Identification of polyphenols in tobacco leaf and their antioxidant and antimicrobial activities
山核桃多酚物质提取及抗氧化研究进展

山核桃多酚物质提取及抗氧化研究进展郜海燕1,李兴飞1,2,陈杭君1,*,房祥军1(1.浙江省农业科学院食品科学研究所,浙江 杭州 310021;2.浙江师范大学化学与生命科学学院,浙江 金华 321004)摘 要:山核桃多酚是一大类物质,它既是山核桃稳定口感风味的一个重要因素,又是其表现生理活性、抵御外界伤害的主要次生代谢物质;对山核桃抗氧化性的相关研究涉及到多酚物质的提取纯化及有效成分鉴定等方面。
文章综述国内外近年来对山核桃多酚提取、分离纯化及抗氧化活性的研究进展,旨在为山核桃等坚果功能活性物质的提取和综合利用提供一定的参考和借鉴。
关键词:山核桃;多酚物质;提取纯化;研究进展Research Progress on Extraction and Antioxidant Activity of Phenolic Compounds from Carya (Carya cathayensis )GAO Hai-yan 1,LI Xing-fei 1,2,CHEN Hang-jun 1,*,FANG Xiang-jun 1(1. Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China ;2. College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China)Abstract :The phenolic compounds in carya (Carya cathayensis ) include a big category of compounds. They play a key role in stabilizing the taste, as well as maintaining the secondary metabolites that are involved in a variety of physiological activities and protecting carya from physical damages. Previous studies on the antioxidant activities of carya phenolic compounds were focused on the extraction and purification of total polyphenols and the identification of individual compound. This paper reviews the progress of the domestic and foreign researches on extraction, purification, and antioxidant activities of total polyphenols from carya in recent years, in order to provide a reference for the comprehensive utilization of functional com-pounds in carya and other nuts.Key words :Carya cathayensis ;total polyphenols ;extraction and purification ;research progress中图分类号:TS255.1 文献标识码:A 文章编号:1002-6630(2011)05-0336-06收稿日期:2010-09-28基金项目:浙江省重大科技专项重点农业项目(2009C12033);浙江省自然科学基金项目(Y2101447)作者简介:郜海燕(1958—),女,研究员,博士,研究方向为农产品加工与贮藏。
基于两阶段分析的多尺度颈动脉斑块检测方法

明显抑制内毒素诱导的TNF-α分泌,改善血流动力学状态,降低内毒素的致死率。
研究显示,TP 的主要有效成分之一,表没食子儿茶酚胺(EGCG )可通过调控IL-1β抑制白细胞活化,从而发挥抗炎作用[20]。
由此可见,TP 对感染性炎症相关的多种疾病具有一定的治疗作用。
与本研究一致的,Bae 等[21]通过脂多糖诱导建立小鼠ALI 模型后,观察到EGCG 可通过调控ERK1/2信号通路和JNK 蛋白的磷酸化水平降低炎性因子表达,抑中性粒细胞在肺内的聚集,进而减轻脂多糖造成的肺损伤。
因此,TP 的抗炎特性使其在脓毒症相关ALI 中具有良好的潜在转化价值。
有研究认为[22],NLRP3炎症小体参与了多种炎症相关疾病,可能是炎症性疾病发生发展过程中的关键调控因子。
研究显示[23],胞内氧化还原失衡是NLRP3的活化的关键途径之一。
研究显示,失血性休克时,高迁移率蛋白1可通过TLR4模式激活肺内皮细胞NAD(P)H 氧化酶,而激活后的NAD(P)H 氧化酶所生成的ROS 可进一步解离与硫氧还原蛋白互作的蛋白,使之转而与NLRP3蛋白结合,而诱导NLRP3炎症小体活化和IL-1β的分泌[24]。
因此,对细胞内氧化还原平衡的调控可能是抑制NLRP3炎症小体活化、改善相关疾病炎症反应的潜在有效靶点。
由于细胞内氧化应激水平升高所引起的ROS 大量生成是NLRP3活化的关键诱导剂之一。
多项研究证实TP 具有显著的抗氧化作用[25],与本研究一致。
本研究首次发现TP 可抑制CLP 小鼠肺组织内氧化应激相关蛋白NOX4表达并减少ROS 生成;同时,对脓毒症肺损伤小鼠肺组织的免疫荧光染色检测结果显示:氧化应激相关蛋白NOX4与NLRP3蛋白在CLP 小鼠肺组织内表达显著增多且具有明显的共定位,而应用TP 治疗后,上述2种蛋白在小鼠肺组织内的表达下调、共定位减少,提示TP 可能通过抑制NOX4相关氧化应激反应,下调肺组织内ROS 含量,阻碍NLRP3炎症小体的活化,进而减少脓毒症相关肺损伤时肺内炎症因子的释放,最终改善脓毒症相关肺损伤。
大孔树脂纯化苹果多酚的研究

收稿日期:2006-04-21 *通讯作者作者简介:金莹(1981-),女,硕士,主要从事生物毒素的研究。
大孔树脂纯化苹果多酚的研究金 莹1,孙爱东2,*(1.山东农业大学食品学院,山东 泰安 271018;2.北京林业大学生物学院食品科学系,北京 100083)摘 要:本文通过研究AB-8大孔树脂对苹果多酚的吸附特性,找出适合于苹果多酚分离纯化的条件。
结果显示,当初始样品的苹果多酚纯度为0.759%,供试液的苹果多酚含量为1.648mg/ml,以60%乙醇作为洗脱剂,进样速度为1ml/min,洗脱速度为0.5ml/min,苹果多酚纯度可达39.98%。
关键词:苹果多酚;大孔树脂;吸附;纯化Study on Purification of Apple Polyphenol by Resin AdsorptionJIN Ying 1,SUN Ai-dong 2,*(1.College of Food Science, Shandong Agricultural University, Taian 271018, China ;2.Department of Food Science andEngineering, College of Biology Science and Technology, Beijing Forestry University, Beijing 100083, China)Abstract :By studying the characteristics of adsorbing apple polyphenol with AB-8 resin, the optimum conditions for separating and purifying apple polyphenol were obtained. The results showed that, when the purity of apple polyphenol of initial sample is 0.759%, the content of apple polyphenol of test solution is 1.648mg/ml, with 60% ethanol as eluting solvent,while the moving speed of is 1ml/min and the eluting speed 0. 5ml/min. The purity of apple polyphenol can be up to 39.98%.Key words :apple polyphenols ;resin ;adsorption ;purification中图分类号:TS201.2 文献标识码:A 文章编号:1002-6630(2007)04-0160-04苹果多酚是一类以原花青素为主体的新型无毒的天然抗氧化剂,其抗氧化、清除自由基能力是V E 的50倍、VC 的20倍[1-2],在油脂和食品中的应用十分广阔。
高效聚磷菌Alcaligenes_省略__12菌株的分离鉴定及其除磷特性_庄志刚

第34卷第3期2014年3月环境科学学报Acta Scientiae CircumstantiaeVol.34,No.3Mar.,2014基金项目:福建省财政厅资助项目(No.20130421);福建省大学生创新创业训练项目(No.sjcxcy2012-022);福建师范大学拔尖人才训练项目(生物学拔尖201004)Supported by the Funded Project of Finance Department of Fujian Province (No.20130421),the Innovative Entrepreneurial Training Plan for College Students of Fujian Province (No.sjcxcy2012-022)and the Research Training Item of Top-Notch Biological Students of Fujian Normal University (Biological top-Notch 201004)作者简介:庄志刚(1991—),男,E-mail :zgzhuangfjnu@163.com ;*通讯作者(责任作者),E-mail :mli@fjnu.edu.cn Biography :ZHUANG Zhigang (1991—),male ,E-mail :zgzhuangfjnu@163.com ;*Corresponding author ,E-mail :mli@fjnu.edu.cnDOI :10.13671/j.hjkxxb.2014.0119庄志刚,韩永和,章文贤,等.2014.高效聚磷菌Alcaligenes sp.ED-12菌株的分离鉴定及其除磷特性[J ].环境科学学报,34(3):678-687Zhuang Z G ,Han Y H ,Zhang W X ,et al .2014.Isolation ,identification and phosphorus-removal characterization of bacteria Alcaligenes sp.strain ED-12for phosphorus-accumulation [J ].Acta Scientiae Circumstantiae ,34(3):678-687高效聚磷菌Alcaligenes sp.ED-12菌株的分离鉴定及其除磷特性庄志刚1,韩永和1,2,章文贤1,周志华1,陈佳兴1,李敏1,*1.福建师范大学生命科学学院,福州3501082.南京大学环境学院生物地球化学与环境修复实验室,南京210046收稿日期:2013-07-05修回日期:2013-09-10录用日期:2013-09-20摘要:利用经典的微生物筛选方法,从福州市闽侯县上街镇高岐村某排污口淤泥中分离出1株高效聚磷菌,并结合16S rRNA 基因序列分析进行了菌株鉴定.结果表明,该菌株为产碱杆菌,将其命名为Alcaligenes sp.ZGED-12.理化因素实验显示,在以乙酸钠为碳源、NH 4Cl 为氮源,当C /N 为3ʒ1,pH 为8.0,温度和摇床转速分别为35ħ和100r ·min -1时,该菌株的生长状态最好,对磷的去除能力也最强,最高除磷率可达80%.此外,该菌株能够耐受较高浓度的磷,当磷浓度超过45mg ·L -1时会产生抑制效应.同时,以聚乙烯醇(PVA )和海藻酸盐(SA )制备了聚磷微生物固定化小球,并考察了菌球对氮磷废水的净化效果.结果表明,氮磷的去除包括固定化材料的吸附作用及微生物的生长利用和/或贮存,显示出了良好的应用前景.