全热交换器的探讨

合集下载

全热交换新风系统原理

全热交换新风系统原理

全热交换新风系统原理
全热交换新风系统是一种利用热交换技术实现空气净化、温度调节和能量节约的新风系统。

它采用了热交换器,通过对新鲜空气和室内排风进行热量传递,实现了一部分热能的回收和再利用。

该系统的主要原理是利用热交换器将室外新鲜空气与室内排风进行热交换。

当新鲜空气从热交换器的一个通道进入时,它与从另一个通道流过的排风进行接触,通过传热过程,将排风中的热量传递给新鲜空气。

这样,新鲜空气在进入室内之前就已经被预先加热,从而减少了加热的能量需求。

在热交换过程中,还存在着一定的湿度传递。

如果室内空气较湿,经过热交换器后,新鲜空气的湿度将会增加,而室内空气的湿度将会降低。

同样地,如果室内空气较干燥,新鲜空气经过热交换器后的湿度将会降低,而室内空气的湿度将会增加。

因此,全热交换新风系统还能够在一定程度上调节室内的湿度。

除了热交换功能外,全热交换新风系统还可以配备空气过滤装置,用于对新鲜空气进行净化处理。

通过过滤装置,可以有效去除颗粒物、细菌、病毒等悬浮物,提供更加洁净的室内环境。

总的来说,全热交换新风系统通过热交换和湿度传递实现了室内外空气的净化和调节。

它不仅可以提供新鲜的空气,减少室内空气的二氧化碳浓度,还可以节约能源,并且可以适应不同的空气湿度需求。

全热交换器

全热交换器

工作原理
全热交换器工作原理是:产品工作时,室内排风和新风分别呈正交叉方式流经换热器芯体时,由于气流分隔 板两侧气流存在着温差和蒸汽分压差,两股气流通过分隔板时呈现传热传质现象,引起全热交换过程。夏季运行 时,新风从空调排风获得冷量,使温度降低,同时被空调风干燥,使新风含湿量降低;冬季运行时,新风从空调 室排风获得热量,温度升高。这样,通过换热芯体的全热换热过程,让新风从空调排风中回收能量。
全热交换器
含有全热换芯体的新风、排风换气设备
01 工作原理
03 特点
目录
02 分类 04 选型指南
全热交换器通常是指一种含有全热换芯体的新风、排风换气设备。
在小型家用空调或VRV空调系统中,因不带新风,室内空气品质较差.需要在系统中采用热回收装置。全热 交换器是一种高效节能的热回收装置,通过回收排气中的余热对引入空调系统的新风进行预热或预冷,在新风进 入室内或空调机组的表冷器进行热湿处理之前,降低(增加)新风焓值。有效降低空调系统负荷,节省空调系统能 耗和运行费用,有效地解决了提高室内空气品质与空调节能之间的矛盾,在空调系统节能领域中具有不可替代的 作用。
谢谢观看
选型指南
全热交换器,热交换器解决方案,热交换器选型指南 确定房间所需新风量时:应根据房间空间大小及室内人员数量综合考虑。根据上表推荐数据分别按“每人所 需新风量”和“房间新风换气次数(m2),净高h=3(m),人员n=12(人),若按每人所需新风量计算,取每人所需新风量q=50(m3/h), 则新风量 Q1=n·q=12×50=600(m3/h)。 若按房间新风换气次数计算,取房间新风换气次数p=4.5(次/h)。 则新风量Q2=p·s·h=4.5×50×3=675(m3/h)。 由于Q2 >Q1,故取Q2(即675m3/h)作为设备选型参数数据

