高中数学高考竞赛与自主招生专题讲义第三讲:不等式的性质及证明(教师版)
《不等式的性质》课件

不等式的可乘性
总结词
如果a>b>0,且c>0,则ac>bc。
详细描述
这是不等式的另一个重要性质,称为可乘性。它表明当两个正数a和b之间存在一个正数c时,如果已 知a大于b,并且c也大于0,那么在两边同时乘以c后,得到的结果仍然是ac大于bc。
不等式的可除性
总结词
如果a>b>0,且c>0,则a/c>b/c。
详细描述
这是不等式的另一个重要性质,称为可除性。它表明当两个正数a和b之间存在一个正数c时,如果已知a大于b, 并且c也大于0,那么在两边同时除以c后,得到的结果仍然是a/c大于b/c。
PART 03
不等式的解法
代数法解不等式
代数法是解不等式最常用的方法 之一,通过移项、合并同类项、 化简等步骤,将不等式转化为容
总结词
如果a>b且b>c,则a>c。
详细描述
这是不等式的基本性质之一,称为传递性。它表明当两个数a和c之间存在一个 中间数b,且已知a大于b且b大于c时,那么a必然大于c。
不等式的可加性
总结词
如果a>b,那么a+c>b+c。
详细描述
这是不等式的另一个重要性质,称为可加性。它表明当两个数a和b之间存在一个 差值c时,如果已知a大于b,那么在两边同时加上c后,得到的结果仍然是a+c大 于b+c。
在经济中的应用
资源配置
市场分析
不等式可以用来描述资源配置问题, 例如在生产过程中如何分配资源以达 到最大效益。
在市场分析中,可以利用不等式性质 来分析市场供需关系,例如分析商品 价格与需求量之间的关系。
决策分析
不等式的性质与不等式证明

经济中的不等式问题
总结词
经济中的不等式问题涉及到资源的分配和优化,需要运用不等式性质和数学模型来解决。
详细描述
在经济中,不等式问题经常出现在生产计划、资源配置、市场分析等领域。例如,在生产计划中,比较不同生产 方案的成本和效益;在资源配置中,比较不同投资项目的回报率和风险;在市场分析中,比较不同产品的市场份 额和销售量。解决这类问题需要运用不等式性质和数学模型,如线性规划、整数规划等。
物理中的不等式问题
总结词
物理中的不等式问题涉及到物理量的比较和推理,需要运用物理原理和不等式性质来解 决。
详细描述
在物理中,不等式问题经常出现在力学、热学、电磁学等领域。例如,在力学中,比较 不同物体的速度、加速度和力的大小;在热学中,比较不同温度、压力和热量的大小; 在电磁学中,比较不同电场、磁场和电流的大小。解决这类问题需要运用物理原理和不
01
02
03
代数恒等式
利用代数恒等式进行证明, 如平方差公式、完全平方 公式等。
代数不等式
通过代数运算和变换,将 不等式转化为更易于证明 的形式。
放缩法
通过放缩不等式的两边, 使不等式更容易证明。
几何证明方法
面积法
利用几何图形的面积关系 证明不等式,如三角形面 积与边长关系。
体积法
利用几何体的体积关系证 明不等式,如球体体积与 半径关系。
函数图像法
利用函数图像的性质和变 化趋势证明不等式。
反证法
Hale Waihona Puke 反证法的定义通过假设所要证明的不等式不成立, 然后推导出矛盾,从而证明不等式成 立。
反证法的步骤
反证法的应用
在难以直接证明不等式时,可以考虑 使用反证法。
全国高中数学竞赛专题-不等式

