电磁场HFSS实验报告

合集下载

波导仿真设计实验报告

波导仿真设计实验报告

一、实验背景与目的随着微波技术、通信技术和雷达技术的发展,波导作为一种重要的微波传输线,其设计优化对于提高微波系统的性能具有重要意义。

本实验旨在通过电磁场仿真软件HFSS,对矩形波导进行仿真设计,分析其传输特性,并对其进行优化,以达到提高传输效率和降低损耗的目的。

二、实验内容与方法1. 实验内容本实验主要包括以下内容:(1)建立矩形波导的几何模型;(2)设置仿真参数,包括介质材料、边界条件等;(3)进行仿真计算,得到波导的传输特性;(4)分析仿真结果,优化波导设计。

2. 实验方法(1)使用HFSS软件建立矩形波导的几何模型;(2)设置仿真参数,包括介质材料、边界条件等;(3)选择合适的仿真求解器,进行仿真计算;(4)分析仿真结果,包括传输线特性、损耗、阻抗匹配等;(5)根据仿真结果,对波导设计进行优化。

三、实验步骤1. 建立矩形波导的几何模型使用HFSS软件,根据设计要求,建立矩形波导的几何模型。

首先,设置波导的尺寸参数,包括内径、外径、高度等。

然后,定义波导的介质材料,如空气、介质板等。

2. 设置仿真参数设置仿真参数,包括介质材料、边界条件等。

例如,设置波导的介质材料为空气,边界条件为完美电导体(PEC)。

3. 进行仿真计算选择合适的仿真求解器,进行仿真计算。

本实验采用时域求解器,设置仿真频率范围为1GHz~20GHz。

4. 分析仿真结果分析仿真结果,包括传输线特性、损耗、阻抗匹配等。

通过分析仿真结果,了解波导的传输特性,并对波导设计进行优化。

5. 优化波导设计根据仿真结果,对波导设计进行优化。

例如,调整波导的尺寸参数、介质材料等,以降低损耗、提高传输效率。

四、实验结果与分析1. 传输特性仿真结果表明,矩形波导在1GHz~20GHz的频率范围内具有良好的传输特性。

在频率较低时,波导的传输损耗较小;在频率较高时,波导的传输损耗较大。

2. 损耗通过分析仿真结果,发现波导的损耗主要由介质损耗和辐射损耗组成。

hfss软件界面功能及设计流程实验报告

hfss软件界面功能及设计流程实验报告

hfss软件界面功能及设计流程实验报告下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!HFSS软件界面功能及设计流程实验报告一、前言HFSS(High Frequency Structure Simulator)是一款由ANSYS公司开发的高频电磁场仿真软件,广泛应用于微波、光电子、天线、射频等领域。

HFSS波导仿真实验报告参考模板

HFSS波导仿真实验报告参考模板

《电磁场与电磁波》课程仿真实验报告学号U*********姓名唐彬专业电子科学与技术院(系)光学与电子信息学院2014 年12 月 3 日1.实验目的学会HFSS仿真波导的步骤,画出波导内场分布图,理解波的传播与截止概念。

2.实验内容在HFSS中完成圆波导的设计与仿真,要求完成电场、磁场、面电流分布、传输曲线、色散曲线和功率的仿真计算。

3.仿真模型(1)模型图形(2)模型参数(3)仿真计算参数根据圆波导主模为TE11,111111'=1.841 22ccf a paπμεπμε==为半径,a=1mm,代入公式得截止频率f=8.8GHz,因此设置求解频率为11GHz,起始频率为9GHz,终止频率为35GHz。

4.实验结果及分析4..1电场分布图图形分析:将垂直于Z周的两个圆面设为激励源,利用animate选项可以发现,两个圆面上的电场强度按图中的颜色由红变蓝周期性变化,图形呈椭圆形,且上底面中心为红色时,下底面中心为蓝色。

即上底面中心的电场强度最大时,下底面中心的电场强度为最小。

这是由于波的反射造成的。

对于圆波导的侧面,由动态图可知电场强度始终处于蓝绿色,也就是一直较小。

这说明电场更多的是在两底面,即两激励源之间反射,反射到侧面上的电场较少。

4..2磁场分布图图形分析:根据电场与磁场的关系式——课本式(9.46)可知,电场的大小是磁场大小的c倍(c为真空中的光速),电场方向与磁场方向处处垂直,在图中也可看出,波导中磁场的最大值出现在侧面,两底面的中心的颜色为蓝绿色,且底面的两边为双曲线的形状,这就是磁场与电场相互垂直的结果。

