(全国通用)2014届高考数学总复习(考点引领+技巧点拨)矩阵与变换第2课时 逆变换与逆矩阵、矩阵的特征值
(全国通用)2014届高考数学总复习(考点引领+技巧点拨)矩阵与变换第1课时 线性变换、二阶矩阵及其乘法

《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)选修4-2 矩阵与变换第1课时 线性变换、二阶矩阵及其乘法1. (选修42P 34习题第1题改编)求点A(2,0)在矩阵⎣⎢⎡⎦⎥⎤1 00-2对应的变换作用下得到的点的坐标.解:矩阵⎣⎢⎡⎦⎥⎤1 00-2表示横坐标保持不变,纵坐标沿y 轴负方向拉伸为原来的2倍的伸压变换,故点A(2,0)变为点A′(2,0)2. 点(-1,k)在伸压变换矩阵⎣⎢⎡⎦⎥⎤m 001之下的对应点的坐标为(-2,-4),求m 、k 的值.解:⎣⎢⎡⎦⎥⎤m 001⎣⎢⎡⎦⎥⎤-1 k =⎣⎢⎡⎦⎥⎤-2-4,⎩⎪⎨⎪⎧-m =-2,k =-4. 解得⎩⎪⎨⎪⎧m =2,k =-4.3. 已知变换T 是将平面内图形投影到直线y =2x 上的变换,求它所对应的矩阵. 解:将平面内图形投影到直线y =2x 上,即是将图形上任意一点(x ,y)通过矩阵M 作用变换为(x ,2x),则有⎣⎢⎡⎦⎥⎤a 0b 0⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 2x ,解得⎩⎪⎨⎪⎧a =1,b =2, ∴ T =⎣⎢⎡⎦⎥⎤1020.4. 求曲线y =x 在矩阵⎣⎢⎡⎦⎥⎤0110作用下变换所得的图形对应的曲线方程.解:设点(x ,y)是曲线y =x 上任意一点,在矩阵⎣⎢⎡⎦⎥⎤0110的作用下点变换成(x′,y ′),则⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=y y′=x .因为点(x ,y)在曲线y =x 上,所以x′=y′,即x =y.5. 求直线x +y =5在矩阵⎣⎢⎡⎦⎥⎤0011 对应的变换作用下得到的图形.解:设点(x ,y)是直线x +y =5上任意一点,在矩阵⎣⎢⎡⎦⎥⎤0011的作用下点变换成(x′,y ′),则⎣⎢⎡⎦⎥⎤0011⎣⎢⎡⎦⎥⎤x y=⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=0y′=x +y .因为点(x ,y)在直线x +y =5上,所以y′=x +y =5,故得到的图形是点(0,5).1. 变换一般地,对于平面上的任意一个点(向量)(x ,y),若按照对应法则T ,总能对应唯一的一个平面点(向量)(x′,y ′),则称T 为一个变换,简记为T :(x ,y )→(x′,y ′)或T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′. 一般地,对于平面向量的变换T ,如果变换规则为T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤ax +by cx +dy ,那么根据二阶矩阵与列向量的乘法规则,可以改写为⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤x y (a 、b 、c 、d∈R )的矩阵形式,反之亦然.2. 几种常见的平面变换(1) 当M =⎣⎢⎡⎦⎥⎤1001时,则对应的变换是恒等变换.(2) 由矩阵M =⎣⎢⎡⎦⎥⎤k 001或M =⎣⎢⎡⎦⎥⎤100k(k>0)确定的变换T M 称为(垂直)伸压变换. (3) 反射变换是轴对称变换、中心对称变换的总称.(4) 当M =⎣⎢⎡⎦⎥⎤cos θ-sin θsin θ cos θ时,对应的变换叫旋转变换,即把平面图形(或点)逆时针旋转θ角度.(5) 将一个平面图投影到某条直线(或某个点)的变换称为投影变换.(6) 由矩阵M =⎣⎢⎡⎦⎥⎤1k 01或⎣⎢⎡⎦⎥⎤10k 1确定的变换称为切变变换.3. 变换的复合与矩阵的乘法(1) 一般情况下,AB ≠BA ,即矩阵的乘法不满足交换律. (2) 矩阵的乘法满足结合律,即(AB )C =A (BC ). (3) 矩阵的乘法不满足消去律. [备课札记]题型1 求变换前后的曲线方程例1 设椭圆F :x 22+y24=1在(x ,y )→(x′,y ′)=(x +2y ,y)对应的变换下变换成另一个图形F′,试求F′的解析式.解:变换矩阵为⎣⎢⎡⎦⎥⎤1201,任取椭圆上一点(x 0,y 0),则⎣⎢⎡⎦⎥⎤1201⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0+2y 0y 0,令⎩⎪⎨⎪⎧x′=x 0+2y 0,y ′=y 0, 则⎩⎪⎨⎪⎧x 0=x′-2y′,y 0=y′. 又点(x 0,y 0)在椭圆F 上,故(x′-2y′)22+y′24=1,所以2x′2-8x′y′+9y′2-4=0,即F′的解析式为2x 2-8xy +9y 2-4=0. 变式训练设M =⎣⎢⎡⎦⎥⎤1002,N =⎣⎢⎢⎡⎦⎥⎥⎤12001,试求曲线y =sinx 在矩阵MN 变换下的曲线方程. 解:MN =⎣⎢⎡⎦⎥⎤1002⎣⎢⎢⎡⎦⎥⎥⎤12001=⎣⎢⎢⎡⎦⎥⎥⎤12002, 设(x ,y)是曲线y =sinx 上的任意一点,在矩阵MN 变换下对应的点为(x′,y ′). 则⎣⎢⎢⎡⎦⎥⎥⎤12002⎣⎢⎡⎦⎥⎤xy =⎣⎢⎡⎦⎥⎤x′y′, 所以⎩⎪⎨⎪⎧x′=12x ,y ′=2y ,即⎩⎪⎨⎪⎧x =2x′,y =12y′,代入y =sinx 得12y ′=sin2x ′,即y′=2sin2x ′.即曲线y =sinx 在矩阵MN 变换下的曲线方程为y =2sin2x. 备选变式(教师专享)已知矩阵M =⎣⎢⎡⎦⎥⎤1 00 2,N =⎣⎢⎢⎡⎦⎥⎥⎤12 00 1,矩阵MN 对应的变换把曲线y =12sin 12x 变为曲线C ,求曲线C 的方程.解: MN =⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎢⎡⎦⎥⎥⎤12001=⎣⎢⎢⎡⎦⎥⎥⎤12002, 设P(x ,y)是所求曲线C 上的任意一点,它是曲线y =sinx 上点P 0(x 0,y 0)在矩阵MN 变换下的对应点,则有⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤12002⎣⎢⎡⎦⎥⎤x 0y 0,即⎩⎪⎨⎪⎧x =12x 0,y =2y 0,所以⎩⎪⎨⎪⎧x 0=2x ,y 0=12y.又点P(x 0,y 0)在曲线y =12sin 12x 上,故y 0=12sin 12x 0,从而12y =12sinx.所求曲线C 的方程为y =sinx.题型2 根据变换前后的曲线方程求矩阵例2 二阶矩阵M 对应变换将(1,-1)与(-2,1)分别变换成(5,7)与(-3,6). (1) 求矩阵M ;(2) 若直线l 在此变换下所变换成的直线的解析式l′:11x -3y -68=0,求直线l 的方程.解:(1) 不妨设M =⎣⎢⎡⎦⎥⎤a b c d ,则由题意得⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤57,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤-3 6,所以⎩⎪⎨⎪⎧a =-2,b =-7,c =-13,d =-20,故M =⎣⎢⎡⎦⎥⎤-2-7-13-20. (2) 取直线l 上的任一点(x ,y),其在M 作用下变换成对应点(x′,y ′),则⎣⎢⎡⎦⎥⎤-2-7-13-20⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-2x -7y -13x -20y =⎣⎢⎡⎦⎥⎤x′y′, 即⎩⎪⎨⎪⎧x′=-2x -7y ,y ′=-13x -20y ,代入11x -3y -68=0,得x -y -4=0,即l 的方程为x -y -4=0.变式训练在平面直角坐标系xOy 中,直线l :x +y +2=0在矩阵M =⎣⎢⎡⎦⎥⎤1a b 4对应的变换作用下得到直线m :x -y -4=0,求实数a 、b 的值.解:(解法1)在直线l :x +y +2=0上取两点A(-2,0),B(0,-2),A 、B 在矩阵M 对应的变换作用下分别对应于点A′、B′,因为⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤-2 0=⎣⎢⎡⎦⎥⎤-2-2b ,所以A′的坐标为(-2,-2b); ⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤ 0-2=⎣⎢⎡⎦⎥⎤-2a -8,所以B′的坐标为(-2a ,-8).由题意A′、B′在直线m :x -y -4=0上,所以⎩⎪⎨⎪⎧(-2)-(-2b )-4=0,(-2a )-(-8)-4=0,解得a =2,b =3.(解法2)设直线l :x +y +2=0上任意一点(x ,y)在矩阵M 对应的变换作用下对应于点(x′,y ′).因为⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以x′=x +ay ,y ′=bx +4y.因为(x′,y ′)在直线m 上,所以(x +ay)-(bx +4y)-4=0,即(1-b)x +(a -4)y -4=0.又点(x ,y)在直线x +y +2=0上,所以1-b 1=a -41=-42,解得a =2,b =3.题型3 平面变换的综合应用例3 已知M =⎣⎢⎡⎦⎥⎤1101,N =⎣⎢⎢⎡⎦⎥⎥⎤10012,向量α=⎣⎢⎡⎦⎥⎤34. (1) 验证:(MN )α=M (N α);(2) 验证这两个矩阵不满足MN =NM .解:(1) 因为MN =⎣⎢⎡⎦⎥⎤1101⎣⎢⎢⎡⎦⎥⎥⎤10012=⎣⎢⎢⎡⎦⎥⎥⎤112012,所以(MN )α=⎣⎢⎢⎡⎦⎥⎥⎤112012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤52. 因为N α=⎣⎢⎢⎡⎦⎥⎥⎤10012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤32,所以M (N α)=⎣⎢⎡⎦⎥⎤1101⎣⎢⎡⎦⎥⎤32=⎣⎢⎡⎦⎥⎤52,所以(MN )α=M (N α).(2) 因为MN =⎣⎢⎢⎡⎦⎥⎥⎤112012,NM =⎣⎢⎢⎡⎦⎥⎥⎤11012, 所以这两个矩阵不满足MN =NM . 备选变式(教师专享)在直角坐标系中,已知△ABC 的顶点坐标为A ()0,0,B ()-1,2,C ()0,3.求△ABC在矩阵⎣⎢⎡⎦⎥⎤0-110作用下变换所得到的图形的面积.解:因为⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2-1,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤03=⎣⎢⎡⎦⎥⎤-3 0,所以A ()0,0,B ()-1,2,C ()0,3在矩阵⎣⎢⎡⎦⎥⎤0 -11 0作用下变换所得到的三个顶点坐标分别为A′()0,0,B ′()-2,-1,C ′()-3,0.故S △A ′B ′C ′=12A ′C ′|y B ′|=32.1. 在直角坐标系中,△OAB 的顶点坐标O(0,0)、A(2,0),B(1,2),求△OAB 在矩阵MN 的作用下变换所得到的图形的面积,其中矩阵M =⎣⎢⎡⎦⎥⎤100-1,N =⎣⎢⎢⎡⎦⎥⎥⎤12222. 