电磁场与电磁波点电荷模拟实验报告

合集下载

电磁场与电磁波实验报告

电磁场与电磁波实验报告

电磁场与电磁波实验报告电磁场与电磁波实验报告引言:电磁场和电磁波是物理学中非常重要的概念。

电磁场是由电荷产生的一种物理场,它的存在和变化会影响周围空间中的其他电荷。

而电磁波则是电磁场的一种传播形式,它以电磁场的振荡和传播为基础,具有波动性质。

本次实验旨在通过实际操作和测量,深入了解电磁场和电磁波的特性。

实验一:测量电磁场强度在实验一中,我们使用了一个电磁场强度计来测量不同位置的电磁场强度。

首先,我们将电磁场强度计放置在一个固定的位置,记录下此时的电磁场强度。

然后,我们将电磁场强度计移动到其他位置,重复测量过程。

通过这些数据,我们可以得出不同位置的电磁场强度的分布情况。

实验结果显示,电磁场强度随着距离的增加而逐渐减弱。

这符合电磁场的特性,即电荷产生的电磁场在空间中以一定的规律传播,而传播的强度会随着距离的增加而减弱。

这一实验结果验证了电磁场的存在和变化对周围环境的影响。

实验二:测量电磁波频率和波长在实验二中,我们使用了一个频率计和一个波长计来测量电磁波的频率和波长。

首先,我们将频率计和波长计设置好,并将它们与电磁波源连接。

然后,我们观察频率计和波长计的测量结果,并记录下来。

通过这些数据,我们可以得出电磁波的频率和波长的数值。

实验结果显示,不同频率的电磁波具有不同的波长。

频率越高的电磁波,波长越短;频率越低的电磁波,波长越长。

这符合电磁波的特性,即电磁波的振荡频率和波长之间存在一定的关系。

这一实验结果验证了电磁波的波动性质,以及频率和波长之间的关系。

实验三:观察电磁波的干涉和衍射现象在实验三中,我们使用了一块光栅和一个狭缝装置来观察电磁波的干涉和衍射现象。

首先,我们将光栅放置在光源前方,并调整光源的位置和光栅的角度。

然后,我们观察到在光栅后方的屏幕上出现了一系列明暗相间的条纹。

这些条纹是由电磁波的干涉和衍射效应引起的。

实验结果显示,当电磁波通过光栅时,会发生干涉和衍射现象。

干涉现象表现为明暗相间的条纹,而衍射现象表现为条纹的扩散和交替。

电磁场与电磁波 点电荷模拟实验报告

电磁场与电磁波 点电荷模拟实验报告

重庆大学电磁场与电磁波课程实践报告题目:点电荷电场模拟实验日期:2013 年12 月7 日N=28《电磁场与电磁波》课程实践点电荷电场模拟实验1.实验背景电磁场与电磁波课程内容理论性强,概念抽象,较难理解。

在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。

MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。

为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。

2.实验目的应用MATLAB 模拟点电荷的电场线和等势线3.实验原理根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即:E V =-∇r真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1212010244q q V V V R R πεπε=+=+本实验中,为便于数值计算,电势可取为1212q q V R R =+4.实验内容应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号:(1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷);(2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷);(3) 两个等量同号电荷的电场线和等势线;(4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2);(5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。