全热交换器新风系统

全热交换器新风系统

全热交换器新风系统全热交换器是一种新风系统中常用的技术,它通过热量交换的方式实现热量的回收与利用。

全热交换器新风系统具有节能、环保、舒适等特点,被广泛应用于建筑物的通风系统中。

1. 全热交换器的原理和工作方式全热交换器通过将室内和室外空气进行热量交换,实现室内热量的回收与利用。

它通常由两个平行的热交换器组成,分别用于处理室内和室外的空气。

在工作过程中,新鲜的室外空气和室内空气分别通过两个热交换器进行热量交换,从而实现热量的传递。

2. 全热交换器新风系统的优点2.1 节能全热交换器新风系统可以回收室内空气中的热量,利用热交换器进行热量传递,从而减少了对室外空气的加热或冷却需求。

这样不仅可以节省能源,降低运行成本,还可以减少对环境的影响。

2.2 环保全热交换器新风系统减少了对室外空气的加热或冷却需求,可以降低能源的消耗,减少二氧化碳等温室气体的排放。

这有助于减少对大气环境的污染,保护生态环境。

2.3 舒适全热交换器新风系统可以有效地改善室内空气质量,减少空气中的污染物浓度,提供更加清新和健康的室内环境。

同时,它可以减少外界的噪音和异味进入室内,提供更加安静、舒适的居住和工作环境。

3. 全热交换器新风系统的应用领域全热交换器新风系统广泛应用于各类建筑物的通风系统中,特别适用于需要长时间开窗通风的场所,如住宅、办公楼、学校等。

它在冬季可以通过回收室内空气的热量,提供温暖的新风,减少室内的采暖能耗;在夏季可以通过回收室内空气的冷量,提供凉爽的新风,减少室内的空调能耗。

此外,全热交换器新风系统还适用于一些对内外空气交换有特殊要求的场所,如实验室、医院等。

4. 全热交换器新风系统的注意事项4.1 设备选择在选择全热交换器新风系统时,应根据建筑物的需求和实际情况来确定新风系统的设计参数,包括送风量、热交换效率、压降等。

同时,还需要考虑设备的可靠性、维护保养和运行成本等因素。

4.2 系统设计在设计全热交换器新风系统时,应合理布局和设计系统的各个部分,包括新风供应、热交换、送风和排风等。

新风系统解析全热交换

新风系统解析全热交换

随着我们对生活品质要求的提高,作为可以改善室内空气质量,提高生活品质的新风系统也已经成为我们的家庭必需品,而在种类繁多的各种新风设备中,具有全热交换的新风系统,尤其是德国精工·诺森柏格新风系统,受到了广大消费者的追捧,那么什么是全热交换呢?
全热交换又称全热交换器、全热交换系统,其工作原理是室内排风和新风分别呈正交叉方式流经热交换芯体时,由于气流分隔板两侧气流存在着温差和蒸汽分压差,两股气流通过分隔板时呈现传热传质现象,引起全热交换过程。

比如说,夏季运行时,新风从空调排风获得冷量,使温度降低,同时被空调风干燥,使新风含湿量降低;冬季运行时,新风从暖气房排风获得热量,温度升高。

这样,通过换热芯体的全热换热过程,让新风从空调排风中回收能量,从而达到冬季不冷,夏季不热的效果。

全热交换的热点是采用了先进的逆流结构设计,空气在模块中的换热时间得到了加长,并且条格形的通风孔道大大增加了换热面积,所以相比传统的交叉流机芯,热交换效果提高5%—10%。

德国精工·诺森柏格新风系统的全热交换芯,采用的是高分子材料制成的纳米微孔换热膜片,导热透湿性极佳,气密安全性好,并且在全热回收的过程中不会污染新风,实现无污染能量回收!
德国精工·诺森柏格新风系统的全热交换芯,采用的是六边形外形降低了模块厚度,外形紧凑小巧,坚固耐用,使用寿命比交叉流机芯增加了一倍,并且特殊的通风孔道丝毫没有影响换热面积。

除此之外,德国精工·诺森柏格全热交换新风系统,机型多样,使用范围广,可广泛安装运用于住宅、宾馆、酒店、写字楼、机场、体育馆、医院、商场等地方。

不论是在公共领域或者家装流域,德国精工·诺森柏格新风系统都有不俗的表现。

全热交换器工作原理与优点

全热交换器工作原理与优点

全热交换器工作原理与优点第一篇:全热交换器工作原理与优点一、全热交换器工作原理说太多的专业术语可能大家比较不容易理解,说点通俗易懂的,简单讲全热交换器就是通过自身的电机实现对室内外新风和旧风的一个置换,在置换过程中,因其自身携带过滤和热回收功能,所以在置换过程中会对空气进行过滤,滤除空气中有害物质如粉尘、PM2.5、雾霾、细菌等大分子物质,并且在排出室内污气的时候能够讲室内的热量回收,实现节能效果。