全国高中数学竞赛专题-不等式证明不等式就是对不等式的左右两边或条件与结论进行代数变形和化归,而变形的依据是不等式的性质,不等式的性质分类罗列如下: 不等式的性质:.0,0<-⇔<>-⇔≥b a b a b a b a 这是不等式的定义,也是比较法的依据. 对一个不等式进行变形的性质: (1)a b b a <⇔>(对称性)(2)c b c a b a +>+⇔>(加法保序性)(3).0,;0,bc ac c b a bc ac c b a <⇒<>>⇒>> (4)*).(,0N n b a b a b a n n n n ∈>>⇒>> 对两个以上不等式进行运算的性质.(1)c a c b b a >⇒>>,(传递性).这是放缩法的依据. (2).,d b c a d c b a +>+⇒>> (3).,d b c a d c b a ->-⇒<> (4).,,0,0bc ad dbc a cd b a >>⇒>>>> 含绝对值不等式的性质:(1).)0(||22a x a a x a a x ≤≤-⇔≤⇔>≤ (2).)0(||22a x a x a x a a x -≤≥⇔≥⇔>≥或 (3)||||||||||||b a b a b a +≤±≤-(三角不等式).(4).||||||||2121n n a a a a a a +++≤+++证明不等式的常用方法有:比较法、放缩法、变量代换法、反证法、数学归纳法、构造函数方法等.当然在证题过程中,常可“由因导果”或“执果索因”.前者我们称之为综合法;后者称为分析法.综合法和分析法是解决一切数学问题的常用策略,分析问题时,我们往往用分析法,而整理结果时多用综合法,这两者并非证明不等式的特有方法,只是在不等式证明中使用得更为突出而已.此外,具体地证明一个不等式时,可能交替使用多种方法.因此,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。
不等式的性质及应用

反证法
定义:反证法是一种通过假设相反的结论成立,然后推导出 矛盾的结论,从而证明原结论正确的方法。
步骤
1. 假设相反的结论成立。
2. 推导出矛盾的结论。
3. 得出原结论正确的结论。
例子:例如,要证明一个数不能被3整除,可以先假设它可 以被3整除,然后推导出一些矛盾的结论,从而证明原结论 正确。
放缩法
不等式的性质及应用
2023-11-09
contents
目录
• 不等式的基本性质 • 不等式的证明方法 • 不等式的应用 • 不等式在数学竞赛中的应用 • 不等式的实际应用
01
不等式的基本性质
传递性
总结词
不等式的传递性是指如果a>b且c>d,那么ac>bd。
详细描述
不等式的传递性是基于实数的有序性质,即如果a>b且c>d ,那么ac>bd。但需要注意的是,不等式的传递性不适用于 所有的数学对象,例如在复数域上就不一定成立。
详细描述
不等式的乘法单调性是指当两个数a和b满足a>b且c>0时,那么a与c的乘积大于 b与c的乘积。这个性质在解决一些实际问题时非常有用,例如在经济学中的收益 问题。
正值不等式与严格不等式
总结词
正值不等式是指a>b时,称a>b;严格不等式是指a>b且a≠b时,称a>b。
详细描述
正值不等式是指当a大于b时,我们称a大于b;严格不等式是指当a大于b且a不等于b时,我们称a大于b。在数学 中,我们通常使用严格不等式来描述两个数之间的关系,以保证它们之间没有相等的情况。
利用不等式解决其他问题竞赛题
总结词
不等式在数学竞赛中还可以用来解决其他问题,如最 优化问题、数列问题、解析几何问题等。
全国高中数学竞赛讲义:不等式的证明(练习题)

