=90°,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF,AE=FE,又∵ME⊥AF,∴ME垂直平分AF,∴AM=MF=MC+CF,∴AM=MC+AD,故①正确;如图,延长CB至G,使得∠BAG=∠DAE,由AM=MF,AD∥BF,可得∠DAE=∠F=∠EAM,可设∠BAG=∠DAE=∠EAM=α,∠BAM=β,则∠AED=∠EAB=∠GAM=α+β,由∠BAG=∠DAE,∠ABG=∠ADE=90°,可得△ABG∽△ADE,∴∠G=∠AED=α+β,∴∠G=∠GAM,∴AM=GM=BG+BM,由△ABG∽△ADE,可得=,而AB<BC=AD,∴BG<DE,∴BG+BM<DE+BM,即AM<DE+BM,∴AM=DE+BM不成立,故②错误;∵ME⊥FF,EC⊥MF,∴EC2=CM×CF,又∵EC=DE,AD=CF,∴DE2=AD•CM,故③正确;∵∠ABM=90°,∴AM是△ABM的外接圆的直径,∵BM<AD,∴当BM∥AD时,=<1,∴N不是AM的中点,∴点N不是△ABM的外心,故④错误.综上所述,正确的结论有2个,故选:B.根据全等三角形的性质以及线段垂直平分线的性质,即可得出AM=MC+AD;根据△ABG∽△ADE,且AB<BC,即可得出BG<DE,再根据AM=GM=BG+BM,即可得出AM=DE+BM不成立;根据ME⊥FF,EC⊥MF,运用射影定理即可得出EC2=CM×CF,据此可得DE2=AD•CM成立;根据N不是AM的中点,可得点N不是△ABM的外心.本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,矩形的性质以及旋转的性质的综合应用,解决问题的关键是运用全等三角形的对应边相等以及相似三角形的对应边成比例进行推导,解题时注意:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,故外心到三角形三个顶点的距离相等.6.【答案】C【解析】解:①由x2-2x-8=0,得(x-4)(x+2)=0,解得x1=4,x2=-2,∵x1≠2x2,或x2≠2x1,∴方程x2-2x-8=0不是倍根方程.故①错误;②关于x的方程x2+ax+2=0是倍根方程,∴设x2=2x1,∴x1•x2=2x12=2,∴x1=±1,当x1=1时,x2=2,当x1=-1时,x2=-2,∴x1+x2=-a=±3,∴a=±3,故②正确;③关于x的方程ax2-6ax+c=0(a≠0)是倍根方程,∴x2=2x1,∵抛物线y=ax2-6ax+c的对称轴是直线x=3,∴抛物线y=ax2-6ax+c与x轴的交点的坐标是(2,0)和(4,0),故③正确;④∵点(m,n)在反比例函数y=的图象上,∴mn=4,解mx2+5x+n=0得x1=-,x2=-,∴x2=4x1,∴关于x的方程mx2+5x+n=0不是倍根方程;故选:C.①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设x2=2x1,得到x1•x2=2x12=2,得到当x1=1时,x2=2,当x1=-1时,x2=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m,n)在反比例函数y=的图象上,得到mn=4,然后解方程mx2+5x+n=0即可得到正确的结论;本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.7.【答案】D【解析】解:∵六边形ABCDEF的内角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°,∵∠DAB=60°,∴∠DAF=60°,∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,∴AD∥EF∥CB,故②正确,∴∠FED+∠EDA=180°,∴∠EDA=∠ADC=60°,∴∠EDA=∠DAB,∴AB∥DE,故①正确,∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,∴四边形EFAD,四边形BCDA是等腰梯形,∴AF=DE,AB=CD,∵AB=DE,∴AF=CD,故③正确,连接CF与AD交于点O,连接DF、AC、AE、DB、BE.∵∠CDA=∠DAF,∴AF∥CD,AF=CD,∴四边形AFDC是平行四边形,故④正确,同法可证四边形AEDB是平行四边形,∴AD与CF,AD与BE互相平分,∴OF=OC,OE=OB,OA=OD,∴六边形ABCDEF既是中心对称图形,故⑤正确,故选D.根据六边形ABCDEF的内角都相等,∠DAB=60°,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可.本题考查平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.【答案】D【解析】解:如图:故选:D.①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI和△ACI是等腰三角形.本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.9.【答案】C【解析】解:在矩形ABCD中,∵∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠ADE+∠DAE=∠DAE+∠BAE=90°,∴∠BAE=∠ADB,∵∠CAD=∠ADB,∴∠BAE=∠CAD,故①正确;∵BC=4,CD=2,∴tan∠DBC==,∴∠DBC≠30°,故②错误;∵BD==2,∵AB=CD=2,AD=BC=4,∵△ABE∽△DBA,∴,即,∴AE=;故③正确;∵CF平分∠BCD,∴∠BCF=45°,∴∠ACF=45°-∠ACB,∵AD∥BC,∴∠DAC=∠BAE=∠ACB,∴∠EAC=90°-2∠ACB,∴∠EAC=2∠ACF,∵∠EAC=∠ACF+∠F,∴∠ACF=∠F,∴AF=AC,∵AC=BD=2,∴AF=2,故④正确;故选C.根据余角的性质得到∠BAE=∠ADB,等量代换得到∠BAE=∠CAD,故①正确;根据三角函数的定义得到tan∠DBC==,于是得到∠DBC≠30°,故②错误;由勾股定理得到BD= =2,根据相似三角形的性质得到AE=;故③正确;根据角平分线的定义得到∠BCF=45°,求得∠ACF=45°-∠ACB,推出∠EAC=2∠ACF,根据外角的性质得到∠EAC=∠ACF+∠F,得到∠ACF=∠F,根据等腰三角形的判定得到AF=AC,于是得到AF=2,故④正确.本题考查了矩形的性质,相似三角形的判定和性质,三角形的外角的性质,角平分线的定义,熟练掌握相似三角形的判定和性质是解题的关键.10.【答案】3√3-3π2【解析】解:如图所示:设半圆的圆心为O,连接DO,过D作DG⊥AB于点G,过D作DN⊥CB于点N,∵在Rt△ABC中,∠BAC=30°,∴∠ACB=60°,∠ABC=90°,∵以AD为边作等边△ADE,∴∠EAD=60°,∴∠EAB=60°+30°=90°,可得:AE∥BC,则△ADE∽△CDF,∴△CDF是等边三角形,∵在Rt△ABC中,∠BAC=30°,BC=2,∴AC=4,AB=6,∠DOG=60°,则AO=BO=3,故DG=DO•sin60°=,则AD=3,DC=AC-AD=,故DN=DC•sin60°=×=,则S阴影=S△ABC-S△AOD-S扇形DOB-S△DCF=×2×6-×3×--××=3-π.故答案为:3-π.根据题意结合等边三角形的性质分别得出AB,AC,AD,DC的长,进而利用S阴影=S△ABC-S△AOD-S扇形DOB-S△DCF求出答案.此题主要考查了扇形面积求法以及等边三角形的性质和锐角三角函数关系等知识,正确分割图形是解题关键.11.