解:由题设得MN =⎣⎢⎢⎡⎦⎥⎥⎤1220-22,∴ ⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00, ⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤20=⎣⎢⎡⎦⎥⎤20, ⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤ 2-1. 可知O 、A 、B 三点在矩阵MN 作用下变换所得的点分别为O′(0,0)、A′(2,0)、B′(2,-1).可得△O′A′B′的面积为1.2. 已知矩阵M =⎣⎢⎡⎦⎥⎤0110,N =⎣⎢⎡⎦⎥⎤0-11 0,在平面直角坐标系中,设直线2x -y +1=0在矩阵MN 对应的变换作用下得到的曲线F ,求曲线F 的方程.解:由题设得MN =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤0-11 0=⎣⎢⎡⎦⎥⎤1 00-1.设(x ,y)是直线2x -y +1=0上任意一点,点(x ,y)在矩阵MN 对应的变换作用下变为(x′,y ′),则有⎣⎢⎡⎦⎥⎤1 00-1⎣⎢⎡ ⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,即⎣⎢⎡⎦⎥⎤ x -y =⎣⎢⎡⎦⎥⎤x′y′, 所以⎩⎪⎨⎪⎧x =x′,y =-y′.因为点(x ,y)在直线2x -y +1=0上,从而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲线F 的方程为2x +y +1=0.3. (2013·福建)已知直线l :ax +y =1在矩阵A =⎣⎢⎡⎦⎥⎤1201对应的变换作用下变为直线l′:x +by =1.(1) 求实数a 、b 的值;(2) 若点P(x 0,y 0)在直线l 上,且A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,求点P 的坐标.解:(1) 设直线l :ax +y =1上任意一点M(x ,y)在矩阵A 对应的变换作用下的象是M′(x′,y ′),由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1201⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y y , 得⎩⎪⎨⎪⎧x′=x +2y ,y ′=y. 又点M′(x′,y ′)在l′上, 所以x′+by′=1,即x +(b +2)y =1.依题意⎩⎪⎨⎪⎧a =1.b +2=1,解得⎩⎪⎨⎪⎧a =1,b =-1. (2) 由A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,得⎩⎪⎨⎪⎧x 0=x 0+2y 0,y 0=y 0,解得y 0=0.又点P(x 0,y 0)在直线l 上,所以x 0=1,故点P 的坐标为(1,0). 4. 在线性变换⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1122⎣⎢⎡⎦⎥⎤x y 下,直线x +y =k(k 为常数)上的所有点都变为一个点,求此点坐标.解:由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1122⎣⎢⎡⎦⎥⎤x y ,得⎩⎪⎨⎪⎧x′=x +y ,y ′=2x +2y ,而x +y =k ,所以⎩⎪⎨⎪⎧x′=k ,y ′=2k (k 为常数),所以直线x +y =k(k 为常数)上的所有点都变为一个点(k ,2k).1. 如图所示,四边形ABCD 和四边形AB′C′D 分别是矩形和平行四边形,其中各点的坐标分别为A(-1,2)、B(3,2)、C(3,-2)、D(-1,-2)、B′(3,7)、C′(3,3).求将四边形ABCD 变成四边形AB′C′D 的变换矩阵M .解:该变换为切变变换.设矩阵M =⎣⎢⎡⎦⎥⎤10k 1,由图知,C ――→MC ′,则⎣⎢⎡⎦⎥⎤10k 1⎣⎢⎡⎦⎥⎤3-2=⎣⎢⎡⎦⎥⎤33.所以3k -2=3,解得k =53.所以,M =⎣⎢⎢⎡⎦⎥⎥⎤10531.2. 已知矩阵M =⎣⎢⎡⎦⎥⎤-1-2-34,向量α=⎣⎢⎡⎦⎥⎤57,β=⎣⎢⎡⎦⎥⎤68.(1) 求向量3α+12β在T M 作用下的象;(2) 求向量4M α-5M β.解:(1) 因为3α+12β=3⎣⎢⎡⎦⎥⎤57+12⎣⎢⎡⎦⎥⎤68=⎣⎢⎡⎦⎥⎤1521+⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤1825,所以M ⎝ ⎛⎭⎪⎫3α+12β=⎣⎢⎡⎦⎥⎤-1-2-34⎣⎢⎡⎦⎥⎤1825=⎣⎢⎡⎦⎥⎤-6846.(2) 4M α-5M β=M (4α-5β)=⎣⎢⎡⎦⎥⎤-1-2-34⎣⎢⎡⎦⎥⎤-10-12=⎣⎢⎡⎦⎥⎤34-18. 3. 二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).设直线l 在变换M 作用下得到了直线m :2x -y =4,求l 的方程.解:设M =⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-21=⎣⎢⎡⎦⎥⎤0-2,∴ ⎩⎪⎨⎪⎧a -b =-1c -d =-1, 且⎩⎪⎨⎪⎧-2a +b =0-2c +d =-2,解得⎩⎪⎨⎪⎧a =1b =2和⎩⎪⎨⎪⎧c =3d =4 ,∴ M =⎣⎢⎡⎦⎥⎤1234, ∵ ⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y ,且m :2x′-y′=4, ∴ 2(x +2y)-(3x +4y)=4,即x +4 =0,∴ 直线l 的方程为x +4 =0.4. 二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).(1) 求矩阵M ;(2) 设直线l 在变换M 作用下得到了直线m :x -y =4,求l 的方程.解:(1) 设M =⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-21=⎣⎢⎡⎦⎥⎤0-2,所以⎩⎪⎨⎪⎧a -b =-1,c -d =-1, 且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎡⎦⎥⎤1234. (2) 因为⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y 且m :x′-y′=4,所以(x +2y)-(3x +4y)=4,即x +y +2=0,即直线l 的方程为x +y +2=0.几种特殊的变换:反射变换:M =⎣⎢⎡⎦⎥⎤1 00-1:点的变换为(x ,y )→(x,-y),变换前后关于x 轴对称;M =⎣⎢⎡⎦⎥⎤-10 01:点的变换为(x ,y )→(-x ,y),变换前后关于y 轴对称;M =⎣⎢⎡⎦⎥⎤-1 0 0-1:点的变换为(x ,y )→(-x ,-y),变换前后关于原点对称; M =⎣⎢⎡⎦⎥⎤0110:点的变换为(x ,y )→(y,x),变换前后关于直线y =x 对称. 投影变换:M =⎣⎢⎡⎦⎥⎤1000:将坐标平面上的点垂直投影到x 轴上,点的变换为(x ,y )→(x,0); M =⎣⎢⎡⎦⎥⎤0001:将坐标平面上的点垂直投影到y 轴上,点的变换为(x ,y )→(0,y); M =⎣⎢⎡⎦⎥⎤1010:将坐标平面上的点垂直于x 轴方向投影到y =x 上,点的变换为(x ,y )→(x,x);M =⎣⎢⎡⎦⎥⎤0101:将坐标平面上的点平行于x 轴方向投影到y =x 上,点的变换为(x ,y )→(y,y);M =⎣⎢⎢⎡⎦⎥⎥⎤12121212:将坐标平面上的点垂直于y =x 方向投影到y =x 上,点的变换为(x ,y )→⎝⎛⎭⎪⎫x +y 2,x +y 2.请使用课时训练(A )第1课时(见活页).。
江苏省2014年高考数学(文)二轮复习简易通配套课件:常考问题20 矩阵与变换

M 对应的变换将点(-1,2)变换成(9,15),求矩阵 M.
a b1 1 3 b a+b=3, ,则 =3 = ,故 d c d 1 1 3 c+d=3.
x 1 方程 y -2+1=0 比较得,a=0,b=1,c=2,d=1 或 a=0,
2
0 -1 1 - b=-1,c=2,d=-1.所以 M 1= 1 , -1 2 0 - 或 M 1= 1 2 1 . 1
热点三
特征值与特征向量
【例 3】 已知二阶矩阵 M 有特征值 λ=3 及对应的一个特征向量 e1
0 B= 1
2
2
1 A= 0
0 对 2
b 对应的变换,得 0
x2 2 到曲线 C2: +y =1.求实数 b 的值. 4 解 从曲线 C1 变到曲线 C2 的变换对应的矩阵为
0 BA= 1 b 1 0 0 2b 0 2=1 0 . 0
6.记忆特征多项式,和这类问题的求解步骤: 理解特征值与特征向量理论
a c x x λ-ax-by=0, b =λ ⇔ d y y -cx+λ-dy=0.
热点与突破
热点一 二阶矩阵与平面变换 【例 1】 若直线 y=kx
-
解 设曲线 2y2-x+2=0 上一点 P(x, y)在 M-1 对应变化下变
x′=ax+by, b 成 P(x′,y′),设 M , c d y′=cx+dy,
-1
a
代入 x2+x-y+1=0 得, 方程(ax+by)2+(ax+by)-(cx+dy)+1=0, 即 b2y2+(a-c)x+(b-d)xy+2abxy+a2x2+1=0,
高中数学选修42矩阵与变换知识点复习课课件苏教

坐标变换:通过矩阵运算实 现图形的平移、旋转、缩放 等变换
动画制作:通过矩阵运算实 现图形的动画效果,如变形、
运动等
矩阵在其他领域中的应用
物理:在力学、电磁学、量子力学等领域,矩阵被用来描述物理系统的状态和变化
计算机科学:在计算机图形学、人工智能、数据挖掘等领域,矩阵被用来处理和表示数据
高中数学选修4-2矩阵 与变换知识点复习课 课件
,
汇报人:
目录
CONTENTS
01 添加目录标题 02 矩阵与变换概述 03 矩阵的逆与行列式 04 矩阵的秩与特征值 05 矩阵的几何意义与线性变换的矩阵表示
06 矩阵的应用举例
单击添加章节标题
第一章
矩阵与变换概述
第二章
矩阵的定义与性质
矩阵的定义:由m行n列的数组 成的m*n个数阵
矩阵与线性变换的关系
矩阵是线性变换的一种表示方法 线性变换可以通过矩阵乘法来实现 矩阵的逆矩阵表示线性变换的逆操作 矩阵的秩表示线性变换的维数
矩阵的逆与行列式
第三章
矩阵的逆
逆矩阵的定义:满足AB=BA=I的矩阵B称为矩阵A的逆矩阵 逆矩阵的性质:逆矩阵的唯一性、逆矩阵的线性性、逆矩阵的乘法性质 逆矩阵的求法:利用初等行变换求逆矩阵、利用伴随矩阵求逆矩阵 逆矩阵的应用:求解线性方程组、求解矩阵方程、求解线性规划问题
行列式的定义与性质
行列式的定义: 矩阵中主对角线 元素的乘积
行列式的性质: 行列式等于其转 置行列式的值
行列式的计算方 法:利用行列式 的性质进行计算
行列式的应用: 求解线性方程组、 判断矩阵是否可 逆等
行列式的计算方法
初等变换法:通过行变换或列变换 将矩阵化为行阶梯形或列阶梯形, 然后计算行列式
高三数学一轮复习精品课件2:矩阵及其变换

时沿 x 轴负方向移动,当 ky=0 时原地不动.
1.点 A(3,-6)在矩阵10 12-1对应的变换作用下得到的点的坐
标是
.
解析:∵10 12-1 -36=-39.
∴变换作用下得到的点的坐标是(9,-3).