另一方面,根据图中各个颜色代表的场强大小也可以近似验证,电场与磁场的大小的确是c倍的关系。

而且在导体中的电磁波,磁场与电场还存在相位差,这一点也可从两者的动态图中验证该结论。

4..3电流分布图图形分析:面电流变化的图形特点与磁场变化的图形特点相类似,原因可以根据麦克斯韦方程(微分形式)(积分形式)知道,面电流密度大小与磁场大小成正比,因此两者的变化规律相同。

HFSS仿真实验报告样例

HFSS仿真实验报告样例

.《微波技术与天线》HFSS仿真实验报告实验二印刷偶极子天线设计专业通信工程年级2011 级姓名毛佳雯学号1116428042指导老师评分一、仿真实验内容和目的使用HFSS设计一个中心频率为 2.45GHz的采用微带巴伦馈线的印刷偶极子天线,并通过HFSS软件Opitmetrics模块的参数扫描分析功能对印刷偶极子天线的一些重要结构参数进行参数扫描分析,分析这些参数对天线性能的影响。

二、设计模型简介整个天线分为5个部分,即介质层,偶极子天线臂,微带巴伦线,微带传输线,见图1。

天线各部分结构尺寸的初始值见表1。

图1印刷偶极子天线结构图(顶视图)。

表1印刷偶极子天线关键结构尺寸初始值。

批注[y1]:实际报告撰写中,表格应手动编制,不允许直接截图。

三、建模和仿真步骤1、新建 HFSS 工程,添加新设计,设置求解类型:Driven Modal。

2、创建介质层。

创建长方体,名称设为 Substrate,材质为 FR4_epoxy,颜色为深绿色,透明度为0.6。

3、创建上层金属部分1)创建上层金属片,建立矩形面,名称 Top_Patch,颜色铜黄色。

2)创建偶极子位于介质层上表面的一个臂。

画矩形面,名称 Dip_Patch,颜色铜黄色。

3)创建三角形斜切角,创建一个三角形面,把由矩形面 Top_Patch 和 Dip_Patch 组成的90 折线连接起来。

4)合并生成完整的金属片模型。

4、创建下表面金属片1)创建下表面传输线 Top_patch_1。

2)创建矩形面 Rectangle1。

3)创建三角形 polyline2。

4)镜像复制生成左侧的三角形和矩形面此步完成后得到即得到印刷偶极子天线三维仿真模型如图2所示。

5、设置边界条件1)分配理想导体。

2)设置辐射边界条件,材质设为 air。

6、设置激励方式:在天线的输入端口创建一个矩形面最为馈电面,设置该馈电面的激励方式为集总端口激励,端口阻抗为50欧姆。

7、求解设置:求解频率(Solution Frequency)为 2.45GHz,自适应网格最大迭代次数(Maximum Number of Passes):20,收敛误差(Maximum Delta S)为 0.02。

安徽工程大学通信工程生产实习(HFSS)实验报告

安徽工程大学通信工程生产实习(HFSS)实验报告

生产实习实验报告时间:2013年12月班级:通信工程姓名:**学号:310020****实验一HFSS安装,简单结构的建模HFSS是利用我们所熟悉的windows图形用户界面的一款高性能的全波电磁场(EM)段任意3D无源器件的模拟仿真软件。

HFSS的安装方法1、打开Ansoft_HFSS_V10目录;2、安装之前请仔细阅读Crack目录下的readme.txt;3、安装软件。

软件安装成功后,在桌面会生成HFSS快捷方式的图标,我们双击图标打开软件界面如下:简单结构的建模1、了解HFSS界面;2、学习基本线、面、体的画法;3、指定模型尺寸、材料。

4、模型的复制、移动和布尔运算。

本实验中,我们设计的实例是电基本阵子的仿真,电基本阵子的长度30mm,宽度4mm,工作频率1GHz,空气盒子六个面到天线的距离为1/4波长。

实验步骤如下:首先,打开HFSS软件,新建一个工程命名为project3100204130.hfss并保存。

根据要求,我们先画出电基本阵子,其参数如下:我们得到的电基本阵子如下图所示:接下来是电基本阵子的外围空气盒子,我们先画出盒子,并调节参数如下:空气盒子:电基本阵子的激励:设置空气盒子为辐射边界:设计其分析参数,频率设置为1GHz,设置其远区场参数:完成后保存文件,在接下来就是对该模型的仿真了,运行有效性检查:运行仿真,等待仿真完成后观察结果。