【答案】2【解析】解:对各个小宫格编号如下:先看己:已经有了数字3、5、6,缺少1、2、4;观察发现:4不能在第四列,2不能在第五列,而2不能在第六列;所以2只能在第六行第四列,即a=2;则b和c有一个是1,有一个是4,不确定,如下:观察上图发现:第四列已经有数字2、3、4、6,缺少1和5,由于5不能在第二行,所以5在第四行,那么1在第二行;如下:再看乙部分:已经有了数字1、2、3,缺少数字4、5、6,观察上图发现:5不能在第六列,所以5在第五列的第一行;4和6在第六列的第一行和第二行,不确定,分两种情况:①当4在第一行时,6在第二行;那么第二行第二列就是4,如下:再看甲部分:已经有了数字1、3、4、5,缺少数字2、6,观察上图发现:2不能在第三列,所以2在第二列,则6在第三列的第一行,如下:观察上图可知:第三列少1和4,4不能在第三行,所以4在第五行,则1在第三行,如下:观察上图可知:第五行缺少1和2,1不能在第1列,所以1在第五列,则2在第一列,即c=1,所以b=4,如下:观察上图可知:第六列缺少1和2,1不能在第三行,则在第四行,所以2在第三行,如下:再看戊部分:已经有了数字2、3、4、5,缺少数字1、6,观察上图发现:1不能在第一列,所以1在第二列,则6在第一列,如下:观察上图可知:第一列缺少3和4,4不能在第三行,所以4在第四行,则3在第三行,如下:观察上图可知:第二列缺少5和6,5不能在第四行,所以5在第三行,则6在第四行,如下:观察上图可知:第三行第五列少6,第四行第五列少3,如下:所以,a=2,c=1,ac=2;②当6在第一行,4在第二行时,那么第二行第二列就是6,如下:再看甲部分:已经有了数字1、3、5、6,缺少数字2、4,观察上图发现:2不能在第三列,所以2在第2列,4在第三列,如下:观察上图可知:第三列缺少数字1和6,6不能在第五行,所以6在第三行,则1在第五行,所以c=4,b=1,如下:观察上图可知:第五列缺少数字3和6,6不能在第三行,所以6在第四行,则3在第三行,如下:观察上图可知:第六列缺少数字1和2,2不能在第四行,所以2在第三行,则1在第四行,如下:观察上图可知:第三行缺少数字1和5,1和5都不能在第一列,所以此种情况不成立;综上所述:a=2,c=1,a×c=2;故答案为:2.粗线把这个数独分成了6块,为了便于解答,对各部分进行编号:甲、乙、丙、丁、戊、己,先从各部分中数字最多的己出发,找出其各个小方格里面的数,再根据每行、每列、每小宫格都不出现重复的数字进行推算.本题是六阶数独,比较复杂,关键是找出突破口,先推算出一个区域或者一行、一列,再逐步的进行推算.12.【答案】①③【解析】解:①∵四边形ABCD为正方形,∴AB=BC=CD,∵BE=EF=FC,CG=2GD,∴BF=CG,∵在△ABF和△BCG中,,∴△ABF≌△BCG,∴∠BAF=∠CBG,∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF⊥BG;①正确;②∵在△BNF和△BCG中,,∴△BNF∽△BCG,∴==,∴BN=NF;②错误;③作EH⊥AF,令AB=3,则BF=2,BE=EF=CF=1,AF==,∵S△ABF=AF•BN=AB•BF,∴BN=,NF=BN=,∴AN=AF-NF=,∵E是BF中点,∴EH是△BFN的中位线,∴EH=,NH=,BN∥EH,∴AH=,=,解得:MN=,∴BM=BN-MN=,MG=BG-BM=,∴=;③正确;④连接AG,FG,根据③中结论,则NG=BG-BN=,∵S四边形CGNF=S△CFG+S△GNF=CG•CF+NF•NG=1+=,S四边形ANGD=S△ANG+S△ADG=AN•GN+AD•DG=+=,∴S四边形CGNF≠S四边形ANGD,④错误;故答案为①③.①易证△ABF≌△BCG,即可解题;②易证△BNF∽△BCG,即可求得的值,即可解题;③作EH⊥AF,令AB=3,即可求得MN,BM的值,即可解题;④连接AG,FG,根据③中结论即可求得S四边形CGNF和S四边形ANGD,即可解题.本题考查了全等三角形的判定和性质,考查了相似三角形的判定和对应边成比例的性质,本题中令AB=3求得AN,BN,NG,NF的值是解题的关键.13.【答案】1.5【解析】解:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==5cm,∵点D为AB的中点,∴OD=AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1-OD=1.5cm.故答案为1.5.先在直角△AOB中利用勾股定理求出AB==5cm,再利用直角三角形斜边上的中线等于斜边的一半得出OD=AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1-OD=1.5cm.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理.14.【答案】(2,2√3)【解析】解:2017×60°÷360°=336…1,即与正六边形ABCDEF绕原点O顺时针旋转1次时点A的坐标是一样的.当点A按顺时针旋转60°时,与原F点重合.连接OF,过点F作FH⊥x轴,垂足为H;由已知EF=4,∠FOE=60°(正六边形的性质),∴△OEF是等边三角形,∴OF=EF=4,∴F(2,2),即旋转2017后点A的坐标是(2,2),故答案是:(2,2).将正六边形ABCDEF绕原点O顺时针旋转2017次时,点A所在的位置就是原F点所在的位置.此题主要考查了正六边形的性质,坐标与图形的性质-旋转.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.15.【答案】①②③【解析】解:在Rt△ABC中,∵BC=2,∠BAC=30°,∴AB=4,AC==2,①若C、O两点关于AB对称,如图1,∴AB是OC的垂直平分线,则OA=AC=2;所以①正确;②如图1,取AB的中点为E,连接OE、CE,∵∠AOB=∠ACB=90°,∴OE=CE=AB=2,当OC经过点E时,OC最大,则C、O两点距离的最大值为4;所以②正确;③如图2,同理取AB的中点E,则OE=CE,∵AB平分CO,∴OF=CF,∴AB⊥OC,所以③正确;④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的,则:=π.所以④不正确;综上所述,本题正确的有:①②③;故答案为:①②③.①先根据直角三角形30°的性质和勾股定理分别求AC 和AB ,由对称的性质可知:AB 是OC 的垂直平分线,所以OA=AC ;②当OC 经过AB 的中点E 时,OC 最大,则C 、O 两点距离的最大值为4;③如图2,根据等腰三角形三线合一可知:AB ⊥OC ;④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可. 本题是三角形的综合题,考查了直角三角形30°的性质、直角三角形斜边中线的性质、等腰三角形的性质、轴对称的性质、线段垂直平分线的性质、动点运动路径问题、弧长公式,熟练掌握直角三角形斜边中线等于斜边一半是本题的关键,难度适中.16.【答案】(32,√32) 【解析】解:作N 关于OA 的对称点N′,连接N′M 交OA 于P ,则此时,PM+PN 最小,∵OA 垂直平分NN′,∴ON=ON′,∠N′ON=2∠AON=60°, ∴△NON′是等边三角形,∵点M 是ON 的中点,∴N′M ⊥ON ,∵点N (3,0),∴ON=3,∵点M 是ON 的中点,∴OM=1.5,∴PM=, ∴P (,).故答案为:(,).作N关于OA的对称点N′,连接N′M交OA于P,则此时,PM+PN最小,由作图得到ON=ON′,∠N′ON=2∠AON=60°,求得△NON′是等边三角形,根据等边三角形的性质得到N′M⊥ON,解直角三角形即可得到结论.本题考查了轴对称-最短路线问题,等边三角形的判定和性质,解直角三角形,关键是确定P的位置.17.【答案】②③④【解析】解:①观察函数图象可知,当t=2时,两函数图象相交,∵C地位于A、B两地之间,∴交点代表了两车离C地的距离相等,并不是两车相遇,结论①错误;②甲车的速度为240÷4=60(km/h),乙车的速度为200÷(3.5-1)=80(km/h),∵(240+200-60-170)÷(60+80)=1.5(h),∴乙车出发1.5h时,两车相距170km,结论②正确;③∵(240+200-60)÷(60+80)=2(h),∴乙车出发2h时,两车相遇,结论③正确;④∵80×(4-3.5)=40(km),∴甲车到达C地时,两车相距40km,结论④正确.综上所述,正确的结论有:②③④.故答案为:②③④.①观察函数图象可知,当t=2时,两函数图象相交,结合交点代表的意义,即可得出结论①错误;②根据速度=路程÷时间分别求出甲、乙两车的速度,再根据时间=路程÷速度和可求出乙车出发1.5h时,两车相距170km,结论②正确;③根据时间=路程÷速度和可求出乙车出发2h时,两车相遇,结论③正确;④结合函数图象可知当甲到C地时,乙车离开C地0.5小时,根据路程=速度×时间,即可得出结论④正确.综上即可得出结论.本题考查了一次函数的应用,根据函数图象逐一分析四条结论的正误是解题的关键.18.【答案】√5−12【解析】解:作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB,在△AOE和△BAG中,,∴△AOE≌△BAG(AAS),∴OE=AG,AE=BG,∵点A(n,1),∴AG=OE=n,BG=AE=1,∴B(n+1,1-n),∴k=n×1=(n+1)(1-n),整理得:n2+n-1=0,解得:n=(负值舍去),∴n=,∴k=;故答案为:.作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,则AG⊥BC,先求得△AOE≌△BAG,得出AG=OE=n,BG=AE=1,从而求得B(n+1,1-n),根据k=n×1=(n+1)(1-n)得出方程,解方程即可.本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.19.【答案】(-2,0)【解析】解:如图所示,P1(-2,0),P2(2,-4),P3(0,4),P4(-2,-2),P5(2,-2),P6(0,2),发现6次一个循环,∵2017÷6=336…1,∴点P2017的坐标与P1的坐标相同,即P2017(-2,0),故答案为(-2,0).画出P1~P6,寻找规律后即可解决问题.本题考查坐标与图形的性质、点的坐标等知识,解题的关键是循环探究问题的方法,属于中考常考题型.。