答案:(9,-3)
2.设04
-2 3
yx=-01,则它表示的方程组为
.
解析:∵04
-2 3
路漫漫其修远兮,吾将上下而求索!
1.矩阵的相关概念
(1)由
4 个数 a,b,c,d 排成的正方形数表
a
c
b
称为二阶矩dຫໍສະໝຸດ 阵,数 a,b,c,d 称为矩阵的元素.在二阶矩阵中,横的叫行,从
上到下依次称为矩阵的第一行、第二行;竖的叫列,从左到右依次
称为矩阵的第一列、第二列.矩阵通常用大写的英文字母 A,B,C,…
(4)两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律
即(AB)C=A(BC),
AB≠BA,
由 AB=AC 不一定能推出 B=C.
一般地两个矩阵只有当前一个矩阵的列数与后一个矩阵的行数
相等时才能进行乘法运算.
3.线性变换的相关概念 (1)我们把形如yx′′==caxx++dbyy (*)的几何变换叫做线性变换,(*)式 叫做这个线性变换的坐标变换公式,P′(x′,y′)是 P(x,y)在这个线性 变换作用下的像. (2)对同一个直角坐标平面内的两个线性变换 σ、ρ,如果对平面 内任意一点 P,都有 σ(P)=ρ(P),则称这两个线性变换相等,简记为 σ=ρ,设 σ,ρ 所对应的二阶矩阵分别为 A,B,则 A=B .
阵 M1=10
00,M2=11
00,M3=00
2014高考数学一轮复习课件:选修4.2.2 逆矩阵、矩阵的.

0 1
=I,故选 A.
答案:A
1 2.已知 M=0 1 A. 2 3 C. 2
0 1,α=0,Mα=λα,则 λ=( 1 2 B.1 D.2
)
1 0 0 10 0 1= , 解析:∵0 1 = 1 2 1 2 2 1 ∴λ=2.
解析:设
a c 2 3
a A= c
a b1 2 b a=2, ,由 = ,得 由 d c d 0 3 c = 3.
1 3 b a+b=3, b=1, 1 =3 = ,得 所以 所以 A= d 1 1 3 c+d=3. d=0.
-1
0 = -1
1 , 0
0 = -1
∴(AB) =B A
-1
-1
-1
1 1 0 0
0 1 = 2
.
答案:
(2)解:①设矩阵 M 的逆矩阵 M 则 MM 又
-1
-1
x1 = x 2
y1 , y2
1 = 0
• 2.逆矩阵 • (1)逆矩陈的定义 AB=BA=E ,则称A是可 • 对于二阶矩阵A,B若有 逆的,B称为A的逆矩阵,记作B=A-1,这时矩 阵A也是B的逆矩阵,即A=B-1. • (2)逆矩阵的性质 E -1A= • ①若矩阵A有可逆矩阵A-1,则AA-1=A 且唯一 A-1是 的.
• ②若矩阵A是可逆的,则有(A-1A )-1= . 不可逆 • ③单位矩阵一定是可逆 的,零矩阵是 的. 不同 • ④在可逆矩阵 M作用下,平面上不同向量(或点) 的象必 . • ⑤把平面上两个不同向量 (或点)变成相同向量 逆矩阵 (或点)的矩阵,一定没有 .
【最高考系列】(教师用书)高考数学一轮总复习 矩阵与变换课堂过关 理(选修4-2)

选修4-2 矩阵与变换第1课时 线性变换、二阶矩阵及其乘法(对应学生用书(理)185~187页)1. 已知A =⎣⎢⎡⎦⎥⎤x +2y x +3y x -y x +y ,B =⎣⎢⎡⎦⎥⎤34ab ,若A =B ,求ax +by 的值.解:∵ A =B ,∴ ⎩⎪⎨⎪⎧x +2y =3,x +3y =4,x -y =a ,x +y =b ,∴ x =1,y =1,a =0,b =2,则ax +by =0+2=2.2. 点(-1,k)在伸压变换矩阵⎣⎢⎡⎦⎥⎤m 001之下的对应点的坐标为(-2,-4),求m 、k 的值.解:⎣⎢⎡⎦⎥⎤m 001⎣⎢⎡⎦⎥⎤-1 k =⎣⎢⎡⎦⎥⎤-2-4,⎩⎪⎨⎪⎧-m =-2,k =-4. 解得⎩⎪⎨⎪⎧m =2,k =-4. 3. 已知变换T 是将平面内图形投影到直线y =2x 上的变换,求它所对应的矩阵. 解:将平面内图形投影到直线y =2x 上,即是将图形上任意一点(x ,y)通过矩阵M 作用变换为(x ,2x),则有⎣⎢⎡⎦⎥⎤a 0b 0⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 2x ,解得⎩⎪⎨⎪⎧a =1,b =2,∴ T =⎣⎢⎡⎦⎥⎤1020.4. 求曲线y =x 在矩阵⎣⎢⎡⎦⎥⎤0110作用下变换所得的图形对应的曲线方程.解:设点(x ,y)是曲线y =x 上任意一点,在矩阵⎣⎢⎡⎦⎥⎤0110的作用下点变换成(x′,y ′),则⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=y ,y ′=x. 因为点(x ,y)在曲线y =x 上,所以x′=y′,即x =y.5. (2014·无锡期末)求使等式⎣⎢⎡⎦⎥⎤1 23 4=⎣⎢⎡⎦⎥⎤1 00 2M ⎣⎢⎡⎦⎥⎤1 00 -1成立的矩阵M .解:设M =⎣⎢⎡⎦⎥⎤a b c d ,⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤a b 2c 2d ,∴ ⎣⎢⎡⎦⎥⎤a b 2c 2d ⎣⎢⎡⎦⎥⎤1 00 -1=⎣⎢⎡⎦⎥⎤a -b 2c -2d .∴ ⎣⎢⎡⎦⎥⎤1 234=⎣⎢⎡⎦⎥⎤a -b 2c-2d ,∴ ⎩⎪⎨⎪⎧1=a ,2=-b ,3=2c ,4=-2d ,∴ ⎩⎪⎨⎪⎧a =1,b =-2,c =32,d =-2.∴ M =⎣⎢⎢⎡⎦⎥⎥⎤1-232-2.1. 二阶矩阵与平面向量 (1) 矩阵的概念在数学中,把形如⎣⎢⎡⎦⎥⎤13,⎣⎢⎡⎦⎥⎤2 31 5,⎣⎢⎡⎦⎥⎤1,3, 42,0,-1这样的矩形数字(或字母)阵列称为矩阵,其中,同一横排中按原来次序排列的一行数(或字母)叫做矩阵的行,同一竖排中按原来次序排列的一列数(或字母)叫做矩阵的列,而组成矩阵的每一个数(或字母)称为矩阵的元素.(2) 二阶矩阵与平面列向量的乘法① [a 11 a 12]⎣⎢⎡⎦⎥⎤b 11b 21=[a 11×b 11+a 12×b 21];② ⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. 2. 几种常见的平面变换(1) 当M =⎣⎢⎡⎦⎥⎤1001时,则对应的变换是恒等变换.(2) 由矩阵M =⎣⎢⎡⎦⎥⎤k 001或M =⎣⎢⎡⎦⎥⎤100k (k>0)确定的变换T M 称为(垂直)伸压变换.(3) 反射变换是轴对称变换、中心对称变换的总称.(4) 当M =⎣⎢⎡⎦⎥⎤cos θ-sin θsin θ cos θ时,对应的变换叫旋转变换,即把平面图形(或点)逆时针旋转θ角度.(5) 将一个平面图投影到某条直线(或某个点)的变换称为投影变换.(6) 由矩阵M =⎣⎢⎡⎦⎥⎤1k 01或⎣⎢⎡⎦⎥⎤10k 1确定的变换称为切变变换.3. 线性变换的基本性质(1) 设向量α=⎣⎢⎡⎦⎥⎤x y ,则λα=⎣⎢⎡⎦⎥⎤λx λy .(2) 设向量α=⎣⎢⎡⎦⎥⎤x 1y 1,β=⎣⎢⎡⎦⎥⎤x 2y 2,则α+β=⎣⎢⎡⎦⎥⎤x 1+x 2y 1+y 2.(3) A 是一个二阶矩阵,α、β是平面上任意两个向量,λ是任一实数,则A (λα)=λA α,A (α+β)=A α+A β.(4) 二阶矩阵对应的变换(线性变换)把平面上的直线变成直线(或一点). 4. 二阶矩阵的乘法(1) A =⎣⎢⎡⎦⎥⎤a 1 b 1c 1 d 1,B =⎣⎢⎡⎦⎥⎤a 2b 2c 2d 2,则AB =⎣⎢⎡⎦⎥⎤a 1a 2+b 1c 2 a 1b 2+b 1d 2c 1a 2+d 1c 2 c 1b 2+d 1d 2(2) 矩阵乘法满足结合律(AB )C =A (BC ). [备课札记]题型1 二阶矩阵的运算, 1) 已知⎣⎢⎡⎦⎥⎤1 01 2B =⎣⎢⎡⎦⎥⎤-4 3 4 -1,求矩阵B . 解:设B =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤1 01 2B =⎣⎢⎡⎦⎥⎤ab a +2c b +2d ,故⎩⎪⎨⎪⎧a =-4,b =3,a +2c =4,b +2d =-1,解得⎩⎪⎨⎪⎧a =-4,b =3,c =4,d =-2.故B =⎣⎢⎡⎦⎥⎤-4 3 4 -2.备选变式(教师专享)已知矩阵A =⎣⎢⎡⎦⎥⎤1 01 2,B =⎣⎢⎡⎦⎥⎤-4 3 4 -2且α=⎣⎢⎡⎦⎥⎤34,试判断(AB )α与A (B α)的关系.解:AB =⎣⎢⎡⎦⎥⎤-4 3 4 -1,∴ (AB )α=⎣⎢⎡⎦⎥⎤-4 3 4 -1⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤08,A (B α)=⎣⎢⎡⎦⎥⎤1 01 2⎣⎢⎡⎦⎥⎤-4 3 4 -2⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤1012⎣⎢⎡⎦⎥⎤04=⎣⎢⎡⎦⎥⎤08. ∴ (AB )α=A (B α).题型2 求变换前后的曲线方程, 2) (2014·南京、盐城期末)已知曲线C :xy =1,若矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤22 -2222 22对应的变换将曲线C 变为曲线C′,求曲线C′的方程.解:设曲线C 上一点(x′,y ′)对应于曲线C′上一点(x ,y),所以⎣⎢⎢⎡⎦⎥⎥⎤22 -2222 22⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤x y ,所以22x ′-22y ′=x ,22x ′+22y ′=y. 所以x′=x +y 2,y ′=y -x2,所以x′y′=x +y 2·y -x2=1,所以曲线C′的方程为y 2-x 2=2. 备选变式(教师专享)已知矩阵M =⎣⎢⎡⎦⎥⎤1 00 2,N =⎣⎢⎢⎡⎦⎥⎥⎤12 00 1,矩阵MN 对应的变换把曲线y =12sin 12x 变为曲线C ,求曲线C 的方程.解: MN =⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎢⎡⎦⎥⎥⎤12001=⎣⎢⎢⎡⎦⎥⎥⎤12002, 设P(x ,y)是所求曲线C 上的任意一点,它是曲线y =sinx 上点P 0(x 0,y 0)在矩阵MN 变换下的对应点,则有⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤12002⎣⎢⎡⎦⎥⎤x 0y 0,即⎩⎪⎨⎪⎧x =12x 0,y =2y 0,所以⎩⎪⎨⎪⎧x0=2x ,y 0=12y.又点P(x 0,y 0)在曲线y =12sin 12x 上,故y 0=12sin 12x 0,从而12y =12sinx.所求曲线C 的方程为y =sinx.题型3 根据变换前后的曲线方程求矩阵, 3) 二阶矩阵M 对应变换将(1,-1)与(-2,1)分别变换成(5,7)与(-3,6).(1) 求矩阵M ;(2) 若直线l 在此变换下所变换成的直线的解析式l′:11x -3y -68=0,求直线l 的方程.