关键词:聚磷微生物;产碱杆菌;筛选鉴定;特性;固定化文章编号:0253-2468(2014)03-678-10中图分类号:X172,X703.1文献标识码:AIsolation ,identification and phosphorus-removal characterization of bacteria Alcaligenes sp.strain ED-12for phosphorus-accumulationZHUANG Zhigang 1,HAN Yonghe 1,2,ZHANG Wenxian 1,ZHOU Zhihua 1,CHEN Jiaxing 1,LI Min 1,*1.College of Life Sciences ,Fujian Normal Univiersity ,Fuzhou 3501082.Biogeochemistry &Environmental Remediation Laboratory (BERL ),School of the Environment ,Nanjing University ,Nanjing 210046Received 5July 2013;received in revised form 10September 2013;accepted 20September 2013Abstract :A phosphorus-accumulating bacteria was isolated from a drain outlet located in Gaoqi Village ,Shangjie Town ,Minhou County ,Fuzhou ,China.The strain ,named Alcaligenes sp.ZGED-12,was obtained by classic methods for screening microorganisms together with 16S rRNA gene analysis.The culture conditions showed that the best carbon source and nitrogen source were sodium acetate and NH 4Cl ,respectively ,the optimal pH was 8.0,the optimal temperature was 35ħ,the best C /N was 3ʒ1,and the optimal shaking rate was 100r ·min -1.Under these optimized conditions ,the maximum removal efficiency for phosphorus was higher than 80%.The strain has a high tolerance for phosphorus ,but its growth was inhibited when the concentration of phosphorus was higher than 45mg ·L -1.Meanwhile ,the immobilized phosphorus-accumulating organisms beads (IMOBs )were prepared ,and the purification efficiency of IMOBs for nitrogen /phosphorus contaminated wastewater was investigated.The results showed that removal for nitrogen and phosphorus was due to absorption on the immobilized materials and uptake /metabolism of microorganisms ,indicating a good prospective of IMOBs in the treatment of wastewater.Keywords :phosphorus-accumulating organisms (PAOs );Alcaligenes sp.;screening and identification ;characteristics ;immobilization3期庄志刚等:高效聚磷菌Alcaligenes sp.ED-12菌株的分离鉴定及其除磷特性1引言(Introduction)磷超标是造成水体富营养化的主要原因之一.研究发现,当总磷浓度超过0.1mg·L-1(磷作为限制因素,m TNʒm TP>15ʒ1),藻类会过度繁殖(Abell et al.,2010);一般情况下,总磷浓度超过0.02 mg·L-1就有可能导致水体富营养化(韩永和等,2012).由于水体富营养化现象日趋严重,严重破坏了人类赖以生存的自然环境,威胁着人类的健康(Ansari et al.,2011).常规的生化处理工艺效率低,不能从根本上解决问题.近些年,微生物除磷工艺的研究得到了迅速发展,主要有A/O、A2/O、UCT、五段Bardenpho、Phostrip等(马放等,2011).为实现微生物除磷工艺的有效实施,筛选出除磷能力较强的聚磷微生物是首要目标.此外,考虑到聚磷微生物对磷的吸收是一个厌氧释磷、好氧吸磷的过程(张培玉等,2011),有必要考察聚磷微生物对溶氧的响应.同时,微生物聚磷过程会受有机质分子大小、pH等的影响(王亚宜等,2005;2006).因此,考察特定微生物在不同理化条件下的生长情况和除磷特性是实现微生物除磷机理研究及其在工程应用的前提条件.为获得除磷能力较强的微生物种质资源,自聚磷菌首次被Fuhs等(1975)分离以来,至今已有多种具备聚磷能力的微生物被筛选出来.多项研究表明,产碱杆菌属细菌(Alcaligenes sp.)具备这方面的能力(Flores III et al.,2007;Joo et al.,2006;Zhou et al.,2012).此外,肠杆菌(Enterobacteriaceae)(张培玉等,2011;赵海泉等,2009)、金黄色葡萄球菌(Staphyloccocus)(南亚萍等,2013)、Accumulibacter (Acevedo et al.,2012;Oehmen et al.,2005)、变形菌(Alphaprotenbacteria)(Nguyen et al.,2012;周明璟等,2012)等也是常见的聚磷微生物,甚至存在兼具反硝化功能的聚磷微生物(Qiu et al.,2012;Yang et al.,2011;杨小龙等,2011).在此基础上,人们又开展了大量关于溶氧对聚磷菌除磷能力的影响研究(Acevedo et al.,2012;Merzouki et al.,1999;张培玉等,2011),但这些研究较少涉及不同聚磷菌在不同的厌氧时间条件下对好氧吸磷的相关作用.此外,诸如pH和有机质分子大小等理化因素对聚磷菌聚磷能力的影响也已得到较深入研究(Filipe et al.,2001;Oehmen et al.,2005;王亚宜等,2005).然而,当前的多数研究只局限于对单一因素的考察,抑或集中于研究高浓度废水的生物处理系统,目前,聚磷微生物除磷工艺离工程应用仍有较大的距离(丁炜等,2011).正如Covarrubias等(2012)研究表明,微生物的固定化能够为其活性持留提供保障.然而,考察固定化聚磷菌对含磷废水的修复实验尚未见相关报道.因此,继续筛选和开发具备高效除磷功能的微生物,开展聚磷微生物的固定化、活性持留及污水修复并开展综合理化因素对聚磷微生物除磷能力的影响等方面的研究对工程实践有重要指导意义.鉴于此,本研究从排污口淤泥中筛选出1株具备高效除磷能力的聚磷菌,全面考察各理化因素对菌株生长及除磷能力的影响.同时,对微生物进行固定化,并重点考察其对含磷废水的净化效果.2材料与方法(Materials and methods)2.1材料2.1.1样品来源淤泥样品采自福州市闽侯县上街镇高岐村某排污口,立即用于菌种的分离与筛选.2.1.2培养基富集培养基、筛选培养基、微量元素(张培玉等,2011),以及缺磷培养基(马放等,2011)和富磷培养基(李博等,2009)分别按文献进行配制.LB培养基(g·L-1):蛋白胨10.00,酵母粉5.00,NaCl10.00,琼脂2.00(固基加入),pH=7.2.固定化微生物小球实验培养基(g·L-1):丁二酸钠0.61,NaNO30.28,KH2PO40.1,KCl0.014,MgSO4·7H2O0.02,CaCl2·2H2O0.018,pH=7.2.以上所有培养基均经121ħ灭菌(碳源实验中,葡萄糖和蔗糖组115ħ灭菌)20min后使用,微量元素于灭菌前加入.2.1.3微生物固定化小球制备材料聚乙烯醇(Polyvinyl alcohol,PVA)、海藻酸盐(Sodiumalginate,SA)、硼酸(H3BO3)、无水氯化钙(CaCl2),除硼酸(分析纯)外其余均为化学纯.2.2方法2.2.1聚磷菌的分离鉴定称取0.5g新鲜淤泥,用无菌水水洗后8000r·min-1离心5min,弃上清,此过程重复3次.处理后将样品加入2.1.2节的富集培养基中,添加量及其他条件参考文献(韩永和等,2013).培养12h后,取1.5mL菌悬液于下一磷梯度的培养基中,磷梯度依次为2、5、8、10、15和20mg·L-1(以P计).聚磷菌含有典型的PHB颗粒和异染颗粒,经强976环境科学学报34卷化释磷、吸磷实验后,PHB颗粒可被脂溶性染料苏丹黑着色,异染颗粒可被甲苯胺蓝和次甲基蓝染成紫色,可与其他非颗粒性物质区分开来(李博等,2009;马放等,2011).将富集驯化的菌悬液按10-110-7梯度进行稀释,涂布平板.挑取形态较特殊的单菌落进行PHB颗粒染色和异染颗粒染色,确定含有PHB颗粒和异染颗粒的菌落,进行复筛实验.挑取经纯化的单菌落于缺磷培养基中,150r·min-1、30ħ培养12h.将菌液在8000r·min-1条件下离心5min,再将菌液转接于富磷培养基中,150r·min-1、30ħ培养至菌液变浑浊.计算各株菌的除磷率.此后,将复筛得到的聚磷菌根据文献(韩永和等,2013)的方法进行16S rRNA的测序及系统发育分析.2.2.2理化因素对聚磷菌生长及除磷特性的影响聚磷菌具备高效除磷能力主要基于异染颗粒对磷的贮存,菌体在生长过程中也能够利用部分磷合成细胞成分.文献报道显示,聚磷菌在厌氧、缺磷条件下能够把贮存于异染颗粒中的磷释放出来,经厌氧释磷后将其投入富磷培养基中进行除磷实验能够大大提高除磷能力(Merzouki et al.,1999;张培玉等,2011;周明璟等,2012).此外,碳源、氮源、C/N、pH、温度等都会影响聚磷菌的生长.因此,考察不同理化因素对聚磷菌生长及除磷能力的影响是必要的,这对实现聚磷菌的工程应用有重要参考价值.将菌株ED-12于LB培养基中培养12h(30ħ、150r·min-1),按5%的接种量接种于装有30mL缺磷培养基(PO3-4-P质量浓度为12.3mg·L-1)的150mL三角瓶中,30ħ、150r·min-1摇瓶培养12h;再按5%的接种量将菌悬液接种于装有30mL富磷培养基(PO3-4-P质量浓度为32mg·L-1)的150mL三角瓶中,30ħ、150r·min-1摇瓶培养.每隔一定的时间取样测定菌株ED-12的OD600及剩余的PO3-4-P浓度,计算除磷率并绘制菌株的生长曲线图.以聚磷菌的生长特性为基础,以乙酸钠、丁二酸钠、柠檬酸钠、葡萄糖和蔗糖为碳源,以NH4Cl、(NH4)2SO4和NH4NO3为唯一氮源,同时考察了不同C/N、起始pH和摇床转速对聚磷菌生长及除磷能力的影响.在优化过程中,已优化的参数作为后续实验的条件.此外,在最优条件下,探讨了菌株ED-12对不同起始浓度PO3-4-P的去除效果,以考察其工程应用价值.PO3-4-P的起始浓度梯度设置为:5、15、30、45、60和100mg·L-1.2.2.3微生物固定化小球的制备及除氮磷初步实验微生物固定化小球的制备按以下步骤进行:①称取4g PVA(聚合度1750ʃ50)溶于90mL无菌水中,待PVA充分溶解后加入2g SA,沸水浴加热至完全溶解,冷却至室温备用;②分别称取2g反硝化菌和聚磷菌湿菌体,充分稀释于10mL无菌水中,再将稀释后的菌液加入PVA-SA体系中,充分混匀;③根据需要的小球粒径,剪去5mL移液枪枪头尖端,吸取菌体混合物,匀速滴入5%CaCl2-饱和硼酸溶液中,交联15min后,将小球用无菌水洗净,备用.以不添加菌球的组别为空白对照(Blankcontrol),以不添加微生物的固定化小球组为阳性对照(PVA+SA),按5%(m/V,g·L-1)投加小球.24h后取样测定水样的TN和TP浓度,计算脱氮除磷能力.2.3测定方法硝态氮(NO-3)和总氮(TN)的测定采用麝香草酚分光光度法(韩永和等,2013),总磷(TP)的测定采用钼锑抗分光光度法(国家环境保护总局,2002).2.4数据处理与统计分析运用Microsoft Excel2003和Origin8.5进行数据处理、统计分析及绘图.所有实验均进行3个重复,结果以MeanʃSD表示.3结果与讨论(Results and discussion)3.1聚磷菌的分离鉴定3.1.1聚磷菌的分离纯化及复筛经富集,聚磷微生物在平板上的菌落随着磷浓度的升高而减少,当磷浓度达到20mg·L-1时,平板上已无单菌落.将磷浓度为15mg·L-1的培养基按10-1 10-7稀释,涂布平板.根据形态特征,将能够在培养基上生长的49个单菌落分成4类,分别为EA(12株)、EB(15株)、EC(8株)和ED(14株).分别对EA、EB、EC和ED进行PHB颗粒染色和异染颗粒染色,初筛得到9个染色效果较明显的聚磷菌单菌落(EA、EB和ED各3个,EC无受染现象).随后,对EA、EB和ED共9株聚磷菌进行复筛实验.分别缺磷培养12h后,转接于富磷培养基中继续培养24h,测定除磷率,结果如表1所示.可知,ED-12对磷的去除能力最强,可达52.2%,因0863期庄志刚等:高效聚磷菌Alcaligenes sp.ED-12菌株的分离鉴定及其除磷特性此,选择菌株ED-12作进一步研究.表1聚磷菌的除磷能力(起始浓度:33.9mg·L-1)Table1The phosphorus removal ability of phosphorus-accumulatingorganisms(initial concentration:33.9mg·L-1)菌株总磷浓度/(mg·L-1)去除率A-0327.219.70% A-0626.920.60% A-1027.419.10% B-0429.812.10% B-1029.213.90% B-1129.114.50% D-0616.850.40% D-0817.348.90% D-1216.252.20%3.1.2聚磷菌菌株ED-12的16S rRNA的PCR扩增及序列分析经测序,获得片段长度为1463bp 的部分16S rRNA基因序列,GenBank登录号为JX966315.在NCBI数据库的比对结果表明,该菌株与Alicaligenes sp.的相似性达98%以上,推测其为Alicaligenes sp.选择序列相关性较高的76个16SrRNA序列,用Cluxtal X序列分析软件分析其与ED-12的序列同源可靠性,选9个可信度较高的序列用MEGA4.0软件通过N-J法构建系统发育树,确定ED-12的进化地位,结果如图1所示.图1基于16S rRNA序列同源性构建的菌株ED-12和亲缘性相近的其他细菌的系统发育树Fig.1Unrooted phylogenetic trees based on the16S rRNA sequence of strain ED-12and the related strains图2菌株ED-12的生长曲线及除磷特性Fig.2Growth curve and phosphorous removal characteristic ofstrain ED-123.2ED-12的生长曲线及除磷特性聚磷菌在缺氧、缺磷条件下会利用异染颗粒中的磷并合成PHB,将其转入有氧、富磷的培养基后会将PHB中的能量释放出来,以便更高效地聚磷,用于菌体生长并将剩余的磷储存于异染颗粒中(马放等,2011).图2展示了菌株ED-12经缺磷培养后在富磷培养基中的生长情况,以及其对PO3-4-P的去除率.结果表明,在前16h,菌体生长处于延滞期,16h后进入对数期,52h后开始进入衰亡期.在整个过程中,菌体生长特征与除磷率趋势基本吻合.64h内,磷浓度从30mg·L-1左右降低到(8.12ʃ0.32)mg·L-1,去除率达73.82%ʃ1.02%.此后,总磷浓度基本保持不变.3.3不同理化因素对菌株ED-12的生长及除磷能力的影响3.3.1不同碳源对菌株ED-12的生长及除磷能力的影响有机物特征是影响生物反应器反硝化和除磷效果的重要因素,与反硝化微生物类似(韩永和等,2013),大部分聚磷菌只能以低级脂肪酸类的小分子有机基质作为碳源,并将其合成的PHB以能量形式储存在细胞内(王亚宜等,2006).以乙酸钠、丁二酸钠、柠檬酸钠、葡萄糖和蔗糖为碳源,菌株ED-12的生长及除磷能力结果如图3所示,菌株ED-12在以葡萄糖和蔗糖为碳源时基本不生长,对PO3-4-P的去除率低于15%.