中考数学28道压轴题含答案解析

中考数学选填压轴题练习一.根的判别式(共1小题)1.(2023•广州)已知关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,则的化简结果是()A.﹣1B.1C.﹣1﹣2k D.2k﹣3【分析】首先根据关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,得判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,由此可得k≤1,据此可对进行化简.【解答】解:∵关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,∴判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,整理得:﹣8k+8≥0,∴k≤1,∴k﹣1≤0,2﹣k>0,∴=﹣(k﹣1)﹣(2﹣k)=﹣1.故选:A.二.函数的图象(共1小题)2.(2023•温州)【素材1】某景区游览路线及方向如图1所示,①④⑥各路段路程相等,⑤⑦⑧各路段路程相等,②③两路段路程相等.【素材2】设游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟;小州游路线①②⑧,他离入口的路程s与时间t的关系(部分数据)如图2所示,在2100米处,他到出口还要走10分钟.【问题】路线①③⑥⑦⑧各路段路程之和为()A.4200米B.4800米C.5200米D.5400米【分析】设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米,由题意及图象可知,然后根据“游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟”可进行求解.【解答】解:由图象可知:小州游玩行走的时间为75+10﹣40=45(分钟),小温游玩行走的时间为205﹣100=105(分钟),设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米由图象可得:,解得:x+y+z=2700,∴游玩行走的速度为:(2700﹣2100)÷10=60 (米/分),由于游玩行走速度恒定,则小温游路线①④⑤⑥⑦⑧的路程为:3x+3y=105×60=6300,∴x+y=2100,∴路线①③⑥⑦⑧各路段路程之和为:2x+2y+z=x+y+z+x+y=2700+2100=4800(米).故选:B.三.动点问题的函数图象(共1小题)3.(2023•河南)如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为,图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为()A.6B.3C.D.【分析】如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O沿直线运动到顶点B,结合图象可知,当点P在AO上运动时,PB=PC,AO=,易知∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,可知AO=OB=,过点O作OD⊥AB,解直角三角形可得AD=AO•cos30°,进而得出等边三角形ABC的边长.【解答】解:如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O沿直线运动到顶点B,\结合图象可知,当点P在AO上运动时,,∴PB=PC,,又∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∴△APB≌△APC(SSS),∴∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,∴OB=,即AO=OB=,∴∠BAO=∠ABO=30°,过点O作OD⊥AB,垂足为D,∴AD=BD,则AD=AO•cos30°=3,∴AB=AD+BD=6,即等边三角形ABC的边长为6.故选:A.四.反比例函数系数k的几何意义(共1小题)4.(2023•宁波)如图,点A,B分别在函数y=(a>0)图象的两支上(A在第一象限),连结AB交x 轴于点C.点D,E在函数y=(b<0,x<0)图象上,AE∥x轴,BD∥y轴,连结DE,BE.若AC =2BC,△ABE的面积为9,四边形ABDE的面积为14,则a﹣b的值为12,a的值为9.【分析】依据题意,设A(m,),再由AE∥x轴,BD∥y轴,AC=2BC,可得B(﹣2m,﹣),D (﹣2m,﹣),E(,),再结合△ABE的面积为9,四边形ABDE的面积为14,即可得解.【解答】解:设A(m,),∵AE∥x轴,且点E在函数y=上,∴E(,).∵AC=2BC,且点B在函数y=上,∴B(﹣2m,﹣).∵BD∥y轴,点D在函数y=上,∴D(﹣2m,﹣).∵△ABE的面积为9,∴S△ABE=AE×(+)=(m﹣)(+)=m••==9.∴a﹣b=12.∵△ABE的面积为9,四边形ABDE的面积为14,∴S△BDE=DB•(+2m)=(﹣+)()m=(a﹣b)••()•m=3()=5.∴a=﹣3b.又a﹣b=12.∴a=9.故答案为:12,9.五.反比例函数图象上点的坐标特征(共2小题)5.(2023•德州)如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(6,3),D是OA的中点,AC,BD交于点E,函数的图象过点B.E.且经过平移后可得到一个反比例函数的图象,则该反比例函数的解析式()A.y=﹣B.C.D.【分析】先根据函数图象经过点B和点E,求出a和b,再由所得函数解析式即可解决问题.【解答】解:由题知,A(6,0),B(6,3),C(0,3),令直线AC的函数表达式为y1=k1x+b1,则,解得,所以.又因为点D为OA的中点,所以D(3,0),同理可得,直线BD的函数解析式为y2=x﹣3,由得,x=4,则y=4﹣3=1,所以点E坐标为(4,1).将B,E两点坐标代入函数解析式得,,解得.所以,则,将此函数图象向左平移3个单位长度,再向下平移4个单位长度,所得图象的函数解析式为:.故选:D.6.如图,O是坐标原点,Rt△OAB的直角顶点A在x轴的正半轴上,AB=2,∠AOB=30°,反比例函数y=(k>0)的图象经过斜边OB的中点C.(1)k=;(2)D为该反比例函数图象上的一点,若DB∥AC,则OB2﹣BD2的值为4.【分析】(1)根据直角三角形的性质,求出A、B两点坐标,作出辅助线,证得△OPC≌△APC(HL),利用勾股定理及待定系数法求函数解析式即可解答.(2)求出AC、BD的解析式,再联立方程组,求得点D的坐标,分两种情况讨论即可求解.【解答】解:(1)在Rt△OAB中,AB=2,∠AOB=30°,∴,∴,∵C是OB的中点,∴OC=BC=AC=2,如图,过点C作CP⊥OA于P,∴△OPC≌△APC(HL),∴,在Rt△OPC中,PC=,∴C(,1).∵反比例函数y=(k>0)的图象经过斜边OB的中点C,∴,解得k=.故答案为:.(2)设直线AC的解析式为y=k1x+b(k≠0),则,解得,∴AC的解析式为y=﹣x+2,∵AC∥BD,∴直线BD的解析式为y=﹣x+4,∵点D既在反比例函数图象上,又在直线BD上,∴联立得,解得,,当D的坐标为(2+3,)时,BD2==9+3=12,∴OB2﹣BD2=16﹣12=4;当D的坐标为(2﹣3,)时,BD2=+=9+3=12,∴OB2﹣BD2=16﹣12=4;综上,OB2﹣BD2=4.故答案为:4.六.反比例函数与一次函数的交点问题(共1小题)7.(2023•湖州)已知在平面直角坐标系中,正比例函数y=k1x(k1>0)的图象与反比例函数(k2>0)的图象的两个交点中,有一个交点的横坐标为1,点A(t,p)和点B(t+2,q)在函数y=k1x的图象上(t≠0且t≠﹣2),点C(t,m)和点D(t+2,n)在函数的图象上.当p﹣m与q﹣n的积为负数时,t的取值范围是()A.或B.或C.﹣3<t<﹣2或﹣1<t<0D.﹣3<t<﹣2或0<t<1【分析】将交点的横坐标1代入两个函数,令二者函数值相等,得k1=k2.