解:(1) 不妨设M =⎣⎢⎡⎦⎥⎤a b c d ,则由题意得⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤57,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤-3 6,所以⎩⎪⎨⎪⎧a =-2,b =-7,c =-13,d =-20,故M =⎣⎢⎡⎦⎥⎤-2-7-13-20. (2) 取直线l 上的任一点(x ,y),其在M 作用下变换成对应点(x′,y ′),则 ⎣⎢⎡⎦⎥⎤-2-7-13-20⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-2x -7y -13x -20y =⎣⎢⎡⎦⎥⎤x′y′, 即⎩⎪⎨⎪⎧x′=-2x -7y ,y ′=-13x -20y ,代入11x -3y -68=0,得x -y -4=0,即l 的方程为x -y -4=0.变式训练(2014·苏州期末)已知a 、b∈R ,若M =⎣⎢⎡⎦⎥⎤-1 a b 3所对应的变换T M 把直线2x -y =3变换成自身,试求实数a 、b.解:设⎣⎢⎡⎦⎥⎤-1 a b 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,则⎩⎪⎨⎪⎧x′=-x +ay ,y ′=bx +3y.∵ 2x ′-y′=3,∴ 2(-x +ay)-(bx +3y)=3. 即(-2-b)x +(2a -3)y =3.此直线即为2x -y =3, ∴ -2-b =2,2a -3=-1,解得a =1,b =-4.题型4 平面变换的综合应用, 4) 已知M =⎣⎢⎡⎦⎥⎤1101,N =⎣⎢⎢⎡⎦⎥⎥⎤10012,向量α=⎣⎢⎡⎦⎥⎤34.(1) 验证:(MN )α=M (N α);(2) 验证这两个矩阵不满足MN =NM .解:(1) 因为MN =⎣⎢⎡⎦⎥⎤1101⎣⎢⎢⎡⎦⎥⎥⎤10012=⎣⎢⎢⎡⎦⎥⎥⎤112012, 所以(MN )α=⎣⎢⎢⎡⎦⎥⎥⎤112012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤52. 因为N α=⎣⎢⎢⎡⎦⎥⎥⎤10012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤32,所以M (N α)=⎣⎢⎡⎦⎥⎤1101⎣⎢⎡⎦⎥⎤32=⎣⎢⎡⎦⎥⎤52,所以(MN )α=M (N α).(2) 因为MN =⎣⎢⎢⎡⎦⎥⎥⎤112012,NM =⎣⎢⎢⎡⎦⎥⎥⎤11012,所以这两个矩阵不满足MN =NM . 备选变式(教师专享)在直角坐标系中,已知△ABC 的顶点坐标为A ()0,0,B ()-1,2,C ()0,3.求△ABC 在矩阵⎣⎢⎡⎦⎥⎤0-110作用下变换所得到的图形的面积.解:因为⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2-1,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤03=⎣⎢⎡⎦⎥⎤-3 0,所以A ()0,0,B ()-1,2,C ()0,3在矩阵⎣⎢⎡⎦⎥⎤0 -11 0作用下变换所得到的三个顶点坐标分别为A′()0,0,B ′()-2,-1,C ′()-3,0.故S △A ′B ′C ′=12A ′C ′|y B ′|=32.1. 在直角坐标系中,△OAB 的顶点坐标O(0,0)、A(2,0)、B(1,2),求△OAB 在矩阵MN 的作用下变换所得到的图形的面积,其中矩阵M =⎣⎢⎡⎦⎥⎤1 00-1,N =⎣⎢⎢⎡⎦⎥⎥⎤122022. 解:由题设得MN =⎣⎢⎢⎡⎦⎥⎥⎤1 220-22,∴ ⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤20=⎣⎢⎡⎦⎥⎤20,⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤ 2-1. 可知O 、A 、B 三点在矩阵MN 作用下变换所得的点分别为O′(0,0)、A′(2,0)、B′(2,-1).可得△O′A′B′的面积为1.2. 已知矩阵M =⎣⎢⎡⎦⎥⎤0110,N =⎣⎢⎡⎦⎥⎤0-11 0,在平面直角坐标系中,设直线2x -y +1=0在矩阵MN 对应的变换作用下得到的曲线F ,求曲线F 的方程.解:由题设得MN =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤0-11 0=⎣⎢⎡⎦⎥⎤1 00-1.设(x ,y)是直线2x -y +1=0上任意一点,点(x ,y)在矩阵MN 对应的变换作用下变为(x′,y ′),则有⎣⎢⎡⎦⎥⎤1 00-1⎣⎢⎡ ⎦⎥⎤x y =⎣⎢⎡ ⎦⎥⎤x′y′,即⎣⎢⎡ ⎦⎥⎤ x -y =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x =x′,y =-y′.因为点(x ,y)在直线2x -y +1=0上,从而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲线F 的方程为2x +y +1=0.3. (2014·常州期末)已知直线l :ax -y =0在矩阵A =⎣⎢⎡⎦⎥⎤0 11 2对应的变换作用下得到直线l′,若直线l′过点(1,1),求实数a 的值.解:设P(x ,y)为直线l 上任意一点,在矩阵A 对应的变换下变为直线l′上的点P′(x′,y ′),则⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤0 11 2⎣⎢⎡⎦⎥⎤x y ,化简,得⎩⎪⎨⎪⎧x =-2x′+y′,y =x′ 代入ax -y =0,整理,得-(2a +1)x′+ay′=0.将点(1,1)代入上述方程,解得a =-1.4. 变换T 1是逆时针旋转π2的旋转变换,对应的变换矩阵是M 1;变换T 2对应的变换矩阵是M 2=⎣⎢⎡⎦⎥⎤1 10 1.(1) 求点P(2,1)在变换T 1作用下的点P′的坐标;(2) 求函数y =x 2的图象依次在T 1、T 2变换的作用下所得曲线的方程.解:(1) M 1=⎣⎢⎡⎦⎥⎤0 -11 0,M 1⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤0 -11 0⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤-1 2,所以点P(2,1)在T 1作用下的点P′的坐标是(-1,2).(2) M =M 2M 1=⎣⎢⎡⎦⎥⎤1 -11 0,设⎣⎢⎡⎦⎥⎤x y 是变换后图象上任一点,与之对应的变换前的点是⎣⎢⎡⎦⎥⎤x 0y 0,则M ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,也就是⎩⎪⎨⎪⎧x 0-y 0=x ,x 0=y ,即⎩⎪⎨⎪⎧x 0=y ,y 0=y -x.所以,所求曲线的方程是y -x =y 2.1. 如图所示,四边形ABCD 和四边形AB′C′D 分别是矩形和平行四边形,其中各点的坐标分别为A(-1,2)、B(3,2)、C(3,-2)、D(-1,-2)、B′(3,7)、C′(3,3).求将四边形ABCD 变成四边形AB′C′D 的变换矩阵M .解:该变换为切变变换.设矩阵M =⎣⎢⎡⎦⎥⎤10k 1,由图知,C ――→MC ′,则⎣⎢⎡⎦⎥⎤10k 1⎣⎢⎡⎦⎥⎤3-2=⎣⎢⎡⎦⎥⎤33.所以3k -2=3,解得k =53.所以,M =⎣⎢⎢⎡⎦⎥⎥⎤10531. 2. 已知在一个二阶矩阵M 的变换作用下,点A(1,2)变成了点A′(4,5),点B(3,-1)变成了点B′(5,1).(1) 求矩阵M ;(2) 若在矩阵M 的变换作用下,点C(x ,0)变成了点C ′(4,y),求x ,y.解:(1) 设该二阶矩阵为M =⎣⎢⎡⎦⎥⎤a b c d ,由题意得⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤45,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 3-1=⎣⎢⎡⎦⎥⎤51,所以⎩⎪⎨⎪⎧a +2b =4,c +2d =5,3a -b =5,3c -d =1,解得a =2,b =1,c =1,d =2,故M =⎣⎢⎡⎦⎥⎤2 11 2.(2) 因为⎣⎢⎡⎦⎥⎤2 11 2⎣⎢⎡⎦⎥⎤x 0=⎣⎢⎡⎦⎥⎤2x x =⎣⎢⎡⎦⎥⎤4y ,解得x =2,y =2.3. (2014·苏北三市期末)设矩阵M =⎣⎢⎡⎦⎥⎤a 00b (其中a >0,b >0),若曲线C :x 2+y 2=1在矩阵M 所对应的变换作用下得到曲线C′:x 24+y 2=1,求a +b 的值.解:设曲线C :x 2+y 2=1上任意一点P(x ,y)在矩阵M 所对应的变换作用下得到点P 1(x 1,y 1),则⎣⎢⎡⎦⎥⎤a 00 b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 1y 1,即⎩⎪⎨⎪⎧ax =x 1,by =y 1. 又点P 1(x 1,y 1)在曲线C′:x 24+y 2=1上,所以x 214+y 21=1,则a 2x 24+b 2y 2=1为曲线C 的方程.又曲线C 的方程为x 2+y 2=1,故a 2=4,b 2=1. 因为a >0,b >0,所以a +b =3.4. 二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).(1) 求矩阵M ;(2) 设直线l 在变换M 作用下得到了直线m :x -y =4,求l 的方程.解:(1) 设M =⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-21=⎣⎢⎡⎦⎥⎤0-2,所以⎩⎪⎨⎪⎧a -b =-1,c -d =-1, 且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎡⎦⎥⎤1234. (2) 因为⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y 且m :x′-y′=4,所以(x +2y)-(3x +4y)=4,即x +y +2=0,即直线l 的方程为x +y +2=0.几种特殊的变换 反射变换:M =⎣⎢⎡⎦⎥⎤1 00-1:点的变换为(x ,y )→(x,-y),变换前后关于x 轴对称; M =⎣⎢⎡⎦⎥⎤-10 01:点的变换为(x ,y )→(-x ,y),变换前后关于y 轴对称;M =⎣⎢⎡⎦⎥⎤-10 0-1:点的变换为(x ,y )→(-x ,-y),变换前后关于原点对称; M =⎣⎢⎡⎦⎥⎤0110:点的变换为(x ,y )→(y,x),变换前后关于直线y =x 对称. 投影变换:M =⎣⎢⎡⎦⎥⎤1000:将坐标平面上的点垂直投影到x 轴上,点的变换为(x ,y )→(x,0); M =⎣⎢⎡⎦⎥⎤0001:将坐标平面上的点垂直投影到y 轴上,点的变换为(x ,y )→(0,y); M =⎣⎢⎡⎦⎥⎤1010:将坐标平面上的点垂直于x 轴方向投影到y =x 上,点的变换为(x ,y )→(x,x);M =⎣⎢⎡⎦⎥⎤0101:将坐标平面上的点平行于x 轴方向投影到y =x 上,点的变换为(x ,y )→(y,y);M =⎣⎢⎢⎡⎦⎥⎥⎤12121212:将坐标平面上的点垂直于y =x 方向投影到y =x 上,点的变换为(x ,y )→⎝ ⎛⎭⎪⎫x +y 2,x +y 2. 请使用课时训练(A )第1课时(见活页).