二、全热交换器分类1、纸芯全热交换器2、蒸发式铝芯全热交换器三、全热交换器优点相对以往换气扇,全热交换器是一种完全体进化,那全热交换器到底有哪些优点呢?1、过滤:在换气的时候能够多对空气进行过滤,保证空气的干净。

2、静音:大家都知道以往的排气扇跟拖拉机一样,而全热交换器内部采用了跟空调以一样的隔音材质以及滚珠轴承的点击让噪音更低。

3、热回收:以往的换气扇只是对空气进行置换而已,无法实现空气中热量的回收,而这些全热交换器全部做到了,热量回收率可以达到85%,从而实现节能效果。

4、换气面积更大:普通换气扇换气面积有限,而全热交换器可以利用管道实现全方位24小时换气5、除温。

四、全热交换器选型指南计算示例:确定房间所需新风量时,应根据房间空间大小及室内人员数量综合考虑。

根据上表推荐数据分别按“每人所需新风量”和“房间新风换气次数”计算出新风量数值,取二者中较大值,作为设备选型依据。

某计算机房面积S=50(m2),净高h=3(m),人员n=12(人),若按每人所需新风量计算,取每人所需新风量q=50(m3/h),则新风量Q1=n·q=12×50=600(m3/h)。

若按房间新风换气次数计算,取房间新风换气次数p=4.5(次/h)。

则新风量Q2=p·s·h=4.5×50×3=675(m3/h)。

由于Q2 >Q1,故取Q2(即675m3/h)作为设备选型参数数据。

全热交换新风机的工作原理

全热交换新风机的工作原理

现代人越来越重视家居环境的设计,为了使室内保持四季恒温,于是出现了空调和采暖设备,为了用上洁净卫生的水,于是有了各种净水设备。

除此之外,我们每天还要呼吸,因此,为了每天能够呼吸到健康清新的空气,便出现了家用新风系统,其中全热交换新风机是当前最受欢迎的新风设备。

接下来,为大家讲解有关全热交换新风机原理及优缺点的分析。

全热交换器工作原理所谓全热交换器,既全热交换新风机,它是一种含有全热交换芯体的新风、排风换气设备。

其工作原理为:设备在运行时,室内排风和新风分别呈正交叉方式流经换热器芯体时,由于气流分隔板两侧气流存在着温差和蒸汽分压差,两股气流通过分隔板时呈现传热传质现象,引起全热交换过程。

在夏季,新风从空调排风获得冷量,温度得以降低的同时还被空调风干燥,从而使得新风含湿量降低;在冬季,新风从空调室排风获得热量,温度得以升高。

全热交换器作为一种高效节能型空调通风装置,通过换热芯体的全热换热过程,能够有效地获取排风中的焓值全热型CHA或温度显热型CHB,从而达到了节能换气的目的,极大地节约了新风预处理的能耗。

全热交换器优缺点全热交换新风机作为当前最受欢迎的桃源仙居新风系统,拥有非常突出的优势,主要包括以下几点:一、换热效率高。

产品采用先进的逆流结构设计,能够大大的提高换热效率;二、外形紧凑小巧。

全热交换器的外形为六边形,降低了模块的厚度,特殊的通风孔道有利于模块比交叉流机芯做得更短;三、性能稳定、无需清洁。

通风孔道采用了流线设计,可以有效地防止着尘,无需对交叉流机芯进行定期的清洁;四、使用寿命长。

采用了ABS框架结构,非常坚固而耐用,使用寿命相比交叉流机芯增加了一倍。

当然,全热交换器也存在一些不足之处,和其他的热回收装置一样,全热交换器在安装时需要把新风和排风集中在一起,这样便会给系统布置带来一些困难,此外,当排风和进风的压力差较大时,通过分隔板密封圈会有少量的空气泄漏,不过这些情况可以通过送风压入、排风吸出法来避免。