而菌株在以乙酸钠、丁二酸钠、柠檬酸钠为碳源时长势较好,且对PO3-4-P的去除率都在50%以上.其中,以乙酸钠为碳源时,菌株ED-12生长最旺盛,对PO3-4-P的去除率达到了70%以上.对比5种碳源结构与分子量,相对而言,在分子结构简单、分子量低的情况186环境科学学报34卷下,聚磷菌的生长较好,且能达到一个较高的除磷率,这与前述观点相符.此外,聚磷菌对不同碳源的利用效果可能还与其本身对碳源的亲和性或其他特性有关.图3不同碳源对菌株ED-12生长及除磷能力的影响Fig.3Influence of different carbon sources on the growth and phosphorus removal ability of strain ED-123.3.2不同氮源对菌株ED-12的生长及除磷能力的影响氮源是微生物细胞生长的第二大营养物质,对蛋白质、核酸和其他一些成分的合成非常重要(Madigan et al .,2009).多数细菌能以氨盐作为唯一氮源,由图4可知,在以NH 4Cl 、(NH 4)2SO 4和NH 4NO 3为唯一氮源的培养基中,聚磷菌能够良好生长.其中,在含有NH 4Cl 的培养基中OD 600可在24h 内达到1.4左右.同时,在以上3种氮源培养基中,菌株ED-12对PO 3-4-P 的去除率都在45%以上(NH 4Cl 培养基最高,可达80%).观察发现,菌株ED-12在24h 时,在以NaNO 3和NaNO 2为唯一氮源的培养基中只能微弱的生长,但经48h 的培养后,开始进入对数期,并能达到较高的OD 600.此外,虽然以NaNO 3和NaNO 2为唯一氮源时微生物生长情况较差,但培养基中PO 3-4-P 浓度分别降低了63.72%ʃ5.57%和34.84%ʃ2.11%,说明微生物在24h 内主要通过分解PHB 并将磷储存于异染颗粒中在后期用于菌体的生长.但Saito 等(2004)研究认为,NO -2的存在在有氧和无氧两种情况下都会抑制聚磷菌对磷的吸收.图4得出了不同的结论,其机理有待进一步研究.在以蛋白胨为唯一氮源的培养基中,菌株ED-12长势较好,但蛋白胨含有含磷杂质,因而影响了PO 3-4-P 去除率的计算.由此可知,聚磷菌ED-12菌株能够在以NH 4Cl 、NaNO 3、NaNO 2、(NH 4)2SO 4、蛋白胨和NH 4NO 3为唯一氮源的培养基中生长.根据微生物生长量、生长周期及对PO 3-4-P 的去除率,NH 4Cl 是菌株ED-12生长及发挥除磷能力的最佳氮源.图4不同氮源对菌株ED-12生长及除磷能力的影响Fig.4Influence of different nitrogen sources on the growth and phosphorus removal ability of strain ED-123.3.3不同C /N 对菌株ED-12的生长及除磷能力的影响碳源和氮源是微生物生长的重要物质,不同微生物对碳源和氮源的需求量不同.细菌对氮源的需求量大,真菌和放线菌等对碳源的需求量大(周德庆,2002).在脱氮除磷工艺中,必须考虑C /N 以实现微生物对废水中氮、磷的有效利用.考察C /N 对聚磷菌ED-12菌株生长及除磷能力的影响,结果(图5)表明,随着C /N 的升高,菌体生物量增大,同时对PO 3-4-P 的去除率也随之提高,C /N 为3ʒ1时达到最大值.此后,微生物的生长及对PO 3-4-P 的去除率又随着C /N 的升高而缓慢降低,说明过高的C /N 导致氮源不足,微生物生长也因此受到了抑制.图5不同C /N 对菌株ED-12生长及除磷能力的影响Fig.5Influence of different C /N on the growth and phosphorus removal ability of strain ED-123.3.4不同pH 对菌株ED-12的生长及除磷能力的影响在好氧条件下,聚磷菌能分别以醋酸和2863期庄志刚等:高效聚磷菌Alcaligenes sp.ED-12菌株的分离鉴定及其除磷特性PO 3-4为碳源和磷源,生成聚合态磷作为储能物质,储存于细胞内并伴随着产生OH -,导致发酵液的pH 值逐渐升高(周明璟等,2012).其聚磷过程可用式(1)表示(连丽丽,2009;周明璟等,2012).C 2H 4O 2+0.16NH +4+1.2O 2+0.2PO 3-4→0.16C 5H 7NO 2+1.2CO 2(HPO 3)(胞内聚磷)+0.44OH -+1.44H 2O(1)有研究表明,pH 对聚磷菌聚磷过程非常重要,pH ≈8最适宜聚磷菌生长及除磷作用的发生(Filipe et al.,2001;Oehmen et al.,2005).本研究发现,当pH 值<7.0时,聚磷菌ED-12菌株基本不生长,对PO 3-4-P 的去除率为0;当pH >8.0时,会抑制菌体的生长,但对PO 3-4-P 的去除率却在持续地升高.有文献报道,pH 升高(在碱性条件下)会导致PO 3-4-P 以磷酸盐沉淀的形式析出(王亚宜等,2005).在本研究中,当pH >8.0时,培养基中有沉淀产生,推测沉淀物即为文献中所报道的磷酸盐沉淀,因此出现了以上现象(升高).图6不同起始pH 对菌株ED-12生长及除磷能力的影响Fig.6Influence of different initial pHs on the growth and phosphorus removal ability of strain ED-123.3.5不同温度对菌株ED-12的生长及除磷能力的影响温度是除有机物特征外影响微生物生长的另一重要因素,但王亚宜等(2006)和姜体胜等(2007)认为,温度不会影响聚磷菌发挥聚磷作用.由图7可知,随着温度的升高,聚磷菌ED-12菌株的生物量也增大,35ħ时最适宜ED-12菌株的生长.相应地,ED-12菌株对PO 3-4-P 的去除率也呈先增后减的趋势,在35ħ时达到最大值(73.14%ʃ1.65%).由此可知,不同温度对聚磷菌ED-12菌株除磷效果的影响比对其生长的影响大得多.温度对聚磷效果存在影响,这与Panswad 等(2003)的研究结果相符,即35ħ最有利于聚磷菌发挥聚磷作用,过高或过低的温度都会抑制其效果,说明不同的微生物聚磷特性存在差异.图7不同温度对菌株ED-12生长及除磷能力的影响Fig.7Influence of different temperatures on the growth and phosphorus removal ability of strain ED-123.3.6不同摇床转速对菌株ED-12的生长及除磷能力的影响研究表明,溶氧是影响生物除磷效果的一个重要因素(方茜等,2008;荣宏伟等,2008).为了满足聚磷菌生物膜内对氧的需求量,加快氧的传递速率,增加活性生物膜的厚度,加快聚磷菌的好氧吸磷速率,必须提高液相主体中溶解氧的含量(荣宏伟等,2008).此外,低溶氧有利于反硝化除磷,高溶氧有利于好氧吸磷(在含硝酸盐或亚硝酸盐培养中可以进行厌氧生长)(方茜等,2008).如图8所示,摇床转速在0 200r·min -1之间,菌株ED-12都能生长.当摇床转速为50r ·min -1时,菌体OD 600最高,达2.60ʃ0.62;当摇床转速为100r ·min -1时,对PO 3-4-P 的去除率最高,达59.05%ʃ7.26%.在各培养条件下,菌体的生长与除磷率趋势不尽相同,说明二者是彼此独立的过程.静置培养时,储存于异染颗粒的磷被分解,用于菌体的生长,此时对PO 3-4-P 的去除率近50%,说明菌株ED-12在厌氧条件下还能将环境中的磷用于生长.好氧条件下,菌体将部分磷用于生长,并将剩余的磷储存于异染颗粒中,因此,在转速≥50r·min -1时也能维持一个较高的除磷率.观察发现,摇床转速过高未必能提高除磷率.微生物固定化小球脱氮除磷实验表明(详见3.5节),ED-12菌株在低溶氧与高溶氧时都存在除磷或聚磷作用,二者作用能力的强弱导致了图8所示的结果,即高溶氧时对PO 3-4-P 的去除率与低溶氧时相近.当摇床转速为100r ·min -1时,培养基中386环境科学学报34卷的溶氧最适合ED-12菌株对磷的反硝化去除或储存于异染颗粒中.低溶氧和高溶氧条件下,则分别表现为对磷的生长利用和积聚.因此,对废水中的磷的有效去除可以通过调节溶氧而实现,此过程包括生长利用和聚磷作用.图8不同摇床转速对菌株ED-12生长及除磷能力的影响Fig.8Influence of different shaking speeds on the growth and phosphorus removal ability of strain ED-123.4菌株ED-12对不同起始浓度PO 3-4-P 的去除效果聚磷菌对磷的去除包括两条途径:生长利用和异染颗粒贮磷.根据聚磷菌分离筛选原理,过高浓度的PO 3-4-P 会抑制聚磷菌的生长与繁殖.因此,考察不同起始浓度的PO 3-4-P 对聚磷菌生长的影响及相应条件下聚磷菌对PO 3-4-P 的去除效果,对分析聚磷菌生长与聚磷过程的关系及指导聚磷菌在富营养化水体中的工程应用有实际意义.如图9所示,随着PO 3-4-P 浓度的升高,菌株ED-12的OD 600呈先增后减的趋势.当PO 3-4-P 浓度为45mg ·L -1时,菌株ED-12的长势最好,过高的PO 3-4-P 反而会抑制菌体的生长.这是由于微生物生长受到了基质自抑制作用(王茹等,2013),这与聚磷菌分离筛选的结论相符.观察发现,除5mg ·L -1组,随着PO 3-4-P 浓度的升高,菌株ED-12对PO 3-4-P 的去除率与聚磷菌生物量成正相关(图中未显示),但PO 3-4-P 的变化浓度始终呈一递增趋势.当PO 3-4-P 浓度>45mg·L -1时,培养基中出现了部分沉淀物.正如3.3.4节的结论,聚磷过程会释放OH -,微生物生长越快,在相同的时间内产生的OH -也越多,因此,就有越多的PO 3-4-P 形成了沉淀(王亚宜等,2005),这合理地解释了以上的现象.以上结论说明,Alcaligenes sp.ED-12对磷的吸收是一个复杂的过程,在菌体生长及聚磷过程中,不仅会受理化因素尤其是pH 的影响,溶液中的磷浓度也是影响聚磷菌生长与聚磷效果的一个关键因素.由以上分析可知,菌株ED-12对PO 3-4-P 的去除能力很强,在不同PO 3-4-P 起始浓度梯度条件下,最高去除率可达81.02%ʃ2.27%,此时的PO 3-4-P 浓度变化量为(36.46ʃ1.02)mg ·L -1.图9菌株ED-12对不同起始浓度PO 3-4-P 的去除效果Fig.9Removal efficiency of strain ED-12on different initialconcentrations of PO 3-4-P 表2所示为典型的聚磷菌对不同起始浓度PO 3-4-P 的去除效果.由表可知,除耳葡萄球菌(Staphyloccocusauricularis )、Accumulibacter和Competibacter 外,其他菌株对浓度<50mg·L -1的PO 3-4-P 去除效果一般.在当前所报道的产碱杆菌除磷能力实验中,都未开展磷浓度梯度实验;除Bao 等(2007)的报道外,其余产碱杆菌菌株对浓度<30mg ·L -1的PO 3-4-P 去除效果都低于90%.本研究所得菌株不仅在磷浓度为45mg·L -1时具有较高的去除率,当浓度高达60mg ·L -1甚至100mg ·L -1时还能维持较高的活性及去除率.因此,菌株ED-12是一株较理想的聚磷菌,具有广阔的应用前景.然而,微生物聚磷过程比较复杂,今后的研究工作可围绕精确定量菌株Alcaligenes sp.ED-12的磷吸收在生长利用及贮存方面的比例及吸收与释放的关系上.3.5固定化聚磷微生物小球除氮磷实验微生物的固定化是实现微生物活性持留的途径之一,同时,固定化也有助于目标微生物的投加与回收(Covarrubias et al.,2012).当前应用最广泛的固定化材料是聚乙烯醇和海藻酸盐(Covarrubias et al.,2012;Munjal et al.,2002;Wu et al.,2004),固定化交联剂通常选择2% 5%的CaCl 2-饱和硼酸溶液(Long et al.,2004;Wu et al.,4863期庄志刚等:高效聚磷菌Alcaligenes sp.ED-12菌株的分离鉴定及其除磷特性2004).表2不同微生物对磷的去除效率Table 2Removal efficiency of phosphorus for different microbes微生物PO 3-4-P 起始浓度/(mg ·L -1)PO 3-4-P 去除率参考文献金黄色葡萄球菌(Staphyloccocus aureus )1065%南亚萍等,2013耳葡萄球菌(Staphyloccocus auricularis )50>90%Choi et al.,2000肠杆菌(Enterobacter sp.)10.2594.6%张培玉等,2011Accumulibacter &Competibacter 53.3>80%Oehmen et al.,2005克雷伯氏菌(Klebsiella terrigena )27<80%赵海泉等,2009约氏不动杆菌(Acinetobacter johnsonii )1065.24%连丽丽,2009产碱杆菌(Alcaligenes sp.)7.590%刘亚男等,2005产碱杆菌(Alcaligenes sp.)10>90%Bao et al.,2007产碱杆菌(Alcaligenes sp.)20.2582.3%孙梦,2011产碱杆菌(Alcaligenes sp.)28.7377.1%焦中志等,2009产碱杆菌(Alcaligenes sp.)4581%本研究图10固定化聚磷微生物小球对氮磷的去除效果Fig.10Removal efficiency for TN and TP by the immobilized-PAOsbeads根据赖子尼等(2008)的实验配方制备的固定化聚磷微生物小球的弹性与机械强度较好,对含氮磷废水的净化效果表明,菌球对磷有较强的去除能力(从(19.91ʃ1.81)mg·L -1降至(6.19ʃ0.76)mg ·L -1),同时能够去除一定的氮(从(215.82ʃ35.29)mg·L -1降至(183.42ʃ15.35)mg ·L -1)(图10a ).二者的去除率分别达56.21%和15.01%(图10b ).其中,固定化材料对氮的吸附比例较小,而对磷的吸附较显著(p <0.01),这可能与固定化材料的表面官能团及CaCl 2等对PO 3-4的亲和力强于NO -3有关.同时,固定化微生物(IMOs )对磷的去除效果也优于氮,说明菌株ED-12可能不具备反硝化能力,对氮的利用仅是生长所需.由PVA +SA +IMOs 组与PVA +SA 组比较可知(图10b ,#表示),无论是氮还是磷,都存在显著差异,说明固定化微生物是氮磷去除的主要贡献者.4结论(Conclusions )1)本研究成功从高岐村某排污口筛选出1株典型的聚磷微生物,鉴定发现其属于产碱杆菌属(Alcaligenes sp.)细菌,将其命名为Alcaligenes sp.ZGED-12.2)研究发现,菌株ED-12能在高磷浓度下生长,16h 时进入生长对数期.理化因素实验确定了聚磷菌ED-12的最适生长及发挥除磷能力的条件,其中,碳源、氮源和pH 对其影响最大.磷浓度实验表明,低浓度磷不利于菌株ED-12的生长,但过高浓度反而会抑制菌体生长及发挥聚磷功能,最优磷浓度为45mg·L -1.3)本研究成功实现了聚磷微生物的固定化,该固定化小球对氮磷的去除显示出了良好的效果,作用机理包括固定化材料对氮磷的物理化学吸附及微生物的吸收利用(或贮存).其中,微生物在这个过程中起着关键作用.586。