、n=28(1)电偶极子的电场线和等势线(等量异号点电荷对q2:q1 = 1,q2为负电荷);程序1:clear allq=1;xm=;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);U=1./R1-q./R2;u=-4::4;figurecontour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,-Ex,-Ey,x2,y2);axis equal tighttitle('μ×óμμ3oíμèê','fontsize',12)(2)两个不等量异号电荷的电场线和等势线(q2:q1 = 1 + n/2,q2为负电荷);程序2:clear allq=15;xm=;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);U=1./R1-q./R2;u=-4::4;figurecontour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,-Ex,-Ey,x2,y2);axis equal tighttitle('μ×óμμ3oíμèê','fontsize',12)(3)两个等量同号电荷的电场线和等势线;程序3:clear allq=-1;xm=;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);U=1./R1-q./R2;u=-4::4;figurecontour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,Ex,Ey,x2,y2);axis equal tighttitle('μ×óμμ3oíμèê','fontsize',12)(4)两个不等量同号电荷的电场线和等势线(q2:q1 = 1 + n/2);程序4:clear allq=-15;xm=;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);U=1./R1-q./R2;u=-4::4;figurecontour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1)); dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,Ex,Ey,x2,y2);axis equal tighttitle('μ×óμμ3oíμèê','fontsize',12)(5)三个电荷,q1、q2为(1)中的电偶极子,q3为位于(0,0,0)的单位正电荷程序5:clear allq=1;q3=-1;xm=;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);R3=sqrt(X.^2+Y.^2);U=1./R1-q./R2-q3./R3;u=-4::4;figurecontour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,-Ex,-Ey,x2,y2);dth3=11;th3=(dth3:dth3:360-dth3)*pi/180;x3=r0*cos(th3);y3=r0*sin(th3);streamline(X,Y,Ex,Ey,x3,y3);axis equal tighttitle('μ×óμμ3oíμèê','fontsize',12)从实验过程中学习到的东西:1.灵活学习,大胆求证,当不清楚E1,E2,前面符号的正负时,随便假设一个,再根据电荷的正负关系,看得到的图形是否正确,若不正确则再修改符号2.注意q的正负与两电荷是否异号有关,异号与同号q的正负不同3.学习初步使用matlab软件,为以后的学习打好基础4.更加深入地了解电荷的电场线与等势线。

电磁场与电磁波实验报告

电磁场与电磁波实验报告

实验一 静电场仿真1.实验目的建立静电场中电场及电位空间分布的直观概念。

2.实验仪器计算机一台3.基本原理当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。

点电荷q 在无限大真空中产生的电场强度E 的数学表达式为(1-1)真空中点电荷产生的电位为(1-2)其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为4= (1-3) 电位为4= (1-4) 本章模拟的就是基本的电位图形。

4.实验内容及步骤(1)点电荷静电场仿真题目:真空中有一个点电荷-q,求其电场分布图。

程序1:负点电荷电场示意图clear[x,y]=meshgrid(-10:1.2:10);E0=8.85e-12;q=1.6*10^(-19);r=[];r=sqrt(x.^2+y.^2+1.0*10^(-10))m=4*pi*E0*r;m1=4*pi*E0*r.^2;E=(-q./m1).*r;surfc(x,y,E);负点电荷电势示意图clear[x,y]=meshgrid(-10:1.2:10); E0=8.85e-12;q=1.6*10^(-19);r=[];r=sqrt(x.^2+y.^2+1.0*10^(-10))m=4*pi*E0*r;m1=4*pi*E0*r.^2;z=-q./m1surfc(x,y,z);xlabel('x','fontsize',16)ylabel('y','fontsize',16)title('负点电荷电势示意图','fontsize',10)程序2clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.16:4;y=x; [X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2+1.0*10^(-10)); R2=sqrt((X-1).^2+Y.^2+1.0*10^(-10));Z=q*k*(1./R2-1./R1);[ex,ey]=gradient(-Z);ae=sqrt(ex.^2+ey.^2);ex=ex./ae;ey=ey./ae; cv=linspace(min(min(Z)),max(max(Z)),40); contour(X,Y,Z,cv,'k-');hold onquiver(X,Y,ex,ey,0.7);clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.15:4;y=x; [X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2+1.0*10^(-10));R2=sqrt((X-1).^2+Y.^2+1.0*10^(-10));U=q*k*(1./R2-1./R1);[ex,ey]=gradient(-U);ae=sqrt(ex.^2+ey.^2);ex=ex./ae;ey=ey./ae; cv=linspace(min(min(U)),max(max(U)),40); surfc(x,y,U);实验二恒定电场的仿真1.实验目的建立恒定电场中电场及电位空间分布的直观概念。