探讨暖通空调设计中全热交换器的使用贺正文

探讨暖通空调设计中全热交换器的使用贺正文

探讨暖通空调设计中全热交换器的使用贺正文发布时间:2023-07-17T09:23:27.641Z 来源:《小城镇建设》2023年4期作者:贺正文[导读] 暖通空调系统的功能就是创造舒适、健康的室内环境。

暖通空调系统参数中,除温度、湿度参数外,另外一个主要的参数就是室内空气品质,一般情况下,通过合适的措施增加室内新风量是改善暖通空调室内空调品质最有效的方法,新风量越大,室内空气品质越好。

但是,新风量的增加会增加处理新风的耗能。

虽然人们已意识到能源紧张带来的危机,但人们追求舒适健康的环境要求是不会停步的,满足人们的这种要求与能源紧张的矛盾将会更加突出。

因而空调系统中增加新风量的同时如何能做到节约能源消耗的问题是最近几年暖通空调节能研究的一个重要新课题。

本文就暖通空调设计中全热交换器的使用进行了分析。

身份证号:42038119820818XXXX 摘要:暖通空调系统的功能就是创造舒适、健康的室内环境。

暖通空调系统参数中,除温度、湿度参数外,另外一个主要的参数就是室内空气品质,一般情况下,通过合适的措施增加室内新风量是改善暖通空调室内空调品质最有效的方法,新风量越大,室内空气品质越好。

但是,新风量的增加会增加处理新风的耗能。

虽然人们已意识到能源紧张带来的危机,但人们追求舒适健康的环境要求是不会停步的,满足人们的这种要求与能源紧张的矛盾将会更加突出。

因而空调系统中增加新风量的同时如何能做到节约能源消耗的问题是最近几年暖通空调节能研究的一个重要新课题。

本文就暖通空调设计中全热交换器的使用进行了分析。

关键词:暖通空调;设计;全热交换器;使用引言随着社会的快速发展,中央空调已经广泛应用在商业和民用建筑,成为现代建筑中不可或缺的能耗运行系统。

目前我国的能源消费很大部分依靠矿物质能源。

因此,降低建筑能耗,可以很好地减少有害物质的排放,但是以损害室内环境为基础的建筑节能是不允许的。

特别是对于采用集中通风和空调系统的建筑,若是为了降低建筑能耗而减少了室外新风量,则很难起到为室内空气换气并带走室内有害物质的作用。

全热交换器组成结构

全热交换器组成结构

全热交换器组成结构概述全热交换器(Total Heat Exchanger),又称为回收式换热器(Sensible and Latent Heat Recovery Exchanger),是一种用于回收废热并实现能量转移的装置。