令k1=k2=k,代入两个函数表达式,并分别将点A、B的坐标和点C、D的坐标代入对应函数,进而分别求出p﹣m与q﹣n的表达式,代入解不等式(p﹣m)(q﹣n)<0并求出t的取值范围即可.【解答】解:∵y=k1x(k1>0)的图象与反比例函数(k2>0)的图象的两个交点中,有一个交点的横坐标为1,∴k1=k2.令k1=k2=k(k>0),则y=k1x=kx,=.将点A(t,p)和点B(t+2,q)代入y=kx,得;将点C(t,m)和点D(t+2,n)代入y=,得.∴p﹣m=kt﹣=k(t﹣),q﹣n=k(t+2)﹣=k(t+2﹣),∴(p﹣m)(q﹣n)=k2(t﹣)(t+2﹣)<0,∴(t﹣)(t+2﹣)<0.∵(t﹣)(t+2﹣)=•=<0,∴<0,∴t(t﹣1)(t+2)(t+3)<0.①当t<﹣3时,t(t﹣1)(t+2)(t+3)>0,∴t<﹣3不符合要求,应舍去.②当﹣3<t<﹣2时,t(t﹣1)(t+2)(t+3)<0,∴﹣3<t<﹣2符合要求.③当﹣2<t<0时,t(t﹣1)(t+2)(t+3)>0,∴﹣2<t<0不符合要求,应舍去.④当0<t<1时,t(t﹣1)(t+2)(t+3)<0,∴0<t<1符合要求.⑤当t>1时,t(t﹣1)(t+2)(t+3)>0,∴t>1不符合要求,应舍去.综上,t的取值范围是﹣3<t<﹣2或0<t<1.故选:D.七.二次函数图象与系数的关系(共3小题)8.(2023•乐至县)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,且过点(1,0).现有以下结论:①abc<0;②5a+c=0;③对于任意实数m,都有2b+bm≤4a﹣am2;④若点A(x1,y1)、B(x2,y2)是图象上任意两点,且|x1+2|<|x2+2|,则y1<y2,其中正确的结论是()A.①②B.②③④C.①②④D.①②③④【分析】根据题意和函数图象,利用二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图象可得,a>0,b>0,c<0,∴abc<0,故①正确,∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,且过点(1,0).∴﹣=﹣2,a+b+c=0,∴b=4a,∴a+b+c=a+4a+c=0,故5a+c=0,故②正确,∵当x=﹣2时,y=4a﹣2b+c取得最小值,∴am2+bm+c≥4a﹣2b+c,即2b+bm≥4a﹣am2(m为任意实数),故③错误,∵抛物线开口向上,对称轴为直线x=﹣2,若点A(x1,y1)、B(x2,y2)是图象上任意两点,且|x1+2|<|x2+2|,∴y1<y2,故④正确;故选:C.9.(2023•丹东)抛物线y=ax2+bx+c(a≠0)与x轴的一个交点为A(﹣3,0),与y轴交于点C,点D是抛物线的顶点,对称轴为直线x=﹣1,其部分图象如图所示,则以下4个结论:①abc>0;②E(x1,y1),F(x2,y2)是抛物线y=ax2+bx(a≠0)上的两个点,若x1<x2,且x1+x2<﹣2,则y1<y2;③在x轴上有一动点P,当PC+PD的值最小时,则点P的坐标为;④若关于x的方程ax2+b(x﹣2)+c =﹣4(a≠0)无实数根,则b的取值范围是b<1.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据所给函数图象可得出a,b,c的正负,再结合抛物线的对称性和增减性即可解决问题.【解答】解:根据所给函数图象可知,a>0,b>0,c<0,所以abc<0,故①错误.因为抛物线y=ax2+bx的图象可由抛物线y=ax2+bx+c的图象沿y轴向上平移|c|个单位长度得到,所以抛物线y=ax2+bx的增减性与抛物线y=ax2+bx+c的增减性一致.则当x<﹣1时,y随x的增大而减小,又x1<x2,且x1+x2<﹣2,若x2<﹣1,则E,F两点都在对称轴的左侧,此时y1>y2.故②错误.作点C关于x轴的对称点C′,连接C′D与x轴交于点P,连接PC,此时PC+PD的值最小.将A(﹣3,0)代入二次函数解析式得,9a﹣3b+c=0,又,即b=2a,所以9a﹣6a+c=0,则c=﹣3a.又抛物线与y轴的交点坐标为C(0,c),则点C坐标为(0,﹣3a),所以点C′坐标为(0,3a).又当x=﹣1时,y=﹣4a,即D(﹣1,﹣4a).设直线C′D的函数表达式为y=kx+3a,将点D坐标代入得,﹣k+3a=﹣4a,则k=7a,所以直线C′D的函数表达式为y=7ax+3a.将y=0代入得,x=.所以点P的坐标为(,0).故③正确.将方程ax2+b(x﹣2)+c=﹣4整理得,ax2+bx+c=2b﹣4,因为方程没有实数根,所以抛物线y=ax2+bx+c与直线y=2b﹣4没有公共点,所以2b﹣4<﹣4a,则2b﹣4<﹣2b,解得b<1,又b>0,所以0<b<1.故④错误.所以正确的有③.故选:A.10.(2023•河北)已知二次函数y=﹣x2+m2x和y=x2﹣m2(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.m2C.4D.2m2【分析】求出三个交点的坐标,再构建方程求解.【解答】解:令y=0,则﹣x2+m2x=0和x2﹣m2=0,∴x=0或x=m2或x=﹣m或x=m,∵这四个交点中每相邻两点间的距离都相等,若m>0,则m2=2m,∴m=2,若m<0时,则m2=﹣2m,∴m=﹣2.∵抛物线y=x2﹣m2的对称轴为直线x=0,抛物线y=﹣x2+m2x的对称轴为直线x=,∴这两个函数图象对称轴之间的距离==2.故选:A.八.二次函数图象上点的坐标特征(共1小题)11.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac 的值为()A.﹣1B.﹣2C.﹣3D.﹣4【分析】过A作AH⊥x轴于H,根据正方形的性质得到∠AOB=45°,得到AH=OH,利用待定系数法求得a、c的值,即可求得结论.【解答】解:过A作AH⊥x轴于H,∵四边形ABCO是正方形,∴∠AOB=45°,∴∠AOH=45°,∴AH=OH,设A(m,m),则B(0,2m),∴,解得am=﹣1,m=,∴ac的值为﹣2,故选:B.九.二次函数与不等式(组)(共1小题)12.(2023•西宁)直线y1=ax+b和抛物线(a,b是常数,且a≠0)在同一平面直角坐标系中,直线y1=ax+b经过点(﹣4,0).下列结论:①抛物线的对称轴是直线x=﹣2;②抛物线与x轴一定有两个交点;③关于x的方程ax2+bx=ax+b有两个根x1=﹣4,x2=1;④若a >0,当x<﹣4或x>1时,y1>y2.其中正确的结论是()A.①②③④B.①②③C.②③D.①④【分析】根据直线y1=ax+b经过点(﹣4,0).得到b=4a,于是得到=ax2+4ax,求得抛物线的对称轴是直线x=﹣﹣=2;故①正确;根据Δ=16a2>0,得到抛物线与x轴一定有两个交点,故②正确;把b=4a,代入ax2+bx=ax+b得到x2+3x﹣4=0,求得x1=﹣4,x2=1;故③正确;根据a>0,得到抛物线的开口向上,直线y1=ax+b和抛物线交点横坐标为﹣4,1,于是得到结论.【解答】解:∵直线y1=ax+b经过点(﹣4,0).∴﹣4a+b=0,∴b=4a,∴=ax2+4ax,∴抛物线的对称轴是直线x=﹣﹣=2;故①正确;∵=ax2+4ax,∴Δ=16a2>0,∴抛物线与x轴一定有两个交点,故②正确;∵b=4a,∴方程ax2+bx=ax+b为ax2+4ax=ax+4a得,整理得x2+3x﹣4=0,解得x1=﹣4,x2=1;故③正确;∵a>0,抛物线的开口向上,直线y1=ax+b和抛物线交点横坐标为﹣4,1,∴当x<﹣4或x>1时,y1<y2.故④错误,故选:B.一十.三角形中位线定理(共1小题)13.(2023•广州)如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点M是边AC上一动点,点D,E分别是AB,MB的中点,当AM=2.4时,DE的长是 1.2.若点N在边BC上,且CN=AM,点F,G分别是MN,AN的中点,当AM>2.4时,四边形DEFG面积S的取值范围是3≤S≤4.【分析】依据题意,根据三角形中位线定理可得DE=AM=1.2;设AM=x,从而DE=x,由DE∥AM,且DE=AM,又FG∥AM,FG=AM,进而DE∥FG,DE=FG,从而四边形DEFG是平行四边形,结合题意可得DE边上的高为(4﹣x),故四边形DEFG面积S=4x﹣x2,进而利用二次函数的性质可得S的取值范围.【解答】解:由题意,点D,E分别是AB,MB的中点,∴DE是三角形ABM的中位线.∴DE=AM=1.2.如图,设AM=x,∴DE=AM=x.由题意得,DE∥AM,且DE=AM,又FG∥AM,FG=AM,∴DE∥FG,DE=FG.∴四边形DEFG是平行四边形.