第2课时 逆变换与逆矩阵、矩阵的特征值 与特征向量(对应学生用书(理)188~190页)1. 已知矩阵A =⎣⎢⎡⎦⎥⎤1 00 2,B =⎣⎢⎡⎦⎥⎤0 -11 0,求(AB )-1.解:∵ AB =⎣⎢⎡⎦⎥⎤0 -12 0,设(AB )-1=⎣⎢⎡⎦⎥⎤a b c d ,∴ (AB )(AB )-1=⎣⎢⎡⎦⎥⎤1 00 1.∴ ⎣⎢⎡⎦⎥⎤0 -12 0⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1, 即[]-c -d 2a 2b =⎣⎢⎡⎦⎥⎤1 00 1.∴ ⎩⎪⎨⎪⎧-c =1,-d =0,2a =0,2b =1,故a =0,b =12,c =-1,d =0.即(AB )-1=⎣⎢⎢⎡⎦⎥⎥⎤ 012-10. 2. 已知矩阵M =⎣⎢⎡⎦⎥⎤a 273,若矩阵M 的逆矩阵M -1=⎣⎢⎡⎦⎥⎤b-2-7a ,求a 、b 的值.解:由题意,知MM -1=E ,⎣⎢⎡⎦⎥⎤a 273⎣⎢⎡⎦⎥⎤b -2-7a =⎣⎢⎡⎦⎥⎤1001,即⎣⎢⎡⎦⎥⎤ab -1407b -213a -14=⎣⎢⎡⎦⎥⎤1001, 即⎩⎪⎨⎪⎧ab -14=1,7b -21=0,3a -14=1,解得a =5,b =3. 3. 求矩阵⎣⎢⎡⎦⎥⎤12-12的特征多项式.解:f(λ)=⎪⎪⎪⎪⎪⎪λ-1-21λ-2=(λ-1)(λ-2)+2=λ2-3λ+4.4. (选修42P 73习题第1题改编)求矩阵M =[16-2-6]的特征值.解:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-1-62λ+6=(λ+2)(λ+3),令f(λ)=0,得M 的特征值为λ1=-2,λ2=-3.5. 已知二阶矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,矩阵A 属于特征值λ1=-1的一个特征向量为α1=⎣⎢⎡⎦⎥⎤1-1,属于特征值λ2=4的一个特征向量为α2=⎣⎢⎡⎦⎥⎤32.求矩阵A .解:由特征值、特征向量定义可知,A α1=λ1α1,即⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=-1×⎣⎢⎡⎦⎥⎤1-1,得⎩⎪⎨⎪⎧a -b =-1,c -d =1. 同理可得⎩⎪⎨⎪⎧3a +2b =12,3c +2d =8,解得a =2,b =3,c =2,d =1.因此矩阵A =⎣⎢⎡⎦⎥⎤2 32 1.1. 逆变换与逆矩阵(1) 对于二阶矩阵A 、B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.(2) 若二阶矩阵A 、B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1. (3) 利用行列式解二元一次方程组. 2. 特征值与特征向量(1) 设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使A α=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量.(2) 从几何上看,特征向量的方向经变换矩阵A 的作用后,保持在同一条直线上,这时特征向量或者方向不变(λ>0),或者方向相反(λ<0).特别地,当λ=0时,特征向量就变换成零向量.题型1 求逆矩阵与逆变换, 1) 若点A(2,2)在矩阵M =⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α对应变换的作用下得到的点为B(-2,2),求矩阵M 的逆矩阵.解:由题意知,M ⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤-2 2,即⎣⎢⎡⎦⎥⎤2cos α-2sin α2sin α+2cos α=⎣⎢⎡⎦⎥⎤-2 2, 所以⎩⎪⎨⎪⎧cos α-sin α=-1,sin α+cos α=1,解得⎩⎪⎨⎪⎧cos α=0,sin α=1.所以M =⎣⎢⎡⎦⎥⎤0 -11 0.(解法1)由M -1M =⎣⎢⎡⎦⎥⎤1 00 1,解得M -1=⎣⎢⎡⎦⎥⎤ 0 1-1 0.(解法2)矩阵M 的行列式det(M )=⎪⎪⎪⎪⎪⎪0 -11 0=1≠0,所以M -1=⎣⎢⎡⎦⎥⎤ 01-10.备选变式(教师专享)已知矩阵M =⎣⎢⎡⎦⎥⎤2-31-1所对应的线性变换把点A(x ,y)变成点A′(13,5),试求M 的逆矩阵及点A 的坐标.解:依题意,由M =⎣⎢⎡⎦⎥⎤2-31-1,得|M |=1,则M -1=⎣⎢⎡⎦⎥⎤-13-12.从而由⎣⎢⎡⎦⎥⎤2-31-1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤135,得⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-13-12⎣⎢⎡⎦⎥⎤135=⎣⎢⎡⎦⎥⎤-1×13+3×5-1×13+2×5=⎣⎢⎡⎦⎥⎤2-3, 故⎩⎪⎨⎪⎧x =2,y =-3,∴ A 点坐标为(2,-3).题型2 求特征值与特征向量, 2) 已知矩阵M =⎣⎢⎡⎦⎥⎤2a 21,其中a∈R ,若点P(1,-2)在矩阵M 的变换下得到点P′(-4,0).(1) 求实数a 的值;(2) 求矩阵M 的特征值及其对应的特征向量.解:(1) 由⎣⎢⎡⎦⎥⎤2a 21⎣⎢⎡⎦⎥⎤ 1-2=⎣⎢⎡⎦⎥⎤-4 0,得2-2a =-4a =3.(2) 由(1)知M =⎣⎢⎡⎦⎥⎤2321,则矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4.令f(λ)=0,得矩阵M 的特征值为-1与4.当λ=-1时,⎩⎪⎨⎪⎧(λ-2)x -3y =0,-2x +(λ-1)y =0x +y =0,∴ 矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1;当λ=4时,⎩⎪⎨⎪⎧(λ-2)x -3y =0,-2x +(λ-1)y =02x -3y =0.∴ 矩阵M 的属于特征值4的一个特征向量为⎣⎢⎡⎦⎥⎤32. 变式训练(2014·镇江期末)已知矩阵⎣⎢⎡⎦⎥⎤x 32 1的一个特征值为4,求另一个特征值及其对应的一个特征向量.解:矩阵的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-x -3-2λ-1=(λ-1)(λ-x)-6.因为λ1=4是方程f(λ)=0的一个根,所以x =2. 由(λ-1)(λ-2)-6=0,得λ2=-1.设λ2=-1对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤x y ,则⎩⎪⎨⎪⎧3x +3y =0,2x +2y =0,得x =-y ,令x =1,则y =-1,则矩阵的另一个特征值为-1,对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤1-1.题型3 根据特征值或特征向量求矩阵, 3) 矩阵M =⎣⎢⎡⎦⎥⎤1102有特征向量为e 1=⎣⎢⎡⎦⎥⎤11,e 2=⎣⎢⎡⎦⎥⎤10. (1) 求e 1和e 2对应的特征值;(2) 对向量α=⎣⎢⎡⎦⎥⎤41,记作α=e 1+3e 2,利用这一表达式间接计算M 4α,M 10α.解:(1) 设向量e 1、e 2对应的特征值分别为λ1、λ2,则⎣⎢⎡⎦⎥⎤1102⎣⎢⎡⎦⎥⎤11=λ1⎣⎢⎡⎦⎥⎤11,⎣⎢⎡⎦⎥⎤1102⎣⎢⎡⎦⎥⎤10=λ2⎣⎢⎡⎦⎥⎤10, 故λ1=2,λ2=1,即向量e 1,e 2对应的特征值分别是2,1. (2) 因为α=e 1+3e 2,所以M 4α=M 4(e 1+3e 2)=M 4e 1+3M 4e 2=λ41e 1+3λ42e 2=⎣⎢⎡⎦⎥⎤1916,M 10α=M 10(e 1+3e 2)=M 10e 1+3M 10e 2=λ101e 1+3λ102e 2=⎣⎢⎡⎦⎥⎤210+3210.备选变式(教师专享)已知矩阵M =⎣⎢⎡⎦⎥⎤20 0-1有特征向量e 1=⎣⎢⎡⎦⎥⎤10,e 2=⎣⎢⎡⎦⎥⎤01,相应的特征值为λ1,λ2.(1) 求矩阵M 的逆矩阵M -1及λ1,λ2;(2) 对任意向量α=⎣⎢⎡⎦⎥⎤x y ,求M 100α.解:(1) 由矩阵M =⎣⎢⎡⎦⎥⎤2 00-1变换的意义知M -1=⎣⎢⎢⎡⎦⎥⎥⎤1200-1, 又Me 1=λ1e 1,即⎣⎢⎡⎦⎥⎤2 00-1⎣⎢⎡⎦⎥⎤10=λ1⎣⎢⎡⎦⎥⎤10,故λ1=2,同理Me 2=λ2e 2,即⎣⎢⎡⎦⎥⎤2 00-1⎣⎢⎡⎦⎥⎤01=λ2⎣⎢⎡⎦⎥⎤01,故λ2=-1. (2) 因为α=⎣⎢⎡⎦⎥⎤x y =x e 1+y e 2,所以M 100α=M 100(x e 1+y·e 2)=x M 100e 1+y M 100e 2=x λ1001e1+y λ2100e 2=⎣⎢⎡⎦⎥⎤2100x y .1. 求矩阵⎣⎢⎡⎦⎥⎤2112的特征值及对应的特征向量.解:特征多项式f(λ)=⎪⎪⎪⎪⎪⎪λ-2-1-1λ-2=(λ-2)2-1=λ2-4λ+3,由f(λ)=0,解得λ1=1,λ2=3,将λ1=1代入特征方程组,得⎩⎪⎨⎪⎧-x -y =0,-x -y =0,x +y =0,可取⎣⎢⎡⎦⎥⎤1-1为属于特征值λ1=1的一个特征向量.同理,当λ2=3时,由⎩⎪⎨⎪⎧x -y =0,-x +y =0,x -y =0,所以可取⎣⎢⎡⎦⎥⎤11为属于特征值λ2=3的一个特征向量.综上所述,矩阵⎣⎢⎡⎦⎥⎤2 11 2有两个特征值λ1=1,λ2=3;属于特征值λ1=1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1,属于特征值λ2=3的一个特征向量为⎣⎢⎡⎦⎥⎤11.2. 已知矩阵A 的逆矩阵A-1=⎣⎢⎢⎡⎦⎥⎥⎤-14 34 12-12,求矩阵A 的特征值. 解:∵ A -1A =E ,∴ A =(A -1)-1.∵ A -1=⎣⎢⎢⎡⎦⎥⎥⎤-14 34 12-12,∴ A =(A -1)-1=⎣⎢⎡⎦⎥⎤2321.∴ 矩阵A 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=λ2-3λ-4.令f(λ)=0,解得矩阵A 的特征值λ1=-1,λ2=4.3. (2014·南通期末)设二阶矩阵A 、B 满足A -1=⎣⎢⎡⎦⎥⎤1 23 4,(BA )-1=⎣⎢⎡⎦⎥⎤1 001,求B -1. 解:设B -1=⎣⎢⎡⎦⎥⎤a b c d ,因为(BA )-1=A -1B -1,所以⎣⎢⎡⎦⎥⎤1 00 1=⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤a b c d ,即⎩⎪⎨⎪⎧a +2c =1,b +2d =0,3a +4c =0,3b +4d =1,解得⎩⎪⎨⎪⎧a =-2,b =1,c =32,d =-12,所以B -1=⎣⎢⎢⎡⎦⎥⎥⎤-2 132-12. 4. 设曲线2x 2+2xy +y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤a 0b 1(a>0)对应的变换作用下得到的曲线为x 2+y 2=1.(1) 求实数a 、b 的值;(2) 求A 2的逆矩阵.