放线菌分枝中脂阿拉伯甘露糖状lipoglycan的鉴定

放线菌分枝中脂阿拉伯甘露糖状lipoglycan的鉴定摘要放线菌的细胞信封包含lipidatedmacroamphiphiles,其中最广泛的特点是分枝杆菌和有关细菌lipoarabinomannans。
我们已经研究了烟酸含放线菌大头bronchialis并确定了脂阿拉伯甘露糖般lipoglycan存在。
根据磷酸肌醇甘露糖苷性质提出提取和纯化回收的程序与建议,第二个大头两亲一小部分与其他物种的研究是一致的。
关键词放线菌糖脂Lipoglycan Æ 脂磷壁酸结核分枝杆菌Æ 磷脂甘露糖苷红球菌介绍细胞信封通常是革兰氏阳性细菌,它包含macroamphiphiles两性分子的聚合物,其大致可以分为脂磷壁酸或lipoglycans两类。
Lipoglycan中已分离出支原体和放线菌的细菌,其中最广泛的研究的是lipoarabinomannans和其亲属的分枝杆菌。
分枝杆菌林在磷脂酰环己六醇(PI)结构上锚带有甘露聚糖核心,这反过来又属于阿拉伯(糖)聚糖范围。
此外,阿拉伯(糖)聚糖领域可能携带各种取代基及封盖图案。
LAM是通过一种独特的LM伴随在分支杆菌的细胞膜上,它们依附在同一个PI-甘露聚糖核心结构上,这两个lipoglycans是生物合成性的相互关联。
除了LM和LAM,分支杆菌的细胞膜磷脂含有的甘露糖(PIMS)与LM和LAM.Mycobacterial的锚定单位在结构上有联系。
分支杆菌属LAM可以看成是LAM状的lipoglycans家族代表,包括大量的阿拉伯聚糖领域和所谓的在单一阿拉伯聚糖分枝PI=甘露聚糖核心锚上的LAM的代表。
结构多样性的了解可能会引起对LAM功能的讨论。
大头菌属作为病原体微生物有着重大的生物学意义和重要性。
在这项研究中,我们研究了macroamphiphile在放线菌大头bronchialis中的性质。
材料与方法使用标准热酚水隔离macroamphiphiles过程提取冻干G. bronchialisN654T细胞。
香蕉果皮黄酮及与丙酸_茶多酚复配剂的抑菌防腐作用_赖建平

食品科学
2012, Vol. 33, No. 13 53
香蕉果皮黄酮及与丙酸、茶多酚复配剂的 抑菌防腐作用
赖建平 1,顾采琴 1,* ,朱冬雪 1,梁 凤 1,刘燕飞 1,罗 军 2
(1.广州大学化学化工学院食品系,广东 广州 510006;2.南方医科大学公共卫生与热带医学学院,广东 广州
effect with a 7.8 mg/mL MIC than tea polyphenols alone and sodium benzoate. Therefore, banana peel flavonoids also have a
synergistic effect with tea polyphenols. All the above blends revealed a better preservative effect on pineapple juice beverage,
1.3.2 香蕉皮提取物黄酮含量的测定 香蕉果皮提取物经定性检测[14],确定为黄酮类化
合物。 测定波长的确定:取 1g/L 芦丁标准液 150μL 于试
管中,加 70% 乙醇至 1mL,加 50g/L NaNO2 溶液 0.15mL, 振摇 6min,加 100g/L Al(NO3)3 溶液 0.15mL,振摇 6min, 加 1mol/L NaOH 溶液 2mL,振摇 6min,加水 0.2mL。以 蒸馏水溶液为空白,350~55 0n m 波长范围内扫描, 510nm 波长处为最大吸收峰,确定为测定波长。
中图分类号:TS202
文献标识码:A
文章编号:1002-6630(2012)13-0053-05
随着人民生活水平的提高,健康食品、绿色食品 的概念越来越被大众所接受,天然食品防腐剂更加受到 人们的重视,并成为食品添加剂研究和应用的一个热 点,但目前已真正开发成功并推广应用于食品防腐保鲜
单个真细菌分离鉴定方法

单个真细菌分离鉴定方法英文回答:Single Pure Bacterial Isolate Identification Methods.Introduction.The identification of pure bacterial isolates is a crucial step in microbiology, allowing researchers to characterize and classify bacteria accurately. Various methods can be employed to identify bacterial isolates,each with its advantages and disadvantages. In this article, we will discuss some widely used single pure bacterial isolate identification methods.Morphological and Biochemical Tests.Morphological and biochemical tests are traditional methods used to identify bacteria based on their observable characteristics and metabolic capabilities. These testsinvolve examining the colony morphology, Gram staining reaction, motility, and performing biochemical assays to determine the presence or absence of specific enzymes or metabolic pathways.Microscopy.Microscopy is a fundamental technique for examining bacterial morphology. The Gram staining procedure differentiates bacteria into Gram-positive and Gram-negative based on the composition of their cell walls. Motility tests assess the ability of bacteria to move, providing insights into their potential virulence and ecological roles.Biochemical Assays.Biochemical assays are used to identify bacteria based on their enzymatic activities or metabolic pathways. These assays utilize selective media or specific reagents to detect the production of certain metabolites or the utilization of specific substrates. For instance, thecatalase test distinguishes bacteria that produce catalase, an enzyme that breaks down hydrogen peroxide, from those that do not.Molecular Techniques.Molecular techniques have revolutionized bacterial identification in recent years. These methods involve analyzing the genetic material of bacteria, particularly specific DNA or RNA sequences.16S rRNA Gene Sequencing.16S rRNA gene sequencing is a widely used molecular method for bacterial identification. The 16S rRNA gene is highly conserved across all bacteria, but it contains variable regions that allow for the discrimination of different species. By sequencing and comparing the 16S rRNA gene sequence of an unknown isolate with reference sequences in databases, researchers can identify theisolate at the species or genus level.Multilocus Sequence Typing (MLST)。
多粘类芽孢杆菌适冷性新型β-半乳糖苷酶的重组表达和酶学性质

向芷璇,关乐颖,李敬,等. 多粘类芽孢杆菌适冷性新型β-半乳糖苷酶的重组表达和酶学性质[J]. 食品工业科技,2023,44(22):125−133. doi: 10.13386/j.issn1002-0306.2023010185XIANG Zhixuan, GUAN Leying, LI Jing, et al. Recombinant Expression and Characterization of A Novel Cold-Adapted β-Galactosidase from Paenibacillus polymyxa [J]. Science and Technology of Food Industry, 2023, 44(22): 125−133. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010185· 生物工程 ·多粘类芽孢杆菌适冷性新型β-半乳糖苷酶的重组表达和酶学性质向芷璇1,关乐颖1,李 敬1,闫巧娟2,江正强1,3,*(1.中国农业大学食品科学与营养工程学院,中国轻工业食品生物工程重点实验室,北京 100083;2.中国农业大学工学院,北京 100083;3.中原食品实验室,河南漯河 462300)摘 要:目的:本实验旨在挖掘一个适冷性新型β-半乳糖苷酶,为低温生产低乳糖乳制品或合成低聚半乳糖(Galactooligosaccharides ,GOS )提供基础。
方法:从多粘类芽孢杆菌(Paenibacillus polymyxa )基因组中克隆一个β-半乳糖苷酶(PpBgal42A )基因,构建重组表达质粒pET-28a-PpBgal42A 在大肠杆菌BL21(DE3)中表达,经亲和层析纯化后研究重组β-半乳糖苷酶的酶学性质,利用高效液相色谱检测各糖分浓度,以GOS 转化率为指标,评价PpBgal42A 的转糖苷能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Identification of polyphenols in tobacco leaf and their antioxidantand antimicrobial activitiesHaiyan Wang a,c ,Mouming Zhao a,*,Bao Yang b ,Yueming Jiang b ,Guohua Rao aaCollege of Light Industry and Food Sciences,South China University of Technology,Guangzhou 510640,PR ChinabSouth China Botanical Garden,Chinese Academy of Sciences,Guangzhou Leyiju 510650,PR ChinacChina Tobacco Training Center,Zhengzhou 450008,PR ChinaReceived 6August 2007;received in revised form 26August 2007;accepted 27September 2007AbstractCrude polyphenols were extracted from tobacco leaf by 80%ethanol solution with ultrasonic treatment and then purified by a mac-roporous resin.The polyphenols from tobacco leaf (PTL)were subjected to analyses by reverse-phase high-performance liquid chroma-tography (RP-HPLC)and electrospray ionization mass spectrometry (ESI-MS).The dominant polyphenols in tobacco leaf were identified as chlorogenic acid and rutin.Furthermore,the antioxidant activities of PTL were investigated,including scavenging activities of 1,1-diphenyl-2-picrylhydrazyl (DPPH)radicals (5.02l g/ml IC 50value),hydroxyl radicals (49.6l g/ml IC50value)and superoxide anion radicals (44.0l g/ml IC 50value),inhibition activity of lipid peroxidation (132l g/ml IC 50value)and reducing power.The prolif-eration inhibition activities on Escherichia coli ,Staphylococcus aureus and Bacillus subtilis were also measured for evaluating the anti-microbial activity of PTL.The diameters of inhibition zones were 20.23±0.42,17.66±0.86and 12.89±0.29mm,respectively.The results showed that PTL had great potential as antioxidant and antimicrobial agent.