电磁场与电磁波实验报告2

电磁场与电磁波实验报告2

电磁场与电磁波实验报告实验一电磁场参量的测量实验目的1、在学习均匀平面电磁波特性的基础上,观察电磁波传播特性互相垂直。

2、熟悉并利用相干波原理,测定自由空间内电磁波波长,并确定电磁波的相位常数和波速实验原理两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反)方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。

本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长的值,再由2,f得到电磁波的主要参量:和等。

本实验采取了如下的实验装置设入射波为E i E)e j,当入射波以入射角!向介质板斜投射时,则在分界面上产生反射波E r和折射波E t。

设介质板的反射系数为R,由空气进入介质板的折射系数为T o,由介质板进入空气的折射系数为T c,另外,可动板P r2和固定板P r1都是金属板,其电场反射系数都为-1。

在一次近似的条件下,接收喇叭处的相干波分别为E M RT o T c E oi e j 1,RT°T c E oi e j 2这里 1 2L ri L r3 L ri ;2 2L「2 L“2L M 2 L L r3 L2;其中L L2 L i|。

又因为为定值,L2则随可动板位移而变化。

当P r2移动L值,使P r3有零指示输出时,必有E M与E r2反相。

故可采用改变P r2的位置,使尺3输出最大或零指示重复出现。

从而测出电磁波的波长和相位常数。

下面用数学式来表达测定波长的关系式。

在P r3处的相干波合成为E r E M E「2 e j 1 e j2j 1 2 /或写成E r2RT0T c E0i cos 2 e 2(1-2)式中 1 2 2 L为了测量准确,一般采用P3零指示法,即cos 20或(2n 1),n=0,1,2……这里n表示相干波合成驻波场的波节点(E r 0 )数。

同时,除n=0以外的n值,又表示相干波合成驻波的半波长数。

2016年《电磁场与电磁波》仿真实验

2016年《电磁场与电磁波》仿真实验

2016年《电磁场与电磁波》仿真实验D《电磁场与电磁波》仿真实验介绍《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。

受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。

本课程仿真实验包含五个内容:一、电磁场仿真软件——Matlab的使用入门二、单电荷的场分布三、点电荷电场线的图像四、线电荷产生的电位五、有限差分法处理电磁场问题目录一、电磁场仿真软件——Matlab的使用入门 (4)二、单电荷的场分布 (10)三、点电荷电场线的图像………………………………………………………………………………………12四、线电荷产生的电位 (14)五、有限差分法处理电磁场问题 (17)实验一电磁场仿真软件——Matlab的使用入门一、实验目的1. 掌握Matlab仿真的基本流程与步骤;2. 掌握Matlab中帮助命令的使用。

二、实验原理(一)MATLAB运算1.算术运算(1).基本算术运算MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)。

注意,运算是在矩阵意义下进行的,单个数据的算术运算只是一种特例。

(2).点运算在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。

点运算符有.*、./、.\和.^。

两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。

例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。

程序:x=linspace(0,6)y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2;plot(x,y1,x, y2,x, y3)(二)几个绘图命令1. doc命令:显示在线帮助主题调用格式:doc 函数名例如:doc plot,则调用在线帮助,显示plot函数的使用方法。

辽工大电磁场与电磁波平板电容器实验报告_实验一

辽工大电磁场与电磁波平板电容器实验报告_实验一

电磁场与电磁波实验报告实验一班级:姓名:学号:日期:实验一静电场问题实例:平板电容器电容计算仿真1.实验目的1.学习Ansoftmaxwell软件的使用方法。

2.复习电磁学相关的基本理论。

3.通过软件的学习掌握运用Ansoft Maxwell运行电磁场仿真的流程。

4.通过对对平板电容器电容计算仿真实验进一步熟悉Ansoft Maxwell软件的应用。

2.实验内容1.学习Ansoftmaxwell有限元分析步骤2.会用Ansoftmaxwell后处理器和计算器对仿真结果分析3.对圆柱体电容器电容仿真计算结果与理论结果值进行比较3.实验步骤平板电容器模型描述:上下两极板尺寸:25mm×25mm×2mm,材料:pec(理想导体)介质尺寸:25mm×25mm×1mm,材料:mica(云母介质)激励:电压源,上极板电压:5V,下极板电压:0V。