解:(1) 设曲线2x 2+2xy +y 2=1上任一点P(x ,y)在矩阵A 对应的变换下的象是P′(x′,y ′),由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤a 0b 1⎣⎢⎡⎦⎥⎤x y =[]ax bx +y ,得⎩⎪⎨⎪⎧x′=ax ,y ′=bx +y. 因为P′(x′,y ′)在圆x 2+y 2=1上,所以(ax)2+(bx +y)2=1,化简可得(a 2+b 2)x 2+2bxy +y 2=1,依题意可得a 2+b 2=2,2b =2a =1,b =1或a =-1,b =1, 而由a>0可得a =b =1.(2) 由(1)A =⎣⎢⎡⎦⎥⎤1011,得A 2=⎣⎢⎡⎦⎥⎤1011⎣⎢⎡⎦⎥⎤1011=⎣⎢⎡⎦⎥⎤1021|A 2|=1,(A 2)-1=⎣⎢⎡⎦⎥⎤ 10-21.1. 已知矩阵A =⎣⎢⎡⎦⎥⎤1 -1a 1,若点P(1,1)在矩阵A 对应的变换作用下得到点P′(0,-8).(1) 求实数a 的值; (2) 求矩阵A 的特征值.解:(1) 由⎣⎢⎡⎦⎥⎤1 -1a 1⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤0-8,得a +1=-8,所以a =-9.(2) 由(1)知A =⎣⎢⎡⎦⎥⎤ 1 -1-9 1,则矩阵A 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-1 19 λ-1=(λ-1)2-9=λ2-2λ-8,令f(λ)=0,所以矩阵A 的特征值为-2或4.2. 已知矩阵A =⎣⎢⎡⎦⎥⎤a 21 b 有一个属于特征值1的特征向量α=⎣⎢⎡⎦⎥⎤2-1.(1) 求矩阵A ;(2) 矩阵B =⎣⎢⎡⎦⎥⎤1 -10 1,点O(0,0),M(2,-1),N(0,2),求△OMN 在矩阵AB 的对应变换作用下所得到的△O′M′N′的面积.解:(1) 由已知得⎣⎢⎡⎦⎥⎤a 21 b ⎣⎢⎡⎦⎥⎤ 2-1=1·⎣⎢⎡⎦⎥⎤2-1,∴ ⎩⎪⎨⎪⎧2a -2=22-b =-1.解得⎩⎪⎨⎪⎧a =2,b =3,故A =⎣⎢⎡⎦⎥⎤2 21 3. (2) AB =⎣⎢⎡⎦⎥⎤2 21 3⎣⎢⎡⎦⎥⎤1 -10 1=⎣⎢⎡⎦⎥⎤2 01 2.∴ (AB )⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤2 01 2⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,(AB )⎣⎢⎡⎦⎥⎤ 2-1=⎣⎢⎡⎦⎥⎤2 01 2⎣⎢⎡⎦⎥⎤ 2-1=⎣⎢⎡⎦⎥⎤40,(AB )⎣⎢⎡⎦⎥⎤02=⎣⎢⎡⎦⎥⎤2 01 2⎣⎢⎡⎦⎥⎤02=⎣⎢⎡⎦⎥⎤04,即点O 、M 、N 变成点O′(0,0),M ′(4,0),N ′(0,4),△O ′M ′N ′的面积为12×4×4=8.3. (2014·南京、盐城一模)已知矩阵A =⎣⎢⎡⎦⎥⎤1a -1b 的一个特征值为2,其对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤21.(1) 求矩阵A ;(2) 若A ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b ,求x 、y 的值.解:(1) 由题意,得⎣⎢⎡⎦⎥⎤ 1 a -1 b ⎣⎢⎡⎦⎥⎤21=2⎣⎢⎡⎦⎥⎤21,即⎩⎪⎨⎪⎧2+a =4,-2+b =2,解得a =2,b =4.所以A =⎣⎢⎡⎦⎥⎤ 1 2-1 4. (2) (解法1)A ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b ,即⎣⎢⎡⎦⎥⎤ 1 2-1 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤24,所以⎩⎪⎨⎪⎧x +2y =2,-x +4y =4,解得⎩⎪⎨⎪⎧x =0,y =1. (解法2)因为A =⎣⎢⎡⎦⎥⎤ 1 2-1 4,所以A -1=⎣⎢⎢⎡⎦⎥⎥⎤23 -1316 16. 因为A ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b ,所以⎣⎢⎡⎦⎥⎤x y =A -1⎣⎢⎡⎦⎥⎤a b =⎣⎢⎢⎡⎦⎥⎥⎤23-1316 16⎣⎢⎡⎦⎥⎤24=⎣⎢⎡⎦⎥⎤01.所以⎩⎪⎨⎪⎧x =0,y =1.4. 设矩阵M =⎣⎢⎡⎦⎥⎤a 00b (其中a>0,b>0).(1) 若a =2,b =3,求矩阵M 的逆矩阵M -1;(2) 若曲线C :x 2+y 2=1在矩阵M 所对应的线性变换作用下得到曲线C′:x 24+y 2=1,求a 、b 的值.解:(1) 设矩阵M 的逆矩阵M -1=⎣⎢⎡⎦⎥⎤x 1y 1x 2y 2,则MN -1=⎣⎢⎡⎦⎥⎤1001.又M =⎣⎢⎡⎦⎥⎤2003,所以⎣⎢⎡⎦⎥⎤2003⎣⎢⎡⎦⎥⎤x 1y 1x 2y 2=⎣⎢⎡⎦⎥⎤1001,所以2x 1=1,2y 1=0,3x 2=0,3y 2=1,即x 1=12,y 1=0,x 2=0,y 2=13,故所求的逆矩阵M -1=⎣⎢⎡⎦⎥⎤120013. (2) 设曲线C 上任意一点P(x ,y),它在矩阵M 所对应的线性变换作用下得到P′(x′,y ′),则⎣⎢⎡⎦⎥⎤a 00b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,即⎩⎪⎨⎪⎧ax =x′,by =y′.又点P′(x′,y ′)在曲线C′上,所以x′24+y′2=1,则a 2x 24+b 2y 2=1为曲线C 的方程.又已知曲线C 的方程为x 2+y 2=1,故⎩⎪⎨⎪⎧a 2=4,b 2=1.又a>0,b>0,所以⎩⎪⎨⎪⎧a =2,b =1.1. 矩阵的逆矩阵(1) 已知A 、B 、C 为二阶矩阵,且AB =AC ,若矩阵A 存在逆矩阵,则B =C .(2) 对于二阶可逆矩阵A =⎣⎢⎡⎦⎥⎤a b c d (ad -bc≠0),它的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc -b ad -bc-c ad -bc a ad -bc.2. 二阶行列式与方程组的解对于关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧ax +by =m ,cx +dy =n ,我们把⎪⎪⎪⎪⎪⎪a b c d 称为二阶行列式,它的运算结果是一个数值(或多项式),记为det(A )=⎪⎪⎪⎪⎪⎪a b c d =ad -bc.若将方程组中行列式⎪⎪⎪⎪⎪⎪a b c d 记为D ,⎪⎪⎪⎪⎪⎪m b n d 记为D x ,⎪⎪⎪⎪⎪⎪a m c n 记为D y ,则当D≠0时,方程组的解为⎩⎪⎨⎪⎧x =D x D,y =D y D.请使用课时训练(B )第2课时(见活页).。
高考数学复习专题矩阵与变换考点剖析

矩阵与变换主标题:矩阵与变换副标题:为学生详细的分析矩阵与变换的高考考点、命题方向以及规律总结。
关键词:矩阵,二阶矩阵,变换,特征值,特征向量 难度:3 重要程度:5考点剖析:1.了解二阶矩阵的概念,了解线性变换与二阶矩阵之间的关系.2.了解旋转变换、反射变换、伸缩变换、投影变换、切变变换这五种变换的概念与矩阵表示.3.理解变换的复合与矩阵的乘法;理解二阶矩阵的乘法和简单性质. 4.理解逆矩阵的意义,会求出简单二阶逆矩阵.5.理解矩阵的特征值与特征向量,会求二阶矩阵的特征值与特征向量.命题方向:主要考查矩阵与变换,二阶逆矩阵与二元一次方程组及求矩阵的特征值与特征向量。
规律总结:1.矩阵相等实质上是矩阵对应元素相等,体现了方程思想,要注意矩阵对应元素相等.2.矩阵的乘法只满足结合律,不满足交换律和消去律. 3.对于平面图形的变换要分清是伸缩、反射、还是切变变换.4.伸缩、反射、切变变换这三种几何变换称为初等变换,对应的变换矩阵为初等变换矩阵,由矩阵的乘法可以看出,矩阵的乘法对应于变换的复合,一一对应的平面变换都可以看作这三种初等变换的一次或多次的复合.5.逆矩阵的求法常用待定系数法.6.若A ,B 两个矩阵均存在可逆矩阵,则有(AB )-1=B -1A -1,若A ,B ,C 为二阶矩阵且A 可逆,则当AB =AC 时,有B =C ,即此时矩阵乘法的消去律成立. 7.关于特征值问题的一般解法如下:给定矩阵A =⎣⎢⎡⎦⎥⎤ab cd ,向量α=⎣⎢⎡⎦⎥⎤x y ,若有特征值λ,则⎣⎢⎡⎦⎥⎤ab cd ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y ,即⎣⎢⎡⎦⎥⎤λ-a -b -cλ-d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤00,所以⎪⎪⎪⎪⎪⎪λ-a -b -cλ-d =0,即λ2-(a +d )λ+(ad -bc )=0.8.求M nα,一般都是先求出矩阵M 的特征值与特征向量,将α写成t 1α1+t 2α2.利用性质M nα=t 1λn1α1+t 2λn2α2求解.知 识 梳 理1.矩阵的乘法规则(1)行矩阵[a 11a 12]与列矩阵⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21的乘法规则:[a 11a 12]⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21=[a 11×b 11+a 12×b 21].(2)二阶矩阵⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21a 12a 22与列向量⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0的乘法规则: ⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0=⎣⎢⎢⎡⎦⎥⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. 设A 是一个二阶矩阵,α、β是平面上的任意两个向量,λ、λ1、λ2是任意三个实数,则①A (λα)=λAα;②A (α+β)=Aα+Aβ; ③A (λ1α+λ2β)=λ1Aα+λ2Aβ.(3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下:⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21 b 12b 22= ⎣⎢⎢⎡⎦⎥⎥⎤a 11×b 11+a 12×b 21a 21×b 11+a 22×b 21 a 11×b 12+a 12×b 22a 21×b 12+a 22×b 22 性质:①一般情况下,AB ≠BA ,即矩阵的乘法不满足交换律;②矩阵的乘法满足结合律,即(AB )C =A (BC );③矩阵的乘法不满足消去律. 2.矩阵的逆矩阵(1)逆矩阵的有关概念:对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.若二阶矩阵A 存在逆矩阵B ,则逆矩阵是唯一的,通常记A 的逆矩阵为A -1,A -1=B .(2)逆矩阵的求法:一般地,对于二阶可逆矩阵A =⎣⎢⎡⎦⎥⎤ab cd (det A =ad -bc ≠0),它的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc -bad -bc -c ad -bc a ad -bc .