Ó2007Elsevier Ltd.All rights reserved.Keywords:Tobacco;Polyphenol;Antioxidant activity;Antimicrobial activity;HPLC–MS1.IntroductionTobacco is a very important economic crop.In 2006,tobacco leaf production was about 500million tons over the world,increasing by 0.69%compared with that in 2005.Furthermore,over 20%of tobacco resources are dis-carded as processing waste,which pollute the environment and cause a big waste.In fact,the discarded tobacco leaves are economically valuable because of abundant bioactive compounds in them.Therefore,it is important to investi-gate and utilize the resource of tobacco leaf.Antioxidant activities of plant polyphenols have been claimed to have beneficial health functions for retarding aging and preventing cancer and cardiovascular diseases (Scalbert,Johnson,&Saltmarsh,2005).The interest in poly-phenol antioxidants has increased remarkably over the last decade because of their protective effects against differ-ent diseases,including cardiovascular,inflammatory and neurological diseases,as well as cancers (Lu &Foo,1997).The generally accepted mechanism is that free radi-cal-scavenging activity of polyphenols contributes to reduce the oxidative stress and to prevent the development of diseases (Huang,Chen,&Chen,2001).Tobacco leaf is rich in polyphenols which possess various bioactivities (Ruiz et al.,1998).The presence of polyphenols affects the colour and quality of tobacco leaf (Bazinet,DeGra-ndpre´,&Porter,2005).However,from the literature avail-able,no scientific evaluation of the antioxidant and antimicrobial activities of PTL has yet been done.Thus,the objectives of the present study were focussed on the antioxidant and antimicrobial activities of PTL.Major polyphenols in ethanolic extract of tobacco leaf were also identified by RP-HPLC and MS techniques.0308-8146/$-see front matter Ó2007Elsevier Ltd.All rights reserved.doi:10.1016/j.foodchem.2007.09.068*Corresponding author.Tel./fax:+862087113914.E-mail address:femmzhao@ (M.Zhao)./locate/foodchemAvailable online at Food Chemistry 107(2008)1399–1406Food Chemistry2.Materials and methods2.1.MaterialsThe tobacco leaves(cultivar NC89)were donated from the China Tobacco Technology Training Center and ground into powder.2.2.ChemicalsNitro blue tetrazolium(NBT),phenazine methosulphate (PMS),nicotinamide adenine dinucleotide(NADH), DPPH,a-tocopherol and thiobarbituric acid(TBA)were purchased from Sigma Chemical Co.(St.Louis,MO, USA).S8macroporous resin was purchased from the Chemical Company of Nankai University(Tianjin,China). All other chemicals and reagents used were of analytical grade.2.3.Extraction and purificationThe extraction of PTL was done according to the method of Lee and Wicker(1991),with some modifica-tions.Tobacco leaf powder(20g)was weighed and put into a250ml conicalflask.Two hundred millilitres of80%eth-anol solution were added.The conicalflask was placed in an ultrasonic cleaner(40kHz,KQ-300DE,Sonicator Com-pany,Kunshan,China)for15min at room temperature. The extract was centrifuged at10854g in a Kubota6800 centrifuge(Kubota Co.,Osaka,Japan)for10min at 4°C.The supernatant wasfiltered using Whatman No.1filter paper,followed by a microbialfilter with pore size of0.45l m(Sartorius minisart,Hannover,Germany). Thefiltrate was concentrated under reduced pressure at 40°C by a rotary evaporator(RE52AA,Yarong Corpora-tion,Shanghai,China).The crude polyphenols were obtained by lyophilization under vacuum.The crude poly-phenols were dissolved in distilled water to afinal concen-tration of1mg/ml.Then they were loaded onto a S8 macroporous resin column(1.6Â60cm).The desorption conditions were as follows:eluted by300ml of water,fol-lowed by300ml of ethanol/water(50:50,v/v),1ml/min of flow rate.The ethanol–water eluate was collected and lyophilized under vacuum.A yield of537mg was obtained. The purified polyphenols were stored at4°C for determi-nation of polyphenol content,antioxidant and antimicro-bial activities.2.4.Total phenolic contentTotal phenolic contents of PTL were determined by the Folin–Ciocaulteu assay,according to the method of Single-ton,Orthofer,and Lamuela-Raventos(1999),with some modifications.Chlorogenic acid was employed as a stan-dard reference and results were expressed as chlorogenic acid equivalents(CAE)(mg CAE/g of tobacco leaves on dry weight basis).All spectrophotometric data were acquired using an spectrumlab52UV spectrophotometer (Lengguang Tech Co.,Shanghai,China).2.5.RP-HPLC analysisAnalytical RP-HPLC analysis was conducted on a DIO-NEX summit liquid chromatograph(Dionex Corporation, Sunnyvale,USA),fitted with a C18reverse-phase column (250Â4.6mm,Diamonsil,Dikma Technologies,Beijing, China),a Dionex PDA-100photodiode array detector and Dionex P680HPLC pump.PTL were dissolved in methanol and injected(20l l)into the HPLC system.The mobile phase consisted of1%aqueous acetic acid(solvent A)and methanol(solvent B).The elution was allowed to run with90%A and10%B for2min,then from90% to80%A and from10%to20%B for10min,from 80%to50%A and from20%to50%B for10min,from 50%to0%A and from50%to100%B for5min.Theflow rate was0.5ml/min.Polyphenols in the eluate were detected at345nm with a diode array UV detector(Dionex PDA-100,Dionex Corporation,Sunnyvale,USA),whose wavelength was in the range200–400nm.2.6.HPLC–MS analysisHPLC–MS was conducted on a Waters1525HPLC (Waters,Milford,American),coupled with an ESI detector (Waters Micromass ZQ2000,Waters,Milford,America). Chromatographic separation of PTL was conducted using a C18reverse-phase column(250Â4mm;Diamonsil,Dik-ma Technologies,Beijing,China).A mobile phase(A+B solvent gradient)was employed for the RP-HPLC analysis. Identification of polyphenols was done by means of UV absorbance at345nm.Mass spectra in the negative-ion mode were generated under the following conditions:frag-menter voltage=100V;voltage=2800V;nebulizer pres-sure=25psi;temperature=100°C;m/z range=50–3000.2.7.Antioxidant activity2.7.1.Hydroxyl radical-scavenging activityAccording to the method of Ghiselli,Nardini,Baldi,and Scaccini(1998),the measurement of hydroxyl radical-scav-enging activity was carried out.0.1ml of20,40,60,80,100, 120or140l g/ml of PTL solution in methanol