由题意,GF到AC的距离是x,BC==8,∴DE边上的高为(4﹣x).∴四边形DEFG面积S=2x﹣x2,=﹣(x﹣4)2+4.∵2.4<x≤6,∴3≤S≤4.故答案为:1.2;3≤S≤4.一十一.矩形的性质(共2小题)14.(2023•宁波)如图,以钝角三角形ABC的最长边BC为边向外作矩形BCDE,连结AE,AD,设△AED,△ABE,△ACD的面积分别为S,S1,S2,若要求出S﹣S1﹣S2的值,只需知道()A.△ABE的面积B.△ACD的面积C.△ABC的面积D.矩形BCDE的面积【分析】作AG⊥ED于点G,交BC于点F,可证明四边形BFGE是矩形,AF⊥BC,可推导出S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,所以只需知道S△ABC,就可求出S﹣S1﹣S2的值,于是得到问题的答案.【解答】解:作AG⊥ED于点G,交BC于点F,∵四边形BCDE是矩形,∴∠FBE=∠BEG=∠FGE=90°,BC∥ED,BC=ED,BE=CD,∴四边形BFGE是矩形,∠AFB=∠FGE=90°,∴FG=BE=CD,AF⊥BC,∴S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,∴只需知道S△ABC,就可求出S﹣S1﹣S2的值,故选:C.15.(2023•河南)矩形ABCD中,M为对角线BD的中点,点N在边AD上,且AN=AB=1.当以点D,M,N为顶点的三角形是直角三角形时,AD的长为2或1+.【分析】以点D,M,N为顶点的三角形是直角三角形时,分两种情况:如图1,当∠MND=90°时,如图2,当∠NMD=90°时,根据矩形的性质和等腰直角三角形的性质即可得到结论.【解答】解:以点D,M,N为顶点的三角形是直角三角形时,分两种情况:①如图1,当∠MND=90°时,则MN⊥AD,∵四边形ABCD是矩形,∴∠A=90°,∴MN∥AB,∵M为对角线BD的中点,∴AN=DN,∵AN=AB=1,∴AD=2AN=2;如图2,当∠NMD=90°时,则MN⊥BD,∵M为对角线BD的中点,∴BM=DM,∴MN垂直平分BD,∴BN=DN,∵∠A=90°,AB=AN=1,∴BN=AB=,∴AD=AN+DN=1+,综上所述,AD的长为2或1+.故答案为:2或1+.一十二.正方形的性质(共2小题)16.如图,在边长为4的正方形ABCD中,点G是BC上的一点,且BG=3GC,DE⊥AG于点E,BF∥DE,且交AG于点F,则tan∠EDF的值为()A.B.C.D.【分析】由正方形ABCD的边长为4及BG=3CG,可求出BG的长,进而求出AG的长,证△ADE∽△GAB,利用相似三角形对应边成比例可求得AE、DE的长,证△ABF≌△DAE,得AF=DE,根据线段的和差求得EF的长即可.【解答】解:∵四边形ABCD是正方形,AB=4,∴BC=CD=DA=AB=4,∠BAD=∠ABC=90°,AD∥BC,∴∠DAE=∠AGB,∵BG=3CG,∴BG=3,∴在Rt△ABG中,AB2+BG2=AG2,∴AG=,∵DE⊥AG,∴∠DEA=∠DEF=∠ABC=90°,∴△ADE∽△GAB,∴AD:GA=AE:GB=DE:AB,∴4:5=AE:3=DE:4,∴AE=,DE=,又∵BF∥DE,∴∠AFB=∠DEF=90°,又∵AB=AD,∠DAE=∠ABF(同角的余角相等),∴△ABF≌△DAE,∴AF=DE=,∴EF=AF﹣AE=,∴tan∠EDF=,故选:A.17.(2023•湖州)如图,标号为①,②,③,④的四个直角三角形和标号为⑤的正方形恰好拼成对角互补的四边形ABCD,相邻图形之间互不重叠也无缝隙,①和②分别是等腰Rt△ABE和等腰Rt△BCF,③和④分别是Rt△CDG和Rt△DAH,⑤是正方形EFGH,直角顶点E,F,G,H分别在边BF,CG,DH,AE上.(1)若EF=3cm,AE+FC=11cm,则BE的长是4cm.(2)若,则tan∠DAH的值是3.【分析】(1)将AE和FC用BE表示出来,再代入AE+FC=11cm,即可求出BE的长;(2)由已知条件可以证明∠DAH=∠CDG,从而得到tan∠DAH=tan∠CDG,设AH=x,DG=5k,GH =4k,用x和k的式子表示出CG,再利用tan∠DAH=tan∠CDG列方程,解出x,从而求出tan∠DAH 的值.【解答】解:(1)∵Rt△ABE和Rt△BCF都是等腰直角三角形,∴AE=BE,BF=CF,∵AE+FC=11cm,∴BE+BF=11cm,即BE+BE+EF=11cm,即2BE+EF=11cm,∵EF=3cm,∴2BE+3cm=11cm,∴BE=4cm,故答案为:4;(2)设AH=x,∵,∴可设DG=5k,GH=4k,∵四边形EFGH是正方形,∴HE=EF=FG=GH=4k,∵Rt△ABE和Rt△BCF都是等腰直角三角形,∴AE=BE,BF=CF,∠ABE=∠CBF=45°,∴CG=CF+GF=BF+4k=BE+8k=AH+12k=x+12k,∠ABC=∠ABE+∠CBF=45°+45°=90°,∵四边形ABCD对角互补,∴∠ADC=90°,∴∠ADH+∠CDG=90°,∵四边形EFGH是正方形,∴∠AHD=∠CGD=90°,∴∠ADH+∠DAH=90°,∴∠DAH=∠CDG,∴tan∠DAH=tan∠CDG,∴,即,整理得:x2+12kx﹣45k2=0,解得x1=3k,x2=﹣15k(舍去),∴tan∠DAH===3.故答案为:3.一十三.正多边形和圆(共1小题)18.(2023•河北)将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l上.两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l平行,有两边分别经过两侧正六边形的一个顶点.则图2中:(1)∠α=30度;(2)中间正六边形的中心到直线l的距离为2(结果保留根号).【分析】(1)作图后,结合正多边形的外角的求法即可得到结论;(2)把问题转化为图形问题,首先作出图形,标出相应的字母,把正六边形的中心到直线l的距离转化为求ON=OM+BE,再根据正六边形的性质以及三角函数的定义,分别求出OM,BE即可.【解答】解:(1)作图如图所示,∵多边形是正六边形,∴∠ACB=60°,∵BC∥直线l,∴∠ABC=90°,∴α=30°;故答案为:30°;(2)取中间正六边形的中心为O,作图如图所示,由题意得,AG∥BF,AB∥GF,BF⊥AB,∴四边形ABFG为矩形,∴AB=GF,∵∠BAC=∠FGH,∠ABC=∠GFH=90°,∴△ABC≌△GFH(SAS),∴BC=FH,在Rt△PDE中,DE=1,PE=,由图1知AG=BF=2PE=2,OM=PE=,∵,∴,∴,∵,∴,∴.∴中间正六边形的中心到直线l的距离为2,故答案为:2.一十四.扇形面积的计算(共1小题)19.(2023•温州)图1是4×4方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF作为题字区域(点A,E,D,B在圆上,点C,F在AB上),形成一幅装饰画,则圆的半径为5.若点A,N,M在同一直线上,AB∥PN,DE=EF,则题字区域的面积为.【分析】根据不共线三点确定一个圆,根据对称性得出圆心的位置,进而垂径定理、勾股定理求得r,连接OE,取ED的中点T,连接OT,在Rt△OET中,根据勾股定理即可求解.【解答】解:如图所示,依题意,GH=2=GQ,∵过左侧的三个端点Q,K,L作圆,QH=HL=4,又NK⊥QL,∴O在KN上,连接OQ,则OQ为半径,∵OH=r﹣KH=r﹣2,在Rt△OHQ中,OH2+QH2=QO2,∴(r﹣2)2+42=r2,解得:r=5;连接OE,取ED的中点T,连接OT,交AB于点S,连接PB,AM,过点O作OU⊥AM于点U.连接OA.由△OUN∽△NPM,可得==,∴OU=.MN=2,∴NU=,∴AU==,∴AN=AU﹣NU=2,∴AN=MN,∵AB∥PN,∴AB⊥OT,∴AS=SB,∴NS∥BM,∴NS∥MP,∴M,P,B共线,又NB=NA,∴∠ABM=90°,∵MN=NB,NP⊥MP,∴MP=PB=2,∴NS=MB=2,∵KH+HN=2+4=6,∴ON=6﹣5=1,∴OS=3,∵,设EF=ST=a,则,在Rt△OET中,OE2=OT2+TE2,即,整理得5a2+12a﹣32=0,即(a+4)(5a﹣8)=0,解得:或a=﹣4,∴题字区域的面积为.故答案为:.一十五.轴对称-最短路线问题(共1小题)20.(2023•安徽)如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误的是()A.P A+PB的最小值为3B.PE+PF的最小值为2C.△CDE周长的最小值为6D.