(3)逆矩阵与二元一次方程组:如果关于变量x ,y 的二元一次方程组⎩⎪⎨⎪⎧ax +by =m ,cx +dy =n的系数矩阵A =⎣⎢⎡⎦⎥⎤ab cd 可逆,那么该方程组有唯一解⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ab cd -1⎣⎢⎡⎦⎥⎤m n ,其中A-1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc -bad -bc -c ad -bc a ad -bc .3.二阶矩阵的特征值和特征向量 (1)特征值与特征向量的概念设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得Aα=λα,那么λ称为A 的一个特征值,而α称为A 的一个属于特征值λ的一个特征向量. (2)特征多项式与特征方程设λ是二阶矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的一个特征值,它的一个特征向量为ξ=⎣⎢⎡⎦⎥⎤x y ,则A ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y ,即⎣⎢⎡⎦⎥⎤x y 满足二元一次方程组⎩⎪⎨⎪⎧ax +by =λx ,cx +dy =λy ,故⎩⎪⎨⎪⎧λ-a x -by =0-cx +λ-d y =0⇔⎣⎢⎡⎦⎥⎤λ-a -b -cλ-d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤00(*)则(*)式有非零解的充要条件是它的系数矩阵的行列式⎪⎪⎪⎪⎪⎪λ-a -b -cλ-d =0.记f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -cλ-d 为矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的特征多项式;方程⎪⎪⎪⎪⎪⎪λ-a -b -cλ-d =0,即f (λ)=0称为矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的特征方程. (3)特征值与特征向量的计算如果λ是二阶矩阵A 的特征值,则λ是特征方程f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -cλ-d =λ2-(a +d )λ+ad -bc =0的一个根.解这个关于λ的二元一次方程,得λ=λ1、λ2,将λ=λ1、λ2分别代入方程组(*),分别求出它们的一个非零解⎩⎪⎨⎪⎧x =x 1,y =y 1,⎩⎪⎨⎪⎧x =x 2,y =y 2,记ξ1=⎣⎢⎡⎦⎥⎤x 1y 1,ξ2=⎣⎢⎡⎦⎥⎤x 2y 2.则Aξ1=λ1ξ1、Aξ2=λ2ξ2,因此λ1、λ2是矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的特征值,ξ1=⎣⎢⎡⎦⎥⎤x 1y 1,ξ2=⎣⎢⎡⎦⎥⎤x 2y 2为矩阵A 的分别属于特征值λ1、λ2的一个特征向量.。
2014年高考数学一轮复习 热点难点精讲精析 选修系列(第5部分:矩阵与变换)

2014年高考一轮复习热点难点精讲精析: 选修系列(第5部分:矩阵与变换)一、 线性变换与二阶矩阵 (一)矩阵相等的应用 〖例〗已知A=32ad b c ⎡⎤⎢⎥+⎣⎦,B=542b c a d +⎡⎤⎢⎥+⎣⎦,若A=B ,求a ,,,b c d 。
思路解析:由矩阵相等的定义,知矩阵A ,B 对应元素相等,列出方程组后求解。
解答:由矩阵相等的定义知53422a b c d b c a d=⎧⎪=+⎪⎨=⎪⎪+=+⎩,解得15,10,7, 4.a b c d ===-= (二)二阶矩阵与平面向量乘法的应用〖例〗在平面直角坐标系xOy 中,设椭圆2241x y +=在矩阵2001⎡⎤⎢⎥⎣⎦对应的变换作用下得到曲线F ,求F 的方程。
思路解析:由已知矩阵可得坐标变换公式,从而得到椭圆上点与曲线上F 上点坐标间的关系,再代入椭圆方程即可得F 的方程。
解答:设000(,)P x y 是椭圆上任意一点,点P 在矩阵A=2001⎡⎤⎢⎥⎣⎦的作用下的像为00(,)P x y '''。
∵A=2001⎡⎤⎢⎥⎣⎦,∴坐标变换公式'0'002,x x y y ⎧=⎪⎨=⎪⎩∴'0'00,2x x y y ⎧=⎪⎨⎪=⎩∵点P 在椭圆上,故220041x y +=, ∴'2'200()()1x y +=,∴曲线F 的方程为221x y +=。
(三)线性变换性质的应用〖例〗二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变成点(-1,-1)与(0,-2)。
(1)求矩阵M ;(2)设直线l 在变换M 作用下得到了直线: 4.m x y -=求直线l 的方程。
思路解析:由已知条件下可利用待定系数法求矩阵M ,再通过矩阵M 对应的坐标变换公式确定直线l 与直线m 上点坐标间的关系,即可求直线l 的方程。
解答:1120(1),.1112120,,122120,.1221212,34a b a b a b M c d c d c d a b a b c d c d a b a b c d c d a b M c d --⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦---+⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥---+-⎣⎦⎣⎦⎣⎦⎣⎦-=--+=⎧⎧⎨⎨-=--+=-⎩⎩=⎧⎪=⎪=⎨=⎪⎪=⎩设则有,也就是所以且解得所以.34⎡⎤⎢⎥⎣⎦122(2),,3434(,):4(2)(34)4,20,20.x x y M y x y x y m x y x y x y x y l x y '=+⎡⎤⎧=∴⎨⎢⎥'=+⎣⎦⎩''-=∴+-+=++=∴++=坐标变换公式为是直线上的点.即直线的方程为 二、变换的复合与二阶矩阵的乘法及逆变换与逆矩阵 (一)与矩阵乘法的相关问题〖例〗⊿ABC 的顶点为A (0,0),B (0,0),C (0,1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)选修4-2 矩阵与变换第2课时 逆变换与逆矩阵、矩阵的特征值1. 设M =⎣⎢⎡⎦⎥⎤0110,N =⎣⎢⎢⎡⎦⎥⎥⎤10012,求MN . 解:MN =⎣⎢⎡⎦⎥⎤0110⎣⎢⎢⎡⎦⎥⎥⎤10012=⎣⎢⎢⎡⎦⎥⎥⎤01210. 2. 已知矩阵M =⎣⎢⎡⎦⎥⎤a 273,若矩阵M 的逆矩阵M -1=⎣⎢⎡⎦⎥⎤b -2-7a ,求a 、b 的值.解:由题意,知MM -1=E ,⎣⎢⎡⎦⎥⎤a 273⎣⎢⎡⎦⎥⎤b -2-7a =⎣⎢⎡⎦⎥⎤1001,即⎣⎢⎡⎦⎥⎤ab -1407b -213a -14=⎣⎢⎡⎦⎥⎤1001, 即⎩⎪⎨⎪⎧ab -14=1,7b -21=0,3a -14=1,解得a =5,b =3. 3. 求矩阵⎣⎢⎡⎦⎥⎤12-12的特征多项式.解:f(λ)=⎪⎪⎪⎪⎪⎪λ-1-21λ-2=(λ-1)(λ-2)+2=λ2-3λ+4.4. (选修42P 73习题第1题改编)求矩阵M =[1 6-2-6]的特征值.解:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-1-62λ+6=(λ+2)·(λ+3)=0,令f(λ)=0,得M 的特征值为λ1=-2,λ2=-3.5. (选修42P 73习题第1题改编)求矩阵N =⎣⎢⎡⎦⎥⎤3652的特征值及相应的特征向量.解:矩阵N 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-3-6-5λ-2=(λ-8)·(λ+3)=0, 令f(λ)=0,得N 的特征值为λ1=-3,λ2=8,当λ1=-3时⎩⎪⎨⎪⎧-6x -6y =0,-5x -5y =0,一个解为⎩⎪⎨⎪⎧x =-1,y =1, 故特征值λ1=-3的一个特征向量为⎣⎢⎡⎦⎥⎤-1 1; 当λ2=8时⎩⎪⎨⎪⎧5x -6y =0,-5x +6y =0,一个解为⎩⎪⎨⎪⎧x =6,y =5,故特征值λ2=8的一个特征向量为⎣⎢⎡⎦⎥⎤65.1. 逆变换与逆矩阵(1) 对于二阶矩阵A 、B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.(2) 若二阶矩阵A 、B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1. (3) 利用行列式解二元一次方程组. 2. 特征值与特征向量(1) 设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使A α=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量.(2) 从几何上看,特征向量的方向经变换矩阵A 的作用后,保持在同一条直线上,这时特征向量或者方向不变(λ>0),或者方向相反(λ<0).特别地,当λ=0时,特征向量就变换成零向量.[备课札记]题型1 求逆矩阵与逆变换例1 用解方程组的方法求下列矩阵M 的逆矩阵.(1) M =⎣⎢⎡⎦⎥⎤1101;(2) M =⎣⎢⎡⎦⎥⎤1221. 解:(1) 设M -1=⎣⎢⎡⎦⎥⎤a b c d ,则由定义知⎣⎢⎡⎦⎥⎤1101⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1001,即⎩⎪⎨⎪⎧a +c =1,b +d =0,c =0,d =1,解得⎩⎪⎨⎪⎧a =1,b =-1,c =0,d =1,故M-1=⎣⎢⎡⎦⎥⎤1-10 1. (2) 设M -1=⎣⎢⎡⎦⎥⎤a b c d, 则由定义知⎣⎢⎡⎦⎥⎤1221⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1001,即⎩⎪⎨⎪⎧a +2c =1,b +2d =0,2a +c =0,2b +d =1,解得⎩⎪⎪⎨⎪⎪⎧a =-13,b =23,c =23,d =-13,故M-1=⎣⎢⎢⎡⎦⎥⎥⎤-13 2323-13.备选变式(教师专享)已知矩阵M =⎣⎢⎡⎦⎥⎤2-31-1所对应的线性变换把点A(x ,y)变成点A′(13,5),试求M 的逆矩阵及点A 的坐标.解:依题意,由M =⎣⎢⎡⎦⎥⎤2-31-1,得|M |=1,则M -1=⎣⎢⎡⎦⎥⎤-13-12.从而由⎣⎢⎡⎦⎥⎤2-31-1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤135,得⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-13-12⎣⎢⎡⎦⎥⎤135=⎣⎢⎡⎦⎥⎤-1×13+3×5-1×13+2×5=⎣⎢⎡⎦⎥⎤2-3, 故⎩⎪⎨⎪⎧x =2,y =-3,∴ A 点坐标为(2,-3). 题型2 求特征值与特征向量例2 已知矩阵M =⎣⎢⎡⎦⎥⎤2a 21,其中a∈R ,若点P(1,-2)在矩阵M 的变换下得到点P′(-4,0).(1) 求实数a 的值;(2) 求矩阵M 的特征值及其对应的特征向量.