方向图:Axial Ratio Value:Phi=90’,YZ平面方向图:Theta=90’,XY平面方向图:辐射的磁场以及电场方向在空气盒子一个面的分布:磁场分布:电场分布:实验2 对称振子天线的仿真实验实验2中我们对对称阵子天线进行仿真实验,新建工程后保存,画出对称阵子,并在对称阵子中间添加一个激励平面:对称阵子参数:中心激励参数:再画出一个空气盒子,空气盒子距离天线λ/4,如图:其参数如下:设置激励:指定空气盒子为辐射边界:设置仿真条件,如图所示,中心频率为1GHz:设置边界:设置终端驱动:检查正确性:实验结果图:Terminal Solution Data Report——Rectangular Plot,其最低点处在1GHz附近:方向图:为了得到边射阵的方向图,我们在Radiation选项下添加Antenna Array Setup,选择Custom Array Setup,选择计算好的文本文档数据如下:得到的3元边射阵方向图如下所示:实验小结经过两周的时间,生产实习实验终于做完了。

电磁场试验报告1(模板)

电磁场试验报告1(模板)

电磁场与电磁波实验报告(HFSS软件基础与应用1 --矩形波导)专业班级:姓名:学号:时间:HFSS软件基础与应用一、实验目的通过安装调试HFSS软件,初步了解该软件。

通过学习使用HFSS画一个矩形波导,逐步掌握该软件的基本功能和操作。

二、HFSS简介HFSS – High Frequency Structure Simulator,Ansoft公司推出的三维电磁仿真软件,目前已被ANSYS公司收购;是世界上第一个商业化的三维结构电磁场仿真软件,业界公认的三维电磁场设计和分析的工业标准。

HFSS提供了一简洁直观的用户设计界面、精确自适应的场解器、拥有空前电性能分析能力的功能强大后处理器,能计算任意形状三维无源结构的S参数和全波电磁场。

HFSS软件拥有强大的天线设计功能,它可以计算天线参量,如增益、方向性、远场方向图剖面、远场3D图和3dB带宽;绘制极化特性,包括球形场分量、圆极化场分量、Ludwig第三定义场分量和轴比。

使用HFSS,可以计算:①基本电磁场数值解和开边界问题,近远场辐射问题;②端口特征阻抗和传输常数;③ S参数和相应端口阻抗的归一化S参数;④结构的本征模或谐振解。

而且,由Ansoft HFSS和Ansoft Designer构成的Ansoft高频解决方案,是目前唯一以物理原型为基础的高频设计解决方案,提供了从系统到电路直至部件级的快速而精确的设计手段,覆盖了高频设计的所有环节。

三、HFSS界面介绍与操作软件界面菜单栏(Menu bar)由文件、编辑、视图、工程、绘图、3D模型、HFSS、工具和帮助等下拉式菜单组成。

工程管理(Project Manage)窗口显示所以打开的HFSS工程的详细信息,包括边界、激励、剖分操作、分析、参数优化、结果、端口场显示、场覆盖图和辐射等。

3D模型窗口(3D Modeler Window)是创建几何模型的区域,包括模型视图区域和历史树。

状态栏(Status bar)位于HFSS界面底部,显示当前执行命令的信息。

HFSS电磁屏蔽电磁兼容设计实验

HFSS电磁屏蔽电磁兼容设计实验

H F S S电磁屏蔽电磁兼容设计实验-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN目录第一章屏蔽体的设计理念1.1屏蔽的概念及基本原理 (3)1.2屏蔽体的基本问题和分析方法 (4)1.3设计屏蔽体的基本参数设定 (4)第二章屏蔽体的建模过程2.1创建屏蔽体的单位模型及缝隙模型 (5)2.2创建屏蔽体的外空气体及其设置 (7)2.3创建同轴屏蔽罩及同轴芯 (11)2.4设置屏蔽体的激励及指定激励端口 (14)2.5创建电阻及空气腔 (15)2.6创建辐射边界 (21)第三章屏蔽体性能的仿真分析及其结果3.1设置添加对屏蔽体的分析功能并分析模型 (23)3.2计算屏蔽体的数据及创建分析报告 (26)3.3保存屏蔽体工程并保存其分析报告 (30)第一章屏蔽体的设计理念1.1屏蔽体的概念及基本原理屏蔽是电磁兼容工程中广泛采用的抑制电磁干扰的有效方法之一。