要求计算该电容器的电容值1.建模(Model)Project > Insert Maxwell3D DesignFile>Save as>Planar Cap(工程命名为“Planar Cap”)选择求解器类型:Maxwell > Solution Type>Electric>Electrostatic(静电的)创建下极板六面体Draw > Box(创建下极板六面体)下极板起点:(X,Y,Z)>(0,0,0)坐标偏置:(dX,dY,dZ)(25,25,0)坐标偏置:(dX,dY,dZ)>(0, 0, 2)将六面体重命名为DownPlateAssign Material>pec(设置材料为理想导体perfect conductor)创建上极板六面体Draw > Box(创建下极板六面体)上极板起点:(X,Y,Z)>(0, 0, 3)坐标偏置:(dX,dY,dZ)>(25, 25,0)坐标偏置:(dX,dY,dZ)>(0, 0, 2)将六面体重命名为UpPlateAssign Material >pec(设置材料为理想导体perfect conductor)创建中间的介质六面体Draw > Box(创建下极板六面体)介质板起点:(X,Y,Z)>(0, 0, 2)坐标偏置:(dX,dY,dZ)>(25, 25,0)坐标偏置:(dX,dY,dZ)>(0, 0,1)将六面体重命名为mediumAssign Material > mica(设置材料为云母mica,)图3-12.创建计算区域(Region)Padding Percentage:0%图3-2电容器中电场分布的边缘效应忽略电场的边缘效应(fringing effect)3.设置激励(Assign Excitation)选中上极板UpPlate,Maxwell3D> Excitations > Assign(计划,分配)>Voltage> 5V选中下极板DownPlate,Maxwell3D> Excitations > Assign >Voltage> 0V4.设置计算参数(AssignExecutive Parameter)Maxwell 3D> Parameters > Assign >Matrix(矩阵)> Voltage1,Voltage25.设置自适应计算参数(Create Analysis Setup)Maxwell3D> Analysis Setup > Add Solution Setup最大迭代次数:Maximum number of passes > 10误差要求:Percent Error>1%每次迭代加密剖分单元比例:Refinement per Pass>50%图3-36. Check & Run7.查看结果Maxwell3D>Reselts>Solution data > Matrix 电容值: -31.543pF图3-4图3-54.实验结果由实验数据可得电容为-31.543PF平板式电容计算公式:C=ε *ε0* S/d;ε0真空介电常数8.86×10(-12方)单位F/m;5.心得体会在实验之前我以为这个实验一定十分简单。

电磁场与电磁波实验报告

广东第二师范学院学生实验报告一线等。

本实验重点介绍其中的一种半波天线。

半波天线又称半波振子,是对称天线的一种最简单的模式。

对称天线(或称对称振子)可以看成是由一段末端开路的双线传输线形成的。

这种天线是最通用的天线型式之一,又称为偶极子天线。

而半波天线是对称天线中应用最为广泛的一种天线,它具有结构简单和馈电方便等优点。

半波振子因其一臂长度为λ/4 ,全长为半波长而得名。

其辐射场可由两根单线驻波天线的辐射场相加得到,于是可得半波振子( L=λ/4 )的远区场强有以下关系式:│E│=[60Imcos(πcosθ/2)]/R 。

sinθ=[60Im/R 。

]│f(θ)│式中, f(θ) 为方向函数。

对称振子归一化方向函数为│F(θ)│=│f(θ)│/fmax=|cos(πcosθ/2)/sinθ| 其中 fmax 是 f(θ) 的最大值。

由上式可画出半波振子的方向图如下 :半波振子方向函数与ψ无关,故在 H 面上的方向图是以振子为中心的一个圆,即为全方性的方向图。

在 E 面的方向图为 8 字形,最大辐射方向为θ=π/2 ,且只要一臂长度不超过 0.625λ,辐射的最大值始终在θ=π/2 方向上;若继续增大 L ,辐射的最大方向将偏离θ=π/2 方向。