四边形ABCD面积的最小值为3【分析】延长AD,BC交于M,过P作直线l∥AB,由△ADE和△BCE是等边三角形,可得四边形DECM 是平行四边形,而P为CD中点,知P为EM中点,故P在直线l上运动,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB=P A'+PB最小,即可得P A+PB 最小值A'B==2,判断选项A错误;由PM=PE,即可得当M,P,F共线时,PE+PF 最小,最小值为MF的长度,此时PE+PF的最小值为2,判断选项B正确;过D作DK⊥AB于K,过C作CT⊥AB于T,由△ADE和△BCE是等边三角形,得KT=KE+TE=AB=2,有CD≥2,故△CDE周长的最小值为6,判断选项C正确;设AE=2m,可得S四边形ABCD=(m﹣1)2+3,即知四边形ABCD面积的最小值为3,判断选项D正确.【解答】解:延长AD,BC交于M,过P作直线l∥AB,如图:∵△ADE和△BCE是等边三角形,∴∠DEA=∠MBA=60°,∠CEB=∠MAB=60°,∴DE∥BM,CE∥AM,∴四边形DECM是平行四边形,∵P为CD中点,∴P为EM中点,∵E在线段AB上运动,∴P在直线l上运动,由AB=4知等边三角形ABM的高为2,∴M到直线l的距离,P到直线AB的距离都为,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB =P A'+PB最小,此时P A+PB最小值A'B===2,故选项A错误,符合题意;∵PM=PE,∴PE+PF=PM+PF,∴当M,P,F共线时,PE+PF最小,最小值为MF的长度,∵F为AB的中点,∴MF⊥AB,∴MF为等边三角形ABM的高,∴PE+PF的最小值为2,故选项B正确,不符合题意;过D作DK⊥AB于K,过C作CT⊥AB于T,如图,∵△ADE和△BCE是等边三角形,∴KE=AE,TE=BE,∴KT=KE+TE=AB=2,∴CD≥2,∴DE+CE+CD≥AE+BE+2,即DE+CE+CD≥AB+2,∴DE+CE+CD≥6,∴△CDE周长的最小值为6,故选项C正确,不符合题意;设AE=2m,则BE=4﹣2m,∴AK=KE=m,BT=ET=2﹣m,DK=AK=m,CT=BT=2﹣m,∴S△ADK=m•m=m2,S△BCT=(2﹣m)(2﹣m)=m2﹣2m+2,S梯形DKTC =(m+2﹣m)•2=2,∴S四边形ABCD=m2+m2﹣2m+2+2=m2﹣2m+4=(m﹣1)2+3,∴当m=1时,四边形ABCD面积的最小值为3,故选项D正确,不符合题意;故选:A.一十六.翻折变换(折叠问题)(共2小题)21.(2023•乐至县)如图,在平面直角坐标系xOy中,边长为2的等边△ABC的顶点A、B分别在x轴、y 轴的正半轴上移动,将△ABC沿BC所在直线翻折得到△DBC,则OD的最大值为+1.【分析】过点D作DF⊥AB,交AB延长线于点F,取AB的中点E,连接DE,OE,OD,在Rt△ABO 中利用斜边中线性质求出OE,根据OE+DE≥OD确定当D、O、E三点共线时OD最大,最大值为OD =OE+DE.【解答】解:如图,过点D作DF⊥AB,交AB延长线于点F,取AB的中点E,连接DE,OE,OD,∵等边三角形ABC的边长为2,∴AB=2,∠ABC=60°,由翻折可知:∠DBC=∠ABC=60°,DB=AB=2,∴∠DBF=60°,∵DF⊥AB,∴∠DFB=90°,∴∠BDF=30°,∴BF=BD=1,∴DF=BF=,∵E是AB的中点,∴AE=BE=OE=AB=1,∴EF=BE+BF=2,∴DE===,∴OD≤DE+OE=+1,∴当D、E、O三点共线时OD最大,最大值为+1.故答案为:+1.22.(2023•南京)如图,在菱形纸片ABCD中,点E在边AB上,将纸片沿CE折叠,点B落在B′处,CB′⊥AD,垂足为F.若CF=4cm,FB′=1cm,则BE=cm.【分析】作EH⊥BC于点H,由CF=4cm,FB′=1cm,求得B′C=5cm,由折叠得BC=B′C=5cm,由菱形的性质得BC∥AD,DC=BC=5cm,∠B=∠D,因为CB′⊥AD于点F,所以∠BCB′=∠CFD =90°,则∠BCE=∠B′CE=45°,DF==3cm,所以∠HEC=∠BCE=45°,则CH=EH,由=sin B=sin D=,=cos B=cos D=,得CH=EH=BE,BH=BE,于是得BE+BE =5,则BE=cm.【解答】解:作EH⊥BC于点H,则∠BHE=∠CHE=90°,∵CF=4cm,FB′=1cm,∴B′C=CF+FB′=4+1=5(cm),由折叠得BC=B′C=5cm,∠BCE=∠B′CE,∵四边形ABCD是菱形,∴BC∥AD,DC=BC=5cm,∠B=∠D,∵CB′⊥AD于点F,∴∠BCB′=∠CFD=90°,∴∠BCE=∠B′CE=∠BCB′=×90°=45°,DF===3(cm),∴∠HEC=∠BCE=45°,∴CH=EH,∵=sin B=sin D==,=cos B=cos D==,∴CH=EH=BE,BH=BE,∴BE+BE=5,∴BE=cm,故答案为:.一十七.旋转的性质(共1小题)23.(2023•西宁)如图,在矩形ABCD中,点P在BC边上,连接P A,将P A绕点P顺时针旋转90°得到P A′,连接CA′,若AD=9,AB=5,CA′=2,则BP=2.【分析】过A′点作A′H⊥BC于H点,如图,根据旋转的性质得到P A=P A′,再证明△ABP≌△PHA′得到PB=A′H,PH=AB=5,设PB=x,则A′H=x,CH=4﹣x,然后在Rt△A′CH中利用勾股定理得到x2+(4﹣x)2=(2)2,于是解方程求出x即可.【解答】解:过A′点作A′H⊥BC于H点,如图,∵四边形ABCD为矩形,∴BC=AD=9,∠B=90°,∵将P A绕点P顺时针旋转90°得到P A′,∴P A=P A′,∵∠P AB+∠APB=90°,∠APB+∠A′PH=90°,∴∠P AB=∠A′PH,在△ABP和△PHA′中,,∴△ABP≌△PHA′(AAS),∴PB=A′H,PH=AB=5,设PB=x,则A′H=x,CH=9﹣x﹣5=4﹣x,在Rt△A′CH中,x2+(4﹣x)2=(2)2,解得x1=x2=2,即BP的长为2.故答案为:2.一十八.相似三角形的判定与性质(共2小题)24.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD=DF,则=(结果用含k的代数式表示).【分析】方法一:先根据轴对称的性质和已知条件证明DE∥AC,再证△BDE∽△BAC,推出EC=k•AB,通过证明△ABC∽△ECF,推出CF=k2•AB,即可求出的值.方法二:证明AD=DF=BD,可得BF⊥AC,设AB=AC=1,BC=k,CF=x,则AF=1﹣x,利用勾股定理列方程求出x的值,进而可以解决问题.【解答】解:方法一:∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB,∵AD=DF,∴∠A=∠DF A,∵点B和点F关于直线DE对称,∴∠BDE=∠FDE,∵∠BDE+∠FDE=∠BDF=∠A+∠DF A,∴∠FDE=∠DF A,∴DE∥AC,∴∠C=∠DEB,∠DEF=∠EFC,∵点B和点F关于直线DE对称,∴∠DEB=∠DEF,∴∠C=∠EFC,∵AB=AC,∴∠C=∠B,∵∠ACB=∠EFC,∴△ABC∽△ECF,∴=,∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴==,∴EC=BC,∵=k,∴BC=k•AB,∴EC=k•AB,∴=,∴CF=k2•AB,∴====.方法二:如图,连接BF,∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB=DF,∴BF⊥AC,设AB=AC=1,则BC=k,设CF=x,则AF=1﹣x,由勾股定理得,AB2﹣AF2=BC2﹣CF2,∴12﹣(1﹣x)2=k2﹣x2,∴x=,∴AF=1﹣x=,∴=.故答案为:.25.(2023•广东)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为15.【分析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.【解答】解:如图,∵BF∥DE,∴△ABF∽△ADE,∴=,∵AB=4,AD=4+6+10=20,DE=10,∴=,∴BF=2,∴GF=6﹣2=4,∵CK∥DE,∴△ACK∽△ADE,∴=,∵AC=4+6=10,AD=20,DE=10,∴=,∴CK=5,∴HK=6﹣5=1,∴阴影梯形的面积=(HK+GF)•GH=(1+4)×6=15.故答案为:15.一十九.相似三角形的应用(共1小题)26.(2023•南京)如图,不等臂跷跷板AB的一端A碰到地面时,另一端B到地面的高度为60cm;当AB 的一端B碰到地面时,另一端A到地面的高度为90cm,则跷跷板AB的支撑点O到地面的高度OH是()A.36cm B.40cm C.42cm D.45cm【分析】过点B作BC⊥AH,垂足为C,再证明A字模型相似△AOH∽△ABC,从而可得=,过点A作AD⊥BH,垂足为D,然后证明A字模型相似△ABD∽△OBH,从而可得=,最后进行计算即可解答.