所谓电磁屏蔽,就是用导电或导磁材料制成的金属屏蔽体将电磁干扰源限制在一定的范围内,使干扰源从屏蔽体的一面耦合或当其辐射到另一面时受到的抑制或衰减。

屏蔽的目的是采用屏蔽体包围电磁干扰源,以抑制电磁干扰源对其周围空间存在的接收器的干扰;或采用屏蔽体包围接收器,以避免干扰源对其干扰。

电磁屏蔽一般是指高频交变电磁屏蔽,因为在交变场中,电场和磁场总是同时存在的,只是在频率较低的范围内,电磁干扰一般出现在近场区。

近场随着干扰源的性质不同,电场和磁场的大小有很大差别。

高电压小电流干扰源以电场为主,磁场干扰可以忽略不计。

这时就只可以考虑电场屏蔽;低电压高电流干扰源以磁场干扰为主,电场干扰可以忽略不计,这时就只可以考虑磁场屏蔽。

随着频率增高,电磁辐射能力增强,产生辐射电磁场,并趋向于远场干扰。

远场中的电场干扰和磁场干扰都不可以忽略,因此需要将电场和磁场同时屏蔽,即为电磁屏蔽。

高频时即使在设备内部也可能出现远场干扰,需要进行电磁屏蔽。

如前所述,采用导电材料制作的且接地良好的屏蔽体,就能同时起到电场屏蔽和磁场屏蔽的作用。

hfss仿真实验报告

hfss仿真实验报告

hfss仿真实验报告HFSS仿真实验报告引言:HFSS(High Frequency Structure Simulator)是一款电磁仿真软件,广泛应用于高频电磁场分析和设计。

本篇报告将介绍一次使用HFSS进行的仿真实验,并对实验结果进行分析和讨论。

实验目的:本次实验的目的是通过HFSS仿真软件,对一个电磁场问题进行模拟和分析,以验证其在理论上的正确性。

通过仿真实验,可以更好地理解电磁场的行为规律,并为实际应用提供参考依据。

实验步骤:1. 建立模型:根据实验需求,首先在HFSS中建立相应的电磁场模型。

模型的建立需要考虑几何形状、材料特性等因素,以确保仿真结果的准确性。

2. 设置边界条件:在模型建立完成后,需要设置边界条件,即模型与外界的交互方式。

边界条件的设置对于仿真结果的准确性至关重要,需要根据实际情况进行选择和调整。

3. 定义材料特性:根据实际材料的电磁特性,对模型中的材料进行定义和设置。

材料的特性包括介电常数、磁导率等参数,对于仿真结果的准确性起到重要作用。

4. 设定激励源:在模型中添加激励源,即对电磁场进行激励的源头。

激励源的设置需要考虑频率、功率等参数,以确保仿真结果与实际情况相符。

5. 运行仿真:完成上述设置后,即可运行仿真。

HFSS将根据模型和设置的参数,计算并输出电磁场的分布情况。

实验结果与分析:通过HFSS仿真软件进行实验后,我们得到了电磁场的分布情况。

根据仿真结果,我们可以对电磁场的特性进行分析和讨论。

首先,我们可以观察到电磁场的强度分布情况。

根据模型的不同特点,电磁场的强度在不同区域呈现出不同的分布规律。

通过分析电磁场的分布情况,可以更好地理解电磁场的行为规律,并为实际应用提供指导。

其次,我们可以通过仿真结果来评估不同材料对电磁场的影响。

在模型中,我们可以设置不同材料的特性参数,通过仿真实验来观察不同材料对电磁场的吸收、反射等影响。

这对于材料的选择和设计具有重要的参考价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一? T形波导的内场分析实验目的?1、?熟悉并掌握HFSS的工作界面、操作步骤及工作流程。

?????2、?掌握T型波导功分器的设计方法、优化设计方法和工作原理。

?实验仪器1、装有windows 系统的PC 一台2、或更高版本软件3、截图软件实验原理本实验所要分析的器件是下图所示的一个带有隔片的T形波导。

其中,波导的端口1是信号输入端口,端口2和端口3是信号输出端口。

正对着端口1一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片。

通过调节隔片的位置可以调节在端口1传输到端口2,从端口1传输到端口3的信号能量大小,以及反射回端口1的信号能量大小。

T形波导实验步骤1、新建工程设置:运行HFSS并新建工程:打开 HFSS 软件后,自动创建一个新工程: Project1,由主菜单选 File\Save as ,保存在指定的文件夹内,命名为Ex1_Tee;由主菜单选 Project\ Insert HFSS Design,在工程树中选择 HFSSModel1,点右键,选择 Rename项,将设计命名为 TeeModel。