was mixed with0.8ml of reaction buffer(0.2M KH2PO4KOH buffer, pH7.4,1.75l mol deoxyribose,0.1l mol iron ammonium sulphate and0.1l mol EDTA).0.1ml of0.01M H2O2 was then added to the reaction solution.The solution was incubated for10min at37°C prior to the addition of 0.5ml of1%thiobarbituric acid and1ml of2.8%trichloro-acetic acid.The mixture was boiled for10min and cooled rapidly.The absorbance of the mixture was measured at 532nm.Vitamin C was used as a control.The blank was prepared using distilled water instead of sample.All the tests were performed in triplicate.The hydroxyl radical-scavenging activity was calculated as follows:1400H.Wang et al./Food Chemistry107(2008)1399–1406Scavenging activityð%Þ¼A0ÀðA1ÀA2ÞA0Â100%ð1Þwhere A0indicates the absorbance of blank;A1is the absorbance of the mixture in the presence of sample;A2 is the absorbance of the mixture in the absence of sample. The plot of scavenging activity on hydroxyl radical was done and IC50value(concentration of sample to scavenge 50%of the hydroxyl radicals)was calculated.2.7.2.Superoxide anion radical-scavenging activityThe superoxide anion radical-scavenging activity was assessed by the method of Yu et al.(2006)with a slight modification.Superoxide anion radicals,generated in the phenazine methosulfate-reduced form of nicotinamide ade-nine dinucleotide(PMS-NADH)system by oxidation of NADH,were assayed by the reduction of NBT.In this experiment,superoxide anion radicals were generated in 1.25ml of Tris–HCl buffer(16mM,pH8.0)containing 0.25ml of NBT(300l M),0.25ml of NADH(468l M) and PTL solution(20,40,60,80,100or120l g/ml).The reaction was started by adding0.25ml of PMS(60l M) solution to the mixture.The reaction mixture was incu-bated at room temperature for5min and the absorbance was read at560nm by a spectrophotometer(UV-2100, Unico Corporation,Shanghai,China)against a blank. Decreased absorbance of the reaction mixture indicated increased superoxide anion radical-scavenging activity. Vitamin C was used as a control.All the tests were per-formed in triplicate.The scavenging of the superoxide anion radicals was calculated by the following equation:Scavenging activityð%Þ¼A0ÀA1A0Â100%ð2Þwhere A0is the absorbance of the control(without sample) and A1is the absorbance of the mixture containing sample. The plot of scavenging activity on superoxide anion radicals was done and IC50value(concentration of sample to scavenge50%of superoxide anion radicals)was obtained.2.7.3.DPPH radical-scavenging activityThe DPPH radical-scavenging activity was determined according to the method of Shimada,Fujikawa,Yahara, and Nakamura(1992).The PTL extract was dissolved in methanol to prepare various concentrations of5,10,15, 20,25,30or35l g/ml.Two millilitres of PTL solution were mixed with1ml of0.2mM DPPH in methanol.The mixture was shaken vigorously and maintained for30min in the dark.The absorbance was measured at517nm.The absor-bance of the control was obtained by replacing the sample with methanol.Vitamin C was used as a control.The scav-enging activity was calculated using the following equation: Scavenging activityð%Þ¼½ðA517of controlÀA517of sampleÞ=A517of control Â100:ð3ÞThe plot of scavenging activity on DPPH radical was done and IC50value(concentration of sample to scavenge 50%of the DPPH radicals)was calculated.2.7.4.Reducing powerThe reducing power of PTL was determined according to the method of Ahmadi,Kadivar,and Shahedi(2007). Sample solution(0–50l g/ml,2ml),phosphate buffer (2ml,0.2M,pH6.6)and potassium ferricyanide(10mg/ ml,2ml)were mixed,and then incubated at50°C for 20min.Trichloroacetic acid(2ml,100mg/ml)was added to the mixture.A volume of2ml from each of the above mixtures was mixed with2ml of distilled water and 0.4ml of0.1%(w/v)ferric chloride in a test tube.After incubation for10min,the absorbance was measured at 700nm.The reducing power of vitamin C was also assayed as control.Distilled water was used as a blank.All the tests were carried out in triplicate.Increased absorbance indi-cated stronger reducing power.2.7.5.Lipid peroxidation inhibition activityThe inhibition of lipid peroxidation was assayed by the method of Anup,Shereen,and Shivanandappa(2006)with some modifications.Five microgrammes of rat liver were homogenized in20ml of Tris–HCl buffer(40mM,pH 7.0).The liver homogenate(0.1ml)was incubated with sample(0–225l g/ml,0.2ml),30mM KCl(100l l), 0.16mM FeSO4(100l l)and0.06mM Vc(100l l)at 37°C for1h.TBA reagent(1ml of0.67%TBA and1ml of15%TCA)was then added.Thefinal solution was heated at100°C in a boiling water bath for15min,cooled by ice for10min,and then centrifuged at5000g for10min. The absorbance of the supernatant was read at532nm, using a UV-754spectrophotometer(Shanghai Jiangyi Instrument Co.,Shanghai,China).The blank was per-formed by substituting Tris–HCl buffer(40mM,pH7.0) for sample.The inhibition percentage of the formation of TBA-reactive substances was calculated as(A blank-A sample)/ A blankÂ100,where A blank and A sample are the absorbance values for the blank and sample,respectively.The plot of inhibition activity was done and IC50value(concentration of sample to inhibit the formation of product of lipid peroxidation by50%)was calculated.2.8.Antimicrobial activityAntimicrobial activities of PTL,using gentamycin as the standard reference,were tested against Escherichia coli, Bacillus subtilis and Staphylococcus aureus.Antimicrobial activity was determined by using the disc diffusion method (Bauer,Kirby,Sheriss,&Turck,1966).The antimicrobial screening was performed using Mueller–Hinton agar. PTL were weighed under aseptic conditions in sterile volu-metricflasks,and dissolved with70%sterile ethanol to obtain a concentration of0.1mg/ml.Sterile discs(6mm of diameter)were impregnated with10l l of PTL solution. One hundred microlitres(107cells per ml)of suspensionH.Wang et al./Food Chemistry107(2008)1399–14061401were spread on the solid media plates and grown in agar media for24h,then spread over the surface of solid nutri-ent agar medium in9cm diameter Petri dishes.Filter paper discs(6mm of diameter),loaded with samples and genta-mycin,were placed on the surface of the nutrient agar, incubated at37°C for24h,and then the diameters of inhi-bition zones were measured in millimeters.All the determi-nations were done in triplicate.2.9.Statistical analysisAll the tests were done in triplicate.Data were expressed as means±standard errors.Statistical calculations by OriginPro Version7.5software(OriginLab