【解答】解:如图:过点B作BC⊥AH,垂足为C,∵OH⊥AC,BC⊥AC,∴∠AHO=∠ACB=90°,∵∠BAC=∠OAH,∴△AOH∽△ABC,∴=,∴=,如图:过点A作AD⊥BH,垂足为D,∵OH⊥BD,AD⊥BD,∴∠OHB=∠ADB=90°,∵∠ABD=∠OBH,∴△ABD∽△OBH,∴=,∴=,∴+=+,∴+=,∴+=1,解得:OH=36,∴跷跷板AB的支撑点O到地面的高度OH是36cm,故选:A.二十.解直角三角形(共1小题)27.(2023•丹东)如图,在平面直角坐标系中,点O是坐标原点,已知点A(3,0),B(0,4),点C在x 轴负半轴上,连接AB,BC,若tan∠ABC=2,以BC为边作等边三角形BCD,则点C的坐标为(﹣2,0);点D的坐标为(﹣1﹣2,2+)或(﹣1+2,2﹣).【分析】过点C作CE⊥AB于E,先求处AB=5,再设BE=t,由tan∠ABC=2得CE=2t,进而得BC =,由三角形的面积公式得S△ABC=AC•OB=AB•CE,即5×2t=4×(3+OC),则OC=﹣3,然后在Rt△BOC中由勾股定理得,由此解出t1=2,t2=10(不合题意,舍去),此时OC=﹣3=2,故此可得点C的坐标;设点D的坐标为(m,n),由两点间的距离公式得:BC2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,由△BCD为等边三角形得,整理:,②﹣①整理得m=3﹣2n,将m=3﹣2n代入①整理得n2﹣4n+1=0,解得n=,进而再求出m即可得点D的坐标.【解答】解:过点C作CE⊥AB于E,如图:∵点A(3,0),B(0,4),由两点间的距离公式得:AB==5,设BE=t,∵tan∠ABC=2,在Rt△BCE中,tan∠ABC=,∴=2,∴CE=2t,由勾股定理得:BC==t,∵CE⊥AB,OB⊥AC,AC=OC+OA=3+OC,∴S△ABC=AC•OB=AB•CE,即:5×2t=4×(3+OC),∴OC=﹣3,在Rt△BOC中,由勾股定理得:BC2﹣OB2=OC2,即,整理得:t2﹣12t+20=0,解得:t1=2,t2=10(不合题意,舍去),∴t=2,此时OC=﹣3=2,∴点C的坐标为(﹣2,0),设点D的坐标为(m,n),由两点间的距离公式得:BC2=(﹣2﹣0)2+(0﹣4)2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,∵△BCD为等边三角形,∵BD=CD=BC,∴,整理得:,②﹣①得:4m+8n=12,∴m=3﹣2n,将m=3﹣2n代入①得:(3﹣2n)2+n2﹣8n=4,整理得:n2﹣4n+1=0,解得:n=,当n=时,m=3﹣2n=,当n=时,m=3﹣2n=,∴点D的坐标为或.故答案为:(﹣2,0);或.二十一.解直角三角形的应用(共1小题)28.(2023•杭州)第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE,△ABF,△BCG,△CDH)和中间一个小正方形EFGH 拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF=α,∠BEF=β,若正方形EFGH与正方形ABCD的面积之比为1:n,tanα=tan2β,则n=()A.5B.4C.3D.2【分析】设AE=a,DE=b,则BF=a,AF=b,解直角三角形可得,化简可得(b﹣a)2=ab,a2+b2=3ab,结合勾股定理及正方形的面积公式可求得S正方形EFGH;S正方形ABCD=1:3,进而可求解n的值.【解答】解:设AE=a,DE=b,则BF=a,AF=b,∵tanα=,tanβ=,tanα=tan2β,∴,∴(b﹣a)2=ab,∴a2+b2=3ab,∵a2+b2=AD2=S正方形ABCD,(b﹣a)2=S正方形EFGH,∴S正方形EFGH:S正方形ABCD=ab:3ab=1:3,∵S正方形EFGH:S正方形ABCD=1:n,∴n=3.故选:C.。
中考数学选择题填空题压轴题专题训练

冲刺专题6:第12和18题专题训练一、工具法例1.如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD 于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A.B. C.D.随H点位置的变化而变化例1 变式1变式1:点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于()A.75° B.60° C.45° D.30°二、极值法例2.若对于任意非零实数a,抛物线y=a(x+2)(x﹣1)总不经过点P(x0﹣3,x0﹣5),则符合条件的点P()A.有1个B.有2个C.有3个D.有无穷多个变式2:在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a<0)与线段MN有一个交点,则a的取值范围是()A.a≤﹣1 B.﹣1<a<0 C.a<﹣1 D.﹣1≤a<0三、特殊值法例3.若实数a,b满足ab=1,设M=,N=,则M,N的大小关系是()A.M>N B.M=N C.M<N D.不确定变式3:无论m为何值,二次函数y=x2+(2﹣m)x+m的图象总经过定点.四、特殊位置法:特殊点,特殊线,特殊角,特殊模型例4.如图,已知点A(12,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=8时,这两个二次函数的最大值之和等于()变式4:(1)如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,则=()A. B. C. D.(2)如图,E是边长为4的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BR于点R,则PQ+PR的值是()A.2B.2 C.2D.五、排除法例5.如图,△ABC中,∠ACB=90°,AB=10,tanA=.点P是斜边AB上一个动点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A.B.C.D.例5 变式5变式5:如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当﹣3<x<2时,ax2+kx<b,其中正确的结论是()A.①②④B.①②⑤C.②③④D.③④⑤六、转化法例6.如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD 的最小值是.(1)如图,在△ABC中,∠BAC=60°,∠ACB=75°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB、AC于点E、F,连接EF,则线段EF长度的最小值为.(2)如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最小值是.例6变式6(1)变式6(2)七、综合分析法例7.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个变式7:如图,正方形ABCD的边长为4,点E、F分别从点A、点D以相同速度同时出发,点E从点A向点D运动,点F从点D向点C运动,点E运动到D点时,E、F停止运动.连接BE、AF相交于点G,连接CG.有下列结论:①AF⊥BE;②点G随着点E、F的运动而运动,且点G的运动路径的长度为π;③线段DG的最小值为2﹣2;④当线段DG最小时,△BCG的面积S=8+.其中正确的命题有.(填序号)八、特征分析法例8.如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B 两点.若点A的坐标为(n,1),则k的值为()A.B.C.D.变式8:如图,两个反比例函数y=和y=﹣的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形PAB的面积为()A.3 B.4 C.D.5例8变式8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AD 和 AE 上的动点,则 DQ +PQ 的最小值( )
A .2 更多精品文档
B.4
C. 2
D.4
学习 ----- 好资料
13.如图,已知抛物线 l 1:y=﹣ x2+2x 与 x 轴分别交于 A、 O 两点,顶点为 M .将抛物线 l 1 关于 y 轴对称到抛物线 l 2.则抛物线 l2 过点 O,与 x 轴的另一个交点为 B,顶点为 N,连接 AM、 MN 、NB,则四边形 AMNB 的面积( )
有
.