选择求解类型为模式驱动(Driven Model):由主菜单选HFSS\Solution Type ,在弹出对话窗选择Driven Model 项。

设置长度单位为in:由主菜单选 3D Modeler\Units ,在 Set Model Units 对话框中选中 in 项。

2、创建T形波导模型:创建长方形模型:在 Draw 菜单中,点击 Box 选项,在Command 页输入尺寸参数以及重命名;在Attribute页我们可以为长方体设置名称、材料、颜色、透明度等参数Transparent(透明度)将其设为。

Material(材料)保持为Vacuum。

设置波端口源励:选中长方体平行于 yz 面、x=2 的平面;单击右键,选择 Assign Excitation\Wave port项,弹出 Wave Port界面,输入名称WavePort1;点击积分线 (Integration Line) 下的 New line ,则提示绘制端口,在绘图区该面的下边缘中部即(2,0,0)处点左键,确定端口起始点,再选上边缘中部即(2,0,处,作为端口终点。

复制长方体:展开绘图历史树的 Model\Vacuum\Tee节点,右键点击Tee项,选择 Edit\Duplicate\Around Axis,在弹出对话窗的Axis项选择Z,在Angel项输入90deg,在 Total Number 项输入2,点OK,则复制、添加一个长方体,默认名为TEE_1。

重复以上步骤,在Angel项输入-90,则添加第3个长方体,默认名Tee_2.合并长方体:鼠标右键切换到物体选择状态。

选中第1个长方体,按下Ctrl键的同时选中第2、3个长方体,由主菜单选3D Modeler\Boolean\Unite,则将三个长方体组合在一起,形成了一个T型接头。

创建隔片:绘制长方体:Draw/box命令任意创建一个长方体,确定位置参数:绘图工程树双击CreateBox1在属性对话窗口的Command 页,在Position项输入 , , 0in,调整长方体尺寸;由 T 型接头中减去间隔:在历史树中选择 Tee 项,按下Ctrl 键的同时再选中Septum项。

由主菜单选3D Modeler\Boolean\Subtract ,在弹出对话窗口中,确定Tee在Blank Parts列,Septum在Tool Parts 列(即将间隔从型接头中去掉),点OK完成。

3、分析求解设置:在工程树中,找到 TeeModel\Analysis 节点,点右键,选择Add Solution Setup ,弹出对话窗。

在 General 标签页的Solution 项输入10,默认单位为GHz,在 Adaptive Solutions的 Maximum Number of Passes 项设为3,其它不变,点击确定。

添加扫频设置:在工程树中的Setup1项上点右键,选择Add Frenquency Sweep,在弹出对话窗中选择General项,其它具体设置默认不变;在Type栏选择Linear Step,定义频率范围为:8~10GHz,阶长,点OK完成。

设计检查:主菜单选HFSS\Validation Check,则弹出确认检查窗口,对设计进行确认。

全部完成且没有错误时,点Close结束。

4、运行仿真分析:由主菜单选HFSS\Analyze all,对设计的模型进行三维场分析求解。

求解全部完成后,在信息管理区会出现确定信息。

5、查看仿真分析计算结果:创建一个S参数的矩形曲线图;创建一个电场视图;创建动态演示场覆盖图内场分析结果1、图形化显示S参数计算结果图形化显示S参数幅度随频率变化的曲线2、查看表面电场分布表面场分布图3、动态演示场分布图实验总结:实验二 T形波导的优化设计实验目的?1、?熟悉并掌握HFSS的工作界面、操作步骤及工作流程。

?????2、?掌握T型波导功分器的设计方法、优化设计方法和工作原理。

?实验仪器1、装有windows 系统的PC 一台2、或更高版本软件3、截图软件实验原理利用参数扫描分析功能。

分析在工作频率为10GHz时,T形波导3个端口的信号能量大小随着隔片位置变量Offset的变化关系。

利用HFSS的优化设计功能,找出隔片的准确位置,使得在10GHz工作频点,T形波导商品3的输出功率是端口2输出功率的两倍。

实验步骤1、新建一个优化设计工程;由主菜单选File\Open,打开第二部分所创建的文件。

由主菜单选 File\Save as,保存在自建文件夹内,命名为,删除频率扫描。

2、参数扫描分析设置和仿真分析:在工程树中选Optimetrics项上点右键,选择Add\Parametrie 项添加参数扫描分析项。

定义输出变量:添加变量扫描定义:在对话窗的Sweep Definitions 标签页,点击Add,在新弹出窗口中已经默认调节变量为offset选择Linear step项,变量范围设为0~1,阶长为,单位均为 in,点击 Add,则在窗口右侧加入调节变量及其设置。