【实验内容】(一)测量电磁波发射频率(二)制作半波振子天线广东第二师范学院学生实验报告三广东第二师范学院学生实验报告四天线的极化,就是指天线辐射时形成的电场强度方向。

当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。

由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。

因此,在移动通信系统中,一般均采用垂直极化的传播方式。

电磁波的极化是电磁理论中的一个重要概念,它表征在空间给定点上电场强度矢量的取向随时间变化的特性,并用电场强度矢量 E 的端点在空间描绘出的轨迹来表示。

最新电磁场与电磁波实验报告

最新电磁场与电磁波实验报告
在本次实验中,我们深入研究了电磁场与电磁波的基本特性,并进行了一系列的实验来验证理论和观测实际现象。

以下是实验的主要部分和观察结果的概述。

实验一:静电场的建立与测量
我们首先建立了一个简单的静电场,通过使用高压电源对两个相对的金属板进行充电。

通过改变电源的电压,我们观察到金属板上的电荷积累情况,并使用电位差计测量了电场强度。

实验数据显示,电场强度与电压成正比,这与库仑定律的预测一致。

实验二:电磁波的产生与传播
接下来,我们通过振荡电路产生了电磁波。

在一个封闭的微波腔中,我们使用电磁波发生器产生不同频率的电磁波,并通过特殊的探测器来测量波的传播特性。

实验结果表明,电磁波的传播速度在不同的介质中有所变化,这与介质的电磁特性有关。

实验三:电磁波的极化与干涉
在这部分实验中,我们研究了电磁波的极化现象。

通过使用不同极化的波前,我们观察到了波的干涉效应。

特别是在双缝干涉实验中,我们观察到了明显的干涉条纹,这证明了电磁波的波动性质。

实验四:电磁波的吸收与反射
最后,我们探讨了电磁波与物质相互作用的过程。

通过将电磁波照射在不同材料的样品上,我们测量了波的吸收和反射率。

实验发现,吸收和反射率与材料的电磁性质密切相关,并且可以通过改变波的频率来调整这些性质。

通过这些实验,我们不仅验证了电磁场与电磁波的基本理论,而且加深了对这些现象在实际应用中的理解。

这些实验结果对于无线通信、雷达技术以及其他相关领域的研究和开发具有重要的指导意义。

电磁模拟试验实验报告

一、实验目的1. 理解电磁场的基本概念和基本定律。

2. 掌握电磁场模拟实验的方法和步骤。

3. 通过实验验证电磁场理论,加深对电磁场理论的理解。

二、实验原理电磁场是电荷和电流在空间中产生的场,具有电场和磁场两个基本部分。

电磁场的基本定律包括库仑定律、法拉第电磁感应定律和麦克斯韦方程组。

三、实验仪器1. 电磁场模拟器2. 直流电源3. 电阻、电容、电感元件4. 连接线5. 示波器6. 数据采集器四、实验内容1. 构建电磁场模拟电路2. 测量电路中的电场和磁场3. 分析实验数据,验证电磁场理论五、实验步骤1. 按照电路图搭建电磁场模拟电路,连接直流电源和电阻、电容、电感元件。

2. 使用示波器测量电路中的电场和磁场,记录数据。

3. 将实验数据导入数据采集器,进行数据分析。

4. 根据实验数据,验证电磁场理论。

六、实验结果与分析1. 电场和磁场的测量结果实验中,我们搭建了一个简单的LC振荡电路,测量了电路中的电场和磁场。

实验结果显示,电场和磁场的变化与理论计算相符。

2. 数据分析通过对实验数据的分析,我们验证了以下电磁场理论:(1)库仑定律:在真空中,两点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们之间距离的平方成反比。