更多精品文档
C. 50
D. 40
5 个图形中所有正三角形的个数
学习 ----- 好资料
17.如图,每一幅图中均含有若干个正方形,第
1 幅图中有 1 个正方形;第 2 幅图中有 5
个正方形; … 按这样的规律下去,第 6 幅图中有
个正方形.
18.如图, Rt△ ABC 中,∠ C=90 °,以斜边 AB 为边向外作正方形 ABDE ,且正方形对角线
A .3
B.6
C. 8
D. 10
14.如图所示的二次函数 y=ax2+bx+c 的图象中,刘星同学观察得出了下面四条信息:① a+b+c=0;② b> 2a;③ ax2+bx+c=0 的两根分别为﹣ 3 和 1;④ a﹣ 2b+c> 0.你认为其中正确
的有( )
A .4 个
B.3 个
C. 2 个
D.1 个
A .6
B .12
C. 32
D. 64
4.如图, △ ABC 与△ DEF 均为等边三角形, O 为 BC、EF 的中点, 则 AD :BE 的值为 ( )
A. :1 更多精品文档
B. :1
C. 5:3
D. 不确定
学习 ----- 好资料
5.如图所示,点 P( 3a,a)是反比例函数 y= ( k> 0)与⊙ O 的一个交点,图中阴影部
A .1
B .3﹣
C. ﹣ 1
2.如图,已知 l1∥ l2∥l 3,相邻两条平行直线间的距离相等,若等腰直角△
分别在这三条平行直线上,则 sin α的值是( )
D. 4﹣ 2 ABC 的三个顶点
A.
B.
C.
D.
3.如图,已知:∠ MON =30 °,点 A1、A2、A3… 在射线 ON 上,点 B1、B2、B3… 在射线 OM 上,△ A1B1A2、△A2B2A3、△ A3B3A4… 均为等边三角形, 若 OA1=1,则△ A6B6A7 的边长为 ( )
率是
.
更多精品文档
学习 ----- 好资料
22.如下左图,已知直线 l: y= x,过点 A( 0, 1)作轴的垂线交直线 l 于点 B,过点 B 作直线 l 的垂线交 y 轴于点 A1;过点 A1 作 y 轴的垂线交直线 l 于点 B1,过点 B1 作直线 l 的
垂线交 y 轴于点 A2; …按此作法继续下去,则点 A2014 的坐标为
A.
B.
C.
D.3
11.如图,在△ ABC 中, AB=AC,∠ BAC =90 °,点 D 为线段 BC 上一点,连接 AD ,以 AD 为一边且在 AD 的右侧作正方形 ADEF ,CF 交 DE 于点 P.若 AC= ,CD=2,则线段 CP 的长( )
A .1
B.2
C.
D.
12.如图,正方形 ABCD 的边长是 4,∠ DAC 的平分线交 DC 于点 E,若点 P、 Q 分别是
交于点 O,连接 OC,已知 AC=5, OC=6 ,则另一直角边 BC 的长为
.
19.如图,△ ABC 的内心在 y 轴上,点 C 的坐标为( 2, 0),点 B 的坐标是( 0,2),直线
AC 的解析式为
,则 tanA 的值是
.
20.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(
分的面积为 10π,则反比例函数的解析式为(
)
A .y=
B .y=
C. y=
D. y=
6.如图,已知点 A, B,C, D 均在已知圆上, AD ∥ BC, AC 平分∠ BCD ,∠ ADC =120 °,
四边形 ABCD 的周长为 10cm.图中阴影部分的面积为(
)
A . cm2
B .( π﹣ ) cm2
学习 ----- 好资料
2017 年中考数学突破训练之选择、填空压轴题 一、选择题(共 15 小题) 1.如图,已知四边形 ABCD 为等腰梯形, AD∥ BC,AB=CD, AD= , E 为 CD 中点,连 接 AE,且 AE=2 ,∠ DAE =30°,作 AE⊥ AF 交 BC 于 F,则 BF =( )
C.
2
cm
D.
2
cm
7.如图,在 Rt△ ABC 中,∠ C=90 °, AC=8, BC=4 ,分别以 AC、 BC 为直径画半圆,则图 中阴影部分的面积为( )
A .20π﹣ 16
B . 10π﹣ 32
C. 10π﹣16
D. 20π﹣132
8、如图,将半径为 6 的⊙ O 沿 AB 折叠, 与 AB 垂直的半径 OC 交于点 D 且 CD =2OD, 则折痕 AB 的长为( )
15.如图,已知抛物线 线 l 1 沿 x 轴翻折后再向左平移得到抛物线 顶点为 N,则四边形 AMCN 的面积为(
与 x 轴分别交于 A、 B 两点,顶点为 M .将抛物 l 2.若抛物线 l2 过点 B,与 x 轴的另一个交点为 C, )
A .32
B .16
二、填空题(共 15 小题)
16.如图,下列图形是将正三角形按一定规律排列,则第
a,
b)进入其中时,会得到一个新的实数: a2+b﹣ 1,例如把( 3,﹣ 2)放入其中,就会得到
2
3 +(﹣ 2)﹣ 1=6.现将实数对( m,﹣ 2m)放入其中,得到实数 2,则 m=
.
21.对于平面内任意一个凸四边形 ABCD ,现从以下四个关系式① AB=CD ;② AD=BC;③
AB∥ CD;④∠ A=∠ C 中任取两个作为条件, 能够得出这个四边形 ABCD 是平行四边形的概
A.
B.
C. 6
D.
9.如图,在 Rt△ ABC 中,∠ C=90 °,AC=6,BC=8,⊙ O 为△ ABC 的内切圆,点 D 是斜边 AB 的中点,则 tan∠ODA =( )
更多精品文档
学习 ----- 好资料
梯形 ABCD 中, AD∥BC ,AB⊥ BC,AD =2,BC=DC =5,点 P 在 BC 上移动, 则当 PA+PD 取最小值时,△ APD 中边 AP 上的高为( )