点OK。

定义输出变量:在Calculations标签页(注:设置页面可以在工程树下Opimetrics/ParametricSetup1打开),点击左下角Setup Calculation,则弹出Add/Edit Calculations对话窗。

点击左下角Output Variables,弹出Output Variables对话框,定义Power11、Power21、Power31变量.运行参数扫描分析:在工程树中的ParametricSetup1项上点击右键,选择Analyze,对参数设置中变量扫描定义的每一个变量进行3D场分析求解。

全部完成后,在信息管理区会出现确定信息。

创建S参数与Offset变量的关系曲线图:在工程树的 Results 项点右键,选择Create Modal data Report项选择Rectangular Plot,点OK完成,则弹出对话窗默认选择Trace选项。

3、优化设计:添加优化变量:由主菜单选HFSS\Design Properties,在弹出对话窗选择Optimization项,在offset栏勾选Include项,点击确定完成。

添加目标函数:这里的优化目标是端口3的输出功率是端口2的2倍,目标函数为:Power31-2*Power21=0。

优化设置的对话框下在Goals 标签页,点击左下角Setup Calculation选项,弹出Add/Edit Calculation对话框,点击左下角Output vadiables,创建新的一个目标变量,Name栏中为:Cost,通过Insert into Expression选项在Expression栏中写入表达式:Power31-2*Power21。

然后点击Add,最后点击右下方Done。

返回到Add/Edit Calculation对话框,点击下方Add Calculation,添加目标变量到Setup Optimization对话框Cost中。

设置优化变量的取值范围:选择Variables标签页,在Variable 列只有offset变量,勾选Override项,在starting Value列输入。

Min中:0,Max中:,offset变化范围在0到之间。

运行优化分析:在工程树的 OptimizationSetup1 项上点右键,选择Analyze,进行优化分析。

此过程需要几分钟,可进行下面的实验步骤。

在工程树的OptimizationSetup1项上点右键,选择View Analysis Result,察看优化结果。

实验结果1、创建功率分配随变量Offset变化的关系图输出变量随变量Offset变化的关系图分析:从上图所示的图可以看出,当变量Offset值逐渐变大时,即隔片位置向端口2移动时,端口2的输出功率逐渐减小,端口3的输出功率逐渐变大;当隔片位置变量Offset超过英寸时,端口1的反射明显增大,端口3的输出功率开始减小。

因此,在后面的优化设计中,可以设置变量Offset优化范围的最大值为英寸。

同时,在Offset=英寸时,端口3的输出功率约为,端口2的输出功率略大于,此处端口3的输出功率约为端口2输出功率的两倍。

因此,在优化设计时,可以设置变量Offset的优化初始值为英寸。

另外,变量Offset 优化范围的最小值可以取0英寸。

2、表面电场随变量Offset变化Offset=0in Offset=Offset= Offset=优化设计结果1、优化结果在offset=时,目标函数(Cost function):Power31-2*Power21=达到预期优化效果。

2、优化后电场分布实验总结:实验三半波偶极子天线仿真实验报告实验目的1、学会简单搭建天线仿真环境的方法,主要是熟悉日HFSS软件的使用方法2、了解利用HFSS仿真软件设计和仿真天线的原理、过程和方法3、通过天线的仿真,了解天线的主要性能参数,如驻波比特性、smith 圆图特性、方向图特性等4、通过对半波偶极子天线的仿真,学会对其他类型天线仿真的方法实验仪器1、装有windows系统的PC一台2、HFSS3、截图软件实验原理本次实验设计一个中心频率为3GHz的半波偶极子天线。

天线沿着Z轴放置,中心位于坐标原点,天线材质使用理想导体,总长度为λ,半径为λ/200。

天线馈电采用集总端口激励方式,端口距离为,辐射边界和天线的距离为λ/4。

首先明白一点:半波偶极子天线就是对称阵子天线。

相关文档
最新文档