解:(1) 由⎣⎢⎡⎦⎥⎤2a 21⎣⎢⎡⎦⎥⎤ 1-2=⎣⎢⎡⎦⎥⎤-4 0,得2-2a =-4 a =3. (2) 由(1)知M =⎣⎢⎡⎦⎥⎤2321,则矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4.令f(λ)=0,得矩阵M 的特征值为-1与4.当λ=-1时,⎩⎪⎨⎪⎧(λ-2)x -3y =0,-2x +(λ-1)y =0x +y =0,∴ 矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1;当λ=4时,⎩⎪⎨⎪⎧(λ-2)x -3y =0,-2x +(λ-1)y =0 2x -3y =0.∴ 矩阵M 的属于特征值4的一个特征向量为⎣⎢⎡⎦⎥⎤32. 变式训练已知M =⎣⎢⎡⎦⎥⎤1221,β=⎣⎢⎡⎦⎥⎤17,计算M 5β.解:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-1-2-2λ-1=λ2-2λ-3.令f(λ)=0,解得λ1=3,λ2=-1,从而求得对应的一个特征向量分别为α1=⎣⎢⎡⎦⎥⎤11,α2=⎣⎢⎡⎦⎥⎤ 1-1.令β=m α1+n α2,则m =4,n =-3. M 5β=M 5(4α1-3α2)=4(M 5α1)-3(M 5α2)=4(λ51α1)-3(λ52α2)=4×35⎣⎢⎡⎦⎥⎤11-3×(-1)5⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤975969.题型3 根据特征值或特征向量求矩阵 例3 矩阵M =⎣⎢⎡⎦⎥⎤1102有特征向量为e 1=⎣⎢⎡⎦⎥⎤11,e 2=⎣⎢⎡⎦⎥⎤10, (1) 求e 1和e 2对应的特征值;(2) 对向量α=⎣⎢⎡⎦⎥⎤41,记作α=e 1+3e 2,利用这一表达式间接计算M 4α,M 10α.解:(1) 设向量e 1、e 2对应的特征值分别为λ1、λ2,则⎣⎢⎡⎦⎥⎤1102⎣⎢⎡⎦⎥⎤11=λ1⎣⎢⎡⎦⎥⎤11,⎣⎢⎡⎦⎥⎤1102⎣⎢⎡⎦⎥⎤10=λ2⎣⎢⎡⎦⎥⎤10, 故λ1=2,λ2=1,即向量e 1,e 2对应的特征值分别是2,1. (2) 因为α=e 1+3e 2,所以M 4α=M 4(e 1+3e 2)=M 4e 1+3M 4e 2=λ41e 1+3λ42e 2=⎣⎢⎡⎦⎥⎤1916,M 10α=M 10(e 1+3e 2)=M 10e 1+3M 10e 2=λ101e 1+3λ102e 2=⎣⎢⎡⎦⎥⎤210+3210.备选变式(教师专享)已知矩阵M =⎣⎢⎡⎦⎥⎤200-1有特征向量e 1→=⎣⎢⎡⎦⎥⎤10,e 2→=⎣⎢⎡⎦⎥⎤01,相应的特征值为λ1,λ2.(1) 求矩阵M 的逆矩阵M -1及λ1,λ2;(2) 对任意向量α→=⎣⎢⎡⎦⎥⎤x y ,求M 100α→.解:(1) 由矩阵M =⎣⎢⎡⎦⎥⎤200-1变换的意义知M -1=⎣⎢⎢⎡⎦⎥⎥⎤1200-1, 又Me 1→=λ1e 1→,即⎣⎢⎡⎦⎥⎤200-1⎣⎢⎡⎦⎥⎤10=λ1⎣⎢⎡⎦⎥⎤10,故λ1=2,同理Me 2→=λ2e 2→,即⎣⎢⎡⎦⎥⎤200-1⎣⎢⎡⎦⎥⎤01=λ2⎣⎢⎡⎦⎥⎤01,故λ2=-1.(2) 因为α→=⎣⎢⎡⎦⎥⎤x y =xe 1→+ye 2→,所以M 100α→=M 100(xe 1→+y·e 2→)=xM 100e 1→+yM 100e 2→=x λ1001e 1→+y λ2100e 2→=⎣⎢⎡⎦⎥⎤2100x y.1. 求函数f(x)=⎪⎪⎪⎪⎪⎪2cosx sinx -1的值域.解:f(x)=-2-sinxcosx =-2-12sin2x ∈⎣⎢⎡⎦⎥⎤-52,-32.2. 已知矩阵A 的逆矩阵A-1=⎣⎢⎢⎡⎦⎥⎥⎤-143412-12,求矩阵A 的特征值. 解:∵ A -1A =E ,∴ A =(A -1)-1.∵ A -1=⎣⎢⎢⎡⎦⎥⎥⎤-14 34 12-12,∴ A =(A -1)-1=⎣⎢⎡⎦⎥⎤2321. ∴ 矩阵A 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=λ2-3λ-4.令f(λ)=0,解得矩阵A 的特征值λ1=-1,λ2=4. 3. (2013·江苏)已知矩阵A =⎣⎢⎡⎦⎥⎤-10 02,B =⎣⎢⎡⎦⎥⎤1206,求矩阵A -1B . 解:设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤-10 02⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1001, 即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1001,故a =-1,b =0,c =0,d =12.∴ 矩阵A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-10 012, ∴ A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-10012⎣⎢⎡⎦⎥⎤1206=⎣⎢⎡⎦⎥⎤-1-2 0 3. 4. 设曲线2x 2+2xy +y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤a 0b 1(a>0)对应的变换作用下得到的曲线为x 2+y 2=1.(1) 求实数a 、b 的值;(2) 求A 2的逆矩阵.解:(1) 设曲线2x 2+2xy +y 2=1上任一点P(x ,y)在矩阵A 对应的变换下的象是P′(x′,y ′),由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤a 0b 1⎣⎢⎡⎦⎥⎤x y =[]ax bx +y ,得⎩⎪⎨⎪⎧x′=ax ,y ′=bx +y. 因为P′(x′,y ′)在圆x 2+y 2=1上,所以(ax)2+(bx +y)2=1,化简可得(a 2+b 2)x 2+2bxy +y 2=1,依题意可得a 2+b 2=2,2b =2 a =1,b =1或a =-1,b =1, 而由a>0可得a =b =1.(2) 由(1)A =⎣⎢⎡⎦⎥⎤1011,A 2=⎣⎢⎡⎦⎥⎤1011⎣⎢⎡⎦⎥⎤1011=⎣⎢⎡⎦⎥⎤1021 |A 2|=1,(A 2)-1=⎣⎢⎡⎦⎥⎤10-21.1. 已知矩阵A =⎣⎢⎡⎦⎥⎤1 -1a 1,若点P(1,1)在矩阵A 对应的变换作用下得到点P′(0,-8).(1) 求实数a 的值; (2) 求矩阵A 的特征值.解:(1) 由⎣⎢⎡⎦⎥⎤1 -1a 1⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤0-8,得a +1=-8,所以a =-9. (2) 由(1)知A =⎣⎢⎡⎦⎥⎤ 1 -1-9 1,则矩阵A 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-1 19 λ-1=(λ-1)2-9=λ2-2λ-8,令f(λ)=0,所以矩阵A 的特征值为-2或4.2. 已知M =⎣⎢⎡⎦⎥⎤2-1-43,N =⎣⎢⎡⎦⎥⎤4-1-31,求二阶方阵X ,使MX =N .解:(解法1)设X =⎣⎢⎡⎦⎥⎤x yz w ,据题意有⎣⎢⎡⎦⎥⎤2-1-43⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤4-1-31,根据矩阵乘法法则有⎩⎪⎨⎪⎧2x -z =4,2y -w =-1,-4x +3z =-3,-4y +3w =1.解得⎩⎪⎨⎪⎧x =92,y =-1,z =5,w =-1,所以X =⎣⎢⎢⎡⎦⎥⎥⎤92-15-1. (解法2)因为MX =N ,所以X =M -1N ,M -1=⎣⎢⎢⎡⎦⎥⎥⎤321221.所以X =M -1N =⎣⎢⎢⎡⎦⎥⎥⎤321221⎣⎢⎡⎦⎥⎤4-1-31=⎣⎢⎢⎡⎦⎥⎥⎤92-15-1.3. 已知矩阵M =⎣⎢⎡⎦⎥⎤2a 21,其中a∈R ,若点P(1,-2)在矩阵M 的变换下得到点P′(-4,0),求实数a 的值;并求矩阵M 的特征值及其对应的特征向量.解:由⎣⎢⎡⎦⎥⎤2a 21⎣⎢⎡⎦⎥⎤1-2=⎣⎢⎡⎦⎥⎤-40,∴ 2-2a =-4 a =3.∴ M =⎣⎢⎡⎦⎥⎤2321,则矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩阵M 的特征值为-1与4.当λ=-1时, ⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =0 x +y =0,∴ 矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1;当λ=4时, ⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =02x -3y =0,∴ 矩阵M 的属于特征值4的一个特征向量为⎣⎢⎡⎦⎥⎤32.4. 设矩阵M =⎣⎢⎡⎦⎥⎤a 00b (其中a>0,b>0).(1) 若a =2,b =3,求矩阵M 的逆矩阵M -1;(2) 若曲线C :x 2+y 2=1在矩阵M 所对应的线性变换作用下得到曲线C′:x 24+y 2=1,求a 、b 的值.解:(1) 设矩阵M 的逆矩阵M -1=⎣⎢⎡⎦⎥⎤x 1y 1x 2y 2,则MN -1=⎣⎢⎡⎦⎥⎤1001.又M =⎣⎢⎡⎦⎥⎤2003,所以⎣⎢⎡⎦⎥⎤2003⎣⎢⎡⎦⎥⎤x 1y 1x 2y 2=⎣⎢⎡⎦⎥⎤1001,所以2x 1=1,2y 1=0,3x 2=0,3y 2=1,即x 1=12,y 1=0,x 2=0,y 2=13,故所求的逆矩阵M-1=⎣⎢⎡⎦⎥⎤12013. (2) 设曲线C 上任意一点P(x ,y),它在矩阵M 所对应的线性变换作用下得到P′(x′,y ′),则⎣⎢⎡⎦⎥⎤a 00b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,即⎩⎪⎨⎪⎧ax =x′,by =y′.又点P′(x′,y ′)在曲线C′上,所以x′24+y′2=1,则a 2x 24+b 2y 2=1为曲线C 的方程.又已知曲线C 的方程为x 2+y 2=1,故⎩⎪⎨⎪⎧a 2=4,b 2=1.又a>0,b>0,所以⎩⎪⎨⎪⎧a =2,b =1.1. 矩阵的逆矩阵(1) 已知A 、B 、C 为二阶矩阵,且AB =AC ,若矩阵A 存在逆矩阵,则B =C . (2) 对于二阶可逆矩阵A =⎣⎢⎡⎦⎥⎤a b c d (ad -bc≠0),它的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc -b ad -bc-c ad -bca ad -bc . 2. 二阶行列式与方程组的解对于关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧ax +by =m ,cx +dy =n ,我们把⎪⎪⎪⎪⎪⎪ab c d 称为二阶行列式,它的运算结果是一个数值(或多项式),记为det(A)=⎪⎪⎪⎪⎪⎪a b c d =ad -bc.若将方程组中行列式⎪⎪⎪⎪⎪⎪a b c d 记为D ,⎪⎪⎪⎪⎪⎪m b n d 记为D x ,⎪⎪⎪⎪⎪⎪a m c n记为D y ,则当D≠0时,方程组的解为⎩⎪⎨⎪⎧x =D xD,y =D yD .请使用课时训练(B )第2课时(见活页).[备课札记]。