不等式的证明课后练习1.选择题(1) 方程 x2-y 2=105 的正整数解有 (.. ).( A)一组(B)二组.(C)三组.(D)四组(2) 在 0,1,2, , 50 这 51 个整数中,能同时被2,3,4 整除的有( ..).(A)3 个(B)4 个.(C)5个.(D)6个2.填空题(1)的个位数分别为 _________及_________.(2) 满足不等式104≤A≤105的整数A的个数是x×104+1,则x的值________.(3)已知整数 y 被 7 除余数为 5, 那么 y3被 7 除时余数为 ________.(4)求出任何一组满足方程 x2-51y 2=1 的自然数解 x 和 y_________. 3.求三个正整数 x、 y、z 满足.4.在数列 4,8,17,77,97,106,125,238 中相邻若干个数之和是 3 的倍数,而不是 9 的倍数的数组共有多少组?5.求的整数解.6.求证可被37整除.7.求满足条件的整数x,y的所有可能的值.8.已知直角三角形的两直角边长分别为 l 厘米、m厘米,斜边长为 n 厘米,且 l ,m, n 均为正整数, l 为质数 . 证明: 2(l+m+n)是完全平方数 .9. 如果 p、 q、、都是整数,并且p>1,q>1,试求 p+q 的值 .课后练习答案1.D.C.2.(1)9及1.....(2)9....(3)4.(4) 原方程可变形为x2=(7y+1) 2+2y(y-7),令y=7可得x=50.3. 不妨设 x≤y≤z, 则, 故 x≤3. 又有故x≥2.若x=2,则,故 y≤6. 又有, 故 y≥4. 若 y=4, 则 z=20. 若 y=5, 则 z=10. 若 y=6, 则 z 无整数解 . 若 x=3, 类似可以确定 3≤y≤4,y=3 或 4,z 都不能是整数 . 4.可仿例 2 解.5.分析:左边三项直接用基本不等式显然不行,考察到不等式的对称性,可用轮换..的方法.略解: a2b22ab,同理 b2c32bc, c2a22ca ;三式相加再除以2即得证 .评述:( 1)利用基本不等式时,除了本题的轮换外,一般还须掌握添项、连用等技巧.如 x12x22x n2x1 x2x n,可在不等式两边同时加上x2x3x n x1 .x2x3x1再如证 (a1)(b1)(a c) 3 (b c) 3256a 2b 2c3 (a,b, c 0) 时,可连续使用基本不等式.(2)基本不等式有各种变式a b2a2b2如 ()2等.但其本质特征不等式两边的次数及2系数是相等的 .如上式左右两边次数均为2,系数和为 1.222226.8888 ≡8(mod37), ∴8888≡8(mod37).3333322223333 2 3而7777≡7(mod37),7777 ≡7(mod37),8888 +7777 ≡(8 +7 )(mod37), 82+73=407,37|407, ∴37|N.7. 简解 : 原方程变形为 3x 2-(3y+7)x+3y 2-7y=0 由关于 x 的二次方程有解的条件△≥0及 y 为整数可得 0≤y ≤5, 即 y=0,1,2,3,4,5. 逐一代入原方程可知 , 原方程仅有两组解 (4,5) 、(5,4).2 2 2 2 2,n-m=1. 于是8. ∵l +m=n , ∴l =(n+m)(n- m). ∵l 为质数 , 且 n+m > n-m >0, ∴n+m=l 22 2 +2l+1=(l+1) 2是 l =n+m=(m+1)+m=2m+1,2m=l-1,2(l+m+1)=2l+2+2m=l . 即 2(l+m+1) 完全平方数 .9. 易知 p ≠q, 不妨设 p >q. 令=n, 则 m >n 由此可得不定方程(4-mn)p=m+2, 解此方程可得 p 、q 之值 .。
不等式的性质证明

不等式的性质证明不等式是数学中常见的概念,它描述了两个数、两个算式或两个函数之间的大小关系。
在数学研究和实际问题中,不等式的性质具有重要的意义。
本文将深入探讨不等式的基本性质,并进行相应的证明。
一、不等式的基本性质1. 传递性:对于任意的实数a、b、c,若a < b,b < c,则有a < c。
即如果一个数小于另一个数,而另一个数又小于另一个数,那么第一个数一定小于第三个数。
证明:设a < b,b < c,用反证法。
假设a ≥ c,那么由于a < b,根据传递性得知b ≥ c,与b < c矛盾。
故假设不成立,得证。
2. 加法性:对于任意的实数a、b、c,若a < b,则有a + c < b + c。
即两个不等式的同侧同时加上一个相同的数,不等号的方向不变。
证明:设a < b,用反证法。
假设a + c ≥ b + c,那么由于a < b,根据传递性得知a + c < b + c,与假设矛盾。
故假设不成立,得证。
3. 乘法性:对于任意的实数a、b和正数c,若a < b且c > 0,则有ac < bc。
即两个不等式的同侧同时乘上一个正数,不等号的方向不变;若c < 0,则有ac > bc,即两个不等式的同侧同时乘上一个负数,不等号的方向反向。
证明:设a < b,用反证法。
假设ac ≥ bc,若c > 0,则由于a < b,根据乘法性得知ac < bc,与假设矛盾;若c < 0,则有ac > bc,同样与假设矛盾。
故假设不成立,得证。
二、不等式中的常见定理及证明1. 加法定理:对于任意的实数a,b和c,若a < b,则有a + c < b + c。
证明:设a < b,令d = b - a,根据传递性得知0 < d。
由于c > 0,根据乘法性可得0 < c × d。
不等式的性质与证明方法