Corporation, Northampton,USA)were carried out.One way analysis of variance was applied for determining significant differ-ence at P<0.05.3.Results and discussion3.1.Isolation and identification of polyphenolsBased on the absorbance values of the extracts reacted with Folin–Ciocalteu reagent and compared with the stan-dard reference chlorogenic acid,the total yield of PTL was 23.6±2.3mg CAE/g.HPLC,with reverse phase column technology,is the analytical technique that has dominated the separation and characterization of phenolic compounds(Robbins, 2003).In the present study,the major components in PTL were identified by RP-HPLC and MS analyses.The chromatogram of PTL was recorded at345nm and is shown in Fig.1.The RP-HPLC profile of PTL indicated that the RP-HPLC system could separate easily the domi-nant polyphenols.By comparing with the commercial stan-dards,two main peaks at13.47and19.35min were identified as chlorogenic acid and rutin,respectively.Their UV–visible scanning spectra,from the diode array detector over the range200–400nm,were also determined(Fig.1).Chlorogenic acid had three absorbance peaks at218.9, 244.1and328.7nm,respectively,while rutin also had three absorbance peaks at205.1,257.8and356.8nm,respec-tively.Two main compounds were further identified by HPLC-MS,as illustrated in Fig.2.Identification of the tobacco polyphenols by HPLC-MS provided additional supporting evidence for the main polyphenols.As shown in the mass spectra of chlorogenic aicd(Fig.2),[M-H] m/z353.05indicated the molecular weight of chlorogenic acid(Zhu et al.,2004),while m/z191.10meant the ion frac-tion after losing the3,4-dihydroxycinnamoyl group.[M-H] m/z609.00indicated the molecular weight of rutin.The peak at m/z300.07was the ion fraction of rutin after losing the rutinoside linkage.The peak at m/z178.97confirmed the existence of glucose(Roesler,Catharino,Malta,Eber-lin,&Pastore,2007).3.2.Antioxidant activity3.2.1.Hydroxyl radical-scavenging activityHydroxyl radical is the most reactive free radical and it can be formed from superoxide anion and hydrogen perox-ide in the presence of metal ions,such as copper or iron. Hydroxyl radicals react with lipid,polypeptides,proteins and DNA,especially thiamine and guanosine.The result-ing radical can undergo further reactions,such as reacting with oxygen to give peroxylradicals,or decomposing to phenoxyl-type radicals by water elimination(Kitada,Igar-ashi,Hirose,&Kitagawa,1979).The scavenging activities of PTL on hydroxyl radicals are shown in Fig.3.These were dose-dependent.Moreover,when the tested concen-tration was above40l g/ml,PTL showed higher scaveng-ing activity than did vitamin C,which is considered to bea potent hydroxyl radical-scavenger.3.2.2.Superoxide anion radical-scavenging activitySuperoxide anion is a reduced form of molecular oxygen, by receiving an electron.It is also an initial free radical formed from mitochondrial electron transportsystems. Fig.1.HPLC chromatogram of PTL and UV–visible scanning spectra of chlorogenic acid and rutin.The peaks at retention times of13.47and19.35min were chlorogenic acid and rutin,respectively.1402H.Wang et al./Food Chemistry107(2008)1399–1406Mitochondria generate energy using four electron chain reactions,reducing oxygen to water.Some of the electrons escaping from the chain reaction of mitochondria directly react with oxygen and form superoxide anion.It plays an important role in the formation of other reactive oxygen species,such as hydrogen peroxide,hydroxyl radical,or sin-glet oxygen in living systems (Kulisic,Radonic,&Katyali-nic,2005).The effects of PTL on superoxide anion radicals were determined and the results are shown in Fig.4.PTL had a significant scavenging activity on the superoxide anion radicals in a dose-dependent pared with vitamin C,PTL showed insignificant difference (P >0.05)with regard to superoxide anion radical-scavenging activity.3.2.3.DPPH radical-scavenging activityDPPH radical is commonly used as a substrate to eval-uate antioxidant activity;it is a stable free radical that canaccept an electron or hydrogen radical to become a stable molecule.The reduction of DPPH radical was determined by the decrease in its absorbance at 517nm induced by antioxidants.Fig.5shows the scavenging effect of PTL on DPPH free radicals.PTL exhibited a strong ability to quench DPPH radicals.The scavenging effect increased with increasing concentrations used in the test.The DPPH radical-scavenging activity of PTL at low concentration was significantly higher (P <0.05)than that of vitamin C,a commercial antioxidant used in the food industry.This indicated that PTL was a good antioxidant with strong DPPH radical-scavenging activity.3.2.4.Reducing powerReducing power is often used as an indicator of elec-tron-donating activity,which is an important mechanism for testing antioxidative action of phenolics (Yildirim,Fig.2.Mass spectra of chlorogenic acid andrutin.H.Wang et al./Food Chemistry 107(2008)1399–14061403Mavi,&Kara,2001).The reducing power has also been used as an important test of antioxidant activity of medic-inal herbs (Duh &Yen,1997;Duh,Tu,&Yen,1999).A good correlation between antioxidant activity and reducing power in some plant extracts has been established (Yen,Chen,&Peng,2000).Therefore,reducing power may be used as an indicator of potential antioxidant activity.Fig.6presents the reducing power of PTL and vitamin C.It shows that PTL had a dose-dependent reducing power.When a relatively high concentration (no less than 25l g/ml)was used,no significant difference (P >0.05)was observed between the reducing power of PTL and vita-min C.3.2.5.Inhibition of lipid peroxidationLipid peroxidation is an oxidative alteration of polyun-saturated fatty acids in the cell membranes that generates a number of degradation products.Malonaldehyde,one of the products of lipid peroxidation,has been studied widely as an index of lipid peroxidation and a marker of oxidative stress (Janero,1990).The lipid peroxidation inhibition activity of PTL was determined and compared with that of vitamin E.As shown in Fig.7,the lipid peroxidation process was inhibited by the addition of PTL.PTL showed a dose-dependent relationship in inhibiting lipid peroxida-tion.At high concentration (no less than 125l g/ml),the lipid peroxidation inhibition activity of PTL was not signif-icantly different (P >0.05)from that of vitamin E.3.2.6.IC 50values for antioxidant activitiesConcentration of sample at which the inhibition per-centage