它通过根据两个流体之间的热量差异,在二者接触的界面处实现热量传递。

本文将探讨全热交换器的组成结构。

传热器传热器是全热交换器的核心组成部分,它由许多平行排列的细小管子组成。

传热器的作用是将热量从废气传递到新鲜空气中。

传热器通常由高热导率的材料制成,使得热量能够迅速传导。

传热管传热管是传热器中最基本的组成部分。

它们通常是由高热导率且不易腐蚀的材料制成,如铜、铝、不锈钢等。

传热管的内壁会形成一层细小的结露物,用以提高热量传递效率。

传热板传热板是传热器中另一种常见的结构。

它由许多波纹形状的金属板组成,波纹板的作用是增加表面积以提高热量传递效率。

传热板可以由不锈钢、铝合金等材料制成。

风机风机是全热交换器中的重要部分,它起到将废气和新鲜空气进行流动的作用。

风机通常位于传热器的末端,可以通过创建气流来促进热量的传递。

强制对流风机在全热交换器中,通常使用强制对流风机来增加气流速度和压力,以提高热量传递效率。

这种风机通过自身旋转产生负压,同时通过导向叶片控制气流的方向和速度。

离心风机是一种常用的风机类型,它通过一个旋转的叶轮来产生气流。

离心风机的叶轮由多个叶片组成,当风机旋转时,叶片将废气和新鲜空气推向全热交换器的传热器部分。

换向阀换向阀用于控制传热器中的废气和新鲜空气的流向。

通过改变流向,可以实现废气中的热量向新鲜空气的传递,并实现能量的回收。

二通换向阀二通换向阀是一种常见的换向阀类型。

它只有两个出口,可以控制废气和新鲜空气的流向。

该阀通过调节出口的开关状态,决定废气和新鲜空气的流动方向。

三通换向阀三通换向阀是另一种常见的换向阀类型。

它有三个出口,可以同时控制废气和新鲜空气的流向。

通过调节出口的开关状态,可以将废气和新鲜空气导向不同的管道。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全热交换器的探讨
【摘要】本文主要介绍了全热交换器的原理和性能,对该设备在设计中应如何选用提出了粗浅的看法。

标签全热交换器;原理;性能;选用
1、概述:
全热交换器是最近几年从国外传入我国的一种节能设备。

它广泛应用于空调系统的新风系统中,在能源紧张的今天该设备发展很快。

不仅生产的厂家多,品牌规格也很多。

根据热交换器的交换性质可分为全热交换器和显热交换器。

全热交换器的芯体一般为纸芯,显热交换器的芯体一般为金属铝箔。

不管是全热交换还是显热交换它们的交换原理都是一样的,即:当室内空调排风与室外新风分别呈交叉方式流经换热芯体时,由于纤维之间的间隙很小,只有粒径较小的水蒸汽分子才能通过,从而实现温度及湿度的交换。

显热交换器无水份交换。

全热交换器在夏季运行时,新风从空调排风中获得冷能而温度降低,同时新风中的水蒸汽在其分压力的作用下渗透到排风中;冬季运行时则相反,新风从空调排风中获得热能而温度升高,排风中的水蒸汽则渗透到新风中。

通过换热器芯体的热交换过程使新风从空调排风中回收到了大部分的能量,节约了空调耗能。

全热交换器是一种新的节能设备,如今尚未有系统的介绍资料,各厂家样本介绍也比较简单,而且各厂家介绍的资料出入也比较大,因此对我们设计工作者在选用时造成很大不方便,本文试想分析归纳若干基本数据以便指导设计,妥否请同仁探讨指教。

2、性能分析:
收集到多个厂家样本,现举例A、B两个厂家提供的数据加以剖析(以夏季运行状况为例):
A、B两厂的数据是该厂设备的实测数据还是计算数据,资料尚未注明。

2.1、A厂:室外的新风参数(H):tH=32℃(干球)d H=18g/kg(含湿量)
φH=60%(相对湿度)hH=78.47kJ/kg(焓值)
新风降温至(1):t1=27.9℃(干球) d H=14.25g/kg(含湿量)
φ1=61%(相对湿度)hH=64.64kJ/kg(焓值)
室内排风参数(B):tB=26℃(干球) d B=10.50g/kg(含湿量)
φB=50%(相对湿度)hB=53kJ/kg(焓值)
排风升温至(2):t2=30.1℃(干球)d2=14.25g/kg(含湿量)
φ2=53.5%(相对湿度)h2=66.75kJ/kg(焓值)
全热交换器在运行中高温新风的热量除大部分通过纸芯传给低温排风外,尚有少量热量通过交换器壳体传给大气,因此用热平衡来做焓湿图存在一定的困难。