不等式的性质与证明方法不等式是数学中常见的一种数对关系,描述了数值之间的大小关系。
在不等式中,我们关注的是不同数值之间的相对大小,而不是它们的具体数值。
本文将介绍不等式的一些基本性质以及一些常用的证明方法。
一、不等式的性质1. 传递性在不等式中,如果a>b,且b>c,那么有a>c。
这个性质叫做不等式的传递性。
传递性是不等式证明中常用到的性质,可以通过多次使用传递性来推导出一些复杂的不等式。
2. 反身性在不等式中,对于任何一个数a,都有a≥a。
这个性质叫做不等式的反身性。
即一个数总是大于等于自身。
3. 反对称性在不等式中,如果a≥b且b≥a,那么有a=b。
这个性质叫做不等式的反对称性。
反对称性表示如果两个数既大于等于彼此又小于等于彼此,则这两个数应该相等。
4. 加法性和减法性在不等式中,如果a≥b,那么有a+c≥b+c;如果a≥b,那么有a-c≥b-c。
这个性质叫做不等式的加法性和减法性。
加法性和减法性表示在不等式两边同时加或减一个常数,原不等式的大小关系仍然成立。
5. 乘法性和除法性在不等式中,如果a≥b且c>0,那么有ac≥bc;如果a≥b且c<0,那么有ac≤bc。
这个性质叫做不等式的乘法性和除法性。
乘法性和除法性表示在不等式两边同时乘或除一个正数(或负数),原不等式的大小关系仍然成立,但需要注意,当乘或除一个负数时,不等号的方向会颠倒。
二、证明方法1. 直接证明法直接证明法是最常见的证明方法之一,也是最简单的一种方法。
这种方法通过对不等式进行一系列的推导和化简,最终直接得出结论。
例如,对于不等式a+b≥2√(ab),可以利用乘法性、加法性和反身性进行证明。
2. 对偶证明法对偶证明法是一种证明方法,通过将不等式中的符号进行翻转,然后利用已知的性质或定理进行证明。
例如,对于不等式a+b≥2√(ab),可以对偶后得到4ab≥(a+b)²,然后再利用乘法性和加法性进行证明。
不等式的基本性质教学课件

2023《不等式的基本性质教学课件ppt》contents •不等式的定义和表示方法•不等式的基本性质•不等式的解法•不等式的应用•不等式的历史和未来发展•课后习题与答案目录01不等式的定义和表示方法1不等式的定义23不等式是表示两个数或两个式子之间不相等关系的数学符号。
不等式的定义包括算术不等式、几何不等式、函数不等式等。
不等式的种类描述两个数或式子之间的数量关系,可以反映事物的某些性质和规律。
不等式的意义一般用“>”、“<”、“≥”、“≤”等符号来表示两个数或式子之间的大小关系。
不等式的表示方法数学符号如x > 3,a < b等都是不等式。
举例说明不等式的两边同时加上或减去同一个数或式子,不等号的方向不变。
注意问题03解题步骤首先分析问题中涉及的变量及其关系,然后建立相应的不等式模型,最后解不等式得到所需的结果。
如何使用不等式进行数学建模01建立数学模型通过建立不等式模型,可以描述实际问题中变量之间的关系,反映事物的规律和性质。
02实例说明如实际生活中的购物问题、投资问题等都可以通过建立不等式模型来分析解决。
02不等式的基本性质总结词基础且重要详细描述不等式的传递性是不等式基本性质的核心内容之一,它表明如果a>b和c>d,那么ac>bd。
这个性质在解决一些复杂不等式问题时非常有用,需要学生熟练掌握。
不等式的传递性总结词基础且常用详细描述不等式的可加性表明,如果a>b,c>d,那么a+c>b+d。
这个性质在解决一些实际问题时非常常用,如比较两个商品的价格等。
不等式的可加性重要但较难理解总结词不等式的可乘性表明,如果a>b>0,c>d>0,那么ac>bd。
这个性质在解决一些复杂不等式问题时需要逆用,同时需要注意乘积为负的情况。
详细描述不等式的可乘性总结词易忽视但有技巧详细描述不等式的可除性表明,如果a>b>0,c>d>0,那么ad>bc。