reaches 50%is the IC 50value.IC 50value is nega-tively related to the antioxidant activity,as it expresses the amount of antioxidant needed to decrease the radical concentration by 50%.The lower the IC 50value,the higher is the antioxidant activity of the tested sample.The IC 50values of PTL for DPPH radical,hydroxyl radical and superoxide anion radical-scavenging activities,as well as lipid peroxidation inhibition activity,are summarized in Table 1.IC 50values of PTL for scavenging activities on hydroxyl radicals,superoxide anion radicals and DPPH radicals were 49.6,44.0and 5.02l g/ml which were signifi-cantly lower (P <0.05)than those of the control,vitamin C.The IC 50value of PTL (132l g/ml)for lipid peroxida-tion was slightly higher than that of the control,vitamin E,possibly due to the weaker liposolubility of PTL than vitamin E.According to the results in Table 1,a conclusion could be drawn that PTL possessed strong antioxidant activity.3.3.Antimicrobial activityThe disc diffusion method was used to determine the antimicrobial activity of PTL.The antimicrobial activity on pathogenic strains of Gram-positive (S.aureus and B.subtilis ),Gram-negative (Escherichia col )bacteria of PTL was evaluated in the present study.Inhibition zones of bac-teria by PTL and gentamycin were measured.Gentamycin is a well-known chemical with pronounced antimicrobial potential.According to the results in Table 2,diameters of the inhibition zone of gentamycin were 21.67±0.91mm for E.coli ,14.18±0.75mm for B.subtilis and 16.21±0.48mm for S.aureus.Gentamycin was used as a positive control because it has been commonly employed as the antibiotic for Gram-positive and Gram-negative bacteria.PTL showed good antimicrobial activity on E.coli (20.23±0.42mm),B.subtilis (12.89±0.29mm)1404H.Wang et al./Food Chemistry 107(2008)1399–1406and S.aureus(17.66±0.86mm).For E.coli and S.aureus, the inhibition zones of PTL were found to be not signifi-cantly different(P>0.05)from those of Gentamycin.This result indicated that PTL was a good antimicrobial agent with strong antimicrobial activity.4.ConclusionsThe main polyphenols in PTL were identified as chloro-genic acid and rutin by analyses of RP-HPLC and MS. Strong scavenging activities on hydroxyl radicals,superox-ide anion radicals and DPPH radicals were found for PTL. The analyses of lipid peroxidation inhibition activity and reducing power also indicated that PTL possessed good antioxidant activity.Meanwhile,the proliferation inhibi-tion activity of PTL on E.coli,S.aureus and B.subtilis were investigated in this study.The results confirmed that it had good antimicrobial activity.From the above results, it appears important to develop natural antioxidants and bacterial inhibitors from tobacco leaf,and this may be a good way for extensively utilizing the tobacco resource.AcknowledgementsThis programme wasfinancially supported by Guang-dong Tobacco Monopoly Burea(Program No.[2005]17) and Eleventh-five-year National Key Technology R&D Program(No.2006BAD27B03and2006BAD27B04).ReferencesAhmadi,F.,Kadivar,M.,&Shahedi,M.(2007).Antioxidant activity of Kelussia odoratissima Mozaff.in model and food systems.Food Chemistry,105,57–64.Anup,S.,Shereen,R.H.,&Shivanandappa,T.(2006).Antioxidant activity of the roots of Decalepis hamiltonii(Wight&Arn).LWT-Food Science and Technology,36,1059–1065.Bauer,A.W.,Kirby,W.M.M.,Sheriss,J.C.,&Turck,M.(1966).Antibiotic susceptibility testing by standardised single method.Amer-ican Journal of Clinical Pathology,45,493–496.Bazinet,L.,DeGrandpre´,Y.,&Porter,A.(2005).Electromigration of tobacco polyphenols.Separation and Purification Technology,41, 101–107.Duh,P.D.,Tu,Y.Y.,&Yen,G.C.(1999).Antioxidant activity of water extract of Harng Jyur(Chrysanthemum morfolium Ramat).Lebens-mitterl-Wissenschaft und-Technologie,32,269–277.Duh,P.D.,&Yen,G.C.(1997).Antioxidant activity of three herbal water extracts.Food Chemistry,60,639–645.Ghiselli,A.,Nardini,M.,Baldi,A.,&Scaccini,C.(1998).Antioxidant activity of different phenolic fractions separated from an Italian red wine.Journal of Agricultural and Food Chemistry,46,361–367. Huang,Y.L.,Chen, C. C.,&Chen,Y.(2001).Identification and quantification of major polyphenols in grape seed.Journal of Natural Products,64,903–906.Janero,D.R.(1990).Malondialdehyde and thiobarbituric acid reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury.Free Radical Biology and Medicine,9,515–540.Kitada,M.,Igarashi,K.,Hirose,S.,&Kitagawa,H.(1979).Inhibition by polyamines of lipid peroxide formation in rat liver microsomes.Biochemical and Biophysical Research Communications,87, 388–394.Kulisic,T.,Radonic,A.,&Katyalinic,V.(2005).Use of different methods for testing antioxidant activity in food.Food Chemistry,92,235–254. Lee,H.A.,&Wicker,L.(1991).Anthocyanin pigments in the skin of lychee fruit.Journal of Food Science,56,466–468.Lu,Y.,&Foo,L.Y.(1997).Identification and quantification of major polyphenols in apple pomace.Food Chemistry,59,187–194. Robbins,R.J.(2003).Phenolic acids in foods:An overview of analytical methodology.Journal of Agricultural and Food Chemistry,51, 2866–2887.Roesler,R.,Catharino,R.R.,Malta,L.G.,Eberlin,M.N.,&Pastore,G.(2007).Antioxidant activity of Annona crassiflora:Characterization of major components by electrospray ionization mass spectrometry.Food Chemistry,104,1048–1054.Ruiz,J.M.,Bretones,G.,Baghour,M.,Ragala,L.,Belakbir,A.,& Romero,L.(1998).Relationship between boron and phenolic metab-olism in tobacco leaves.Phytochemistry,48,269–272.Scalbert, A.,Johnson,I.T.,&Saltmarsh,M.(2005).Polyphenols: Antioxidants and beyond.American Journal of Clinical Nutrition,81, 215–217.Shimada,K.,Fujikawa,K.,Yahara,K.,&Nakamura,T.(1992).Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion.Journal of Agriculture and Food Chem-istry,40,945–948.Singleton,V.L.,Orthofer,R.,&Lamuela-Raventos,R.M.(1999).Analysis of total phenols and other oxidation substrates and antiox-Table1Comparison of IC50value of PTL and standard antioxidantsSamples Hydroxyl radical-scavengingactivity(l g/ml)Superoxide anionradical-scavengingactivity(l g/ml)DPPH radical-scavengingactivity(l g/ml)Lipid peroxidation(l g/ml)PTL49.644.0 5.02132Vitamin C53.346.19.38Vitamin E130Table2Comparison of antimicrobial activities of PTL and gentamycin*Samples Diameter of inbibition zone(mm)Escherichia coli Bacillus subtilis Staphylococcus aureus PTL20.23±0.4212.89±0.2917.66±0.86 Gentamycin21.67±0.9114.18±0.7516.21±0.48H.Wang et al./Food Chemistry107(2008)1399–14061405。