用湿平衡来做图比较方便准确,即新风的水蒸汽传给排风,并无其它损失,收支平衡。

其中焓效率的表达式为:
焓效率=(新风进口的焓值-新风出口的焓值)/(新风进口焓值-排风空气进口焓值)
2.1.1、根据A厂的参数,绘制焓湿图和空气逆向流动温度变化曲线并加以热力学分析:
作A厂焓湿图和空气逆向流动温度变化曲线图:
2.1.2、根据A厂参数分析:
A 厂:新风由32℃(干球)降温至27.9℃,温降为△t=4.1℃;
排风由26℃(干球)升温至30.1℃,温升为△t=4.1℃;
H点与2点的相对温差为△t=1.9℃;
B点与1点的相对温差为△t=1.9℃;
焓效率为:(78.47-64.64)/(78.47-53)=0.54(54%)
2.2.、B厂:室外的新风参数(H):tH=38℃(干球)d H=25.42g/kg(含湿量)
φH=60%(相对湿度)hH=103.72kJ/kg(焓值)
新风降温至(1):t1=27.5℃(干球) d H=17g/kg(含湿量)
φ1=73%(相对湿度)hH=72kJ/kg(焓值)
室内排风参数(B):tB=23℃(干球) d B=8.75g/kg(含湿量)
φB=50%(相对湿度)hB=45.47kJ/kg(焓值)
排风升温至(2):t2=33.5℃(干球)d2=17g/kg(含湿量)
φ2=52%(相对湿度)h2=77.3kJ/kg(焓值)
2.2.1、根据B厂的参数,绘制焓湿图和空气逆向流动温度变化曲线并加以热力学分析:
作B厂焓湿图和空气逆向流动温度变化曲线图:
2.2.2、根据B厂参数分析:
B 厂:新风由38℃(干球)降温至27.5℃,温降为△t=10.5℃;
排风由23℃(干球)升温至33.5℃,温升为△t=10.5℃;
H点与2点的相对温差为△t=4.5℃;
B点与1点的相对温差为△t=4.5℃;
焓效率为:(103.72-72)/(103.72-45.47)=0.545(54.5%)
从A、B 两厂提供的数据和根据数据所进行的分析来看,新风和排风在热湿交换器交换过程中的相对温差差别较大,A厂为1.9℃,B厂为4.5℃。

新风与排风自身的温升与温降差别也比较大,A厂为4.1℃,B厂为10.5℃。

但仔细分析研究认为,新风和排风的相对温差的大小,新风和排风自身温升和温降的大小,完全取决与在交换过程中接触换热器表面积的大小、冷、热空气流过断面的时间(即与流速有关)。

换热器表面积大,空气流速低,其效率越高。

这些数据应由厂家试验获得。

经查阅多个厂家样本,并请教了有关厂家的专家,对以上的数据比较一致的看法是:
当室外干球温度参数在35℃以下,室内干球温度参数在24-26℃时,新风和排风逆向流动的相对温差越大,其冷热风的换热效果越好,一般相对温差仅为2-5℃比较合适,此时新风和排风的自身温降和温升取3-6℃比较合适。

若室外温度高于35℃,新风和排风的相对温差,和新风和排风的自身温升和温降取值会相应高一点。

3、全热交换器在工程上的应用:
1)、随着国家对节能环保这个主题的不断推进,空调系统的设计节能化要求也日益严格,在新风系统中采用全热交换器,为新风系统的节能起到了一定的作用,应该大力推广。

2)、设计参数的选取:在宁波地区,空调设计室外干球温度参数为:34.5℃。

经过全热交换器,新风和排风逆向流动的相对温差取2-5℃,新风温降和排风温升取3-6℃比较合适。

上述数据本应厂方对设备进行测试后确定,但目前各厂家仅给出定性而无定量数据,给设计选用造成困难,建议厂方尽早提供该设备的成套测试数据,以便大力推广选用。

3)、若根据设计参数,舒适空调的室内空调温度一般恒定在24-26℃,则新风的送风温度与室温之差将有2-5℃,这部分的冷量负荷的增加由空调末端设备来承担,其冷量负荷应为相应的新风量与每单位新风量焓差的乘积(一般焓差取值为4.2-8.4kJ/kg)。

这样才能保证室内空调温度的恒定。

4)、新风冷量的补偿也可以用以下方法:即先求出新风量,再求新风量所需要的冷量。

考虑全热交换器的效率为50%-60%,即尚有45%左右的冷量要求加到该新风系统所服务的空调末端设备上。

参考文献
[1]电子工业部第十设计研究院主编《空气调节设计手册》(第二版)北京:中国建筑工业出版社。

相关文档
最新文档