(2)法拉第电磁感应定律:当闭合回路中的磁通量发生变化时,回路中会产生感应电动势。

(3)麦克斯韦方程组:麦克斯韦方程组描述了电磁场的分布规律,包括高斯定律、法拉第电磁感应定律、安培环路定律和麦克斯韦-安培方程。

3. 实验误差分析实验中可能存在的误差包括:(1)测量仪器的精度限制:示波器和数据采集器的精度可能影响实验结果的准确性。

(2)电路搭建误差:电路搭建过程中可能存在连接不良、元件参数偏差等问题,导致实验结果与理论计算存在偏差。

七、实验总结本次电磁模拟试验实验,我们通过搭建电磁场模拟电路,测量电路中的电场和磁场,验证了电磁场理论。

实验结果表明,电磁场理论在实际情况中具有普遍性和准确性。

电磁场与电磁波实验报告

电磁场与电磁波实验报告实验题目:电磁场与电磁波实验实验目的:1.了解电磁场的产生原理和特性。

2.理解电磁波的概念和基本特性。

3.掌握测量和分析不同电磁波的实验方法。

实验器材:1.U形磁铁2.电磁铁3.直流电源4.交流电源5.电磁感应器6.示波器7.微波源8.微波接收器9.光栅片10.各种电磁波滤波器实验原理:1.电磁场的产生:电流通过电线时,会在周围产生磁场。

在一对平行导线中,当电流方向相同时,导线之间的磁场是叠加的;当电流方向相反时,导线之间的磁场互相抵消。

2.电磁场的特性:电磁场具有两种性质,即不能长距离传播和具有作用力。

通过电磁感应现象,可以观察到电磁场的作用力。

3.电磁波的产生与传播:当电场和磁场变化时,会激发并产生电磁波。

电磁波可根据频率不同被分为不同波段,如:无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。

实验步骤:实验1:观察电磁场的产生和作用1.将磁铁插入U形磁铁中,并将直流电源连接到U形磁铁的两端;2.在U形磁铁下方放置一根金属杆,并用电磁感应器在金属杆上方测量磁感应强度;3.开启直流电源,记录不同电流强度下的磁感应强度,并绘制电流与磁感应强度的图线;4.在磁铁两端放置一磁性物体,观察其受力情况。

实验2:测量电磁波的特性1.将微波源和微波接收器分别连接至交流电源和示波器;2.将微波源调至一定频率,并记录该频率;3.调整示波器至合适的量程和垂直偏置,观察示波器上的微波信号;4.更换不同频率和波长的电磁波,重复步骤3;5.将光栅片放置在微波源与接收器之间,观察光栅片的衍射效应。

实验结果与分析:实验1:观察电磁场的产生和作用根据实验数据,绘制出电流与磁感应强度的图线,可以观察到磁感应强度与电流之间呈现线性关系,并且磁性物体受到磁力的作用。

实验2:测量电磁波的特性根据实验数据,可以观察到不同频率和波长的电磁波在示波器上表现出不同的振动形态,频率越高,波长越短。

通过光栅片的衍射效应,可以观察到电磁波的波长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆大学电磁场与电磁波课程实践报告题目:点电荷电场模拟实验日期:2013 年12 月7 日N=28《电磁场与电磁波》课程实践点电荷电场模拟实验1.实验背景电磁场与电磁波课程内容理论性强,概念抽象,较难理解。

在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。

MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。

为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。

2.实验目的应用MATLAB 模拟点电荷的电场线和等势线3.实验原理根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即:E V =-∇真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1212010244q q V V V R R πεπε=+=+本实验中,为便于数值计算,电势可取为1212q q V R R =+4.实验内容应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号:(1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷);(2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷);(3) 两个等量同号电荷的电场线和等势线;(4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2);(5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。

、 n=28(1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1:clear allq=1;xm=2.5;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);U=1./R1-q./R2;u=-4:0.5:4;figurecontour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=0.1;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,-Ex,-Ey,x2,y2);axis equal tighttitle('µãż¼«×ӵĵ糡Ïߺ͵ÈÊÆÏß','fontsize',12)(2)两个不等量异号电荷的电场线和等势线(q2:q1 = 1 + n/2,q2为负电荷);程序2:clear allq=15;xm=2.5;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);U=1./R1-q./R2;u=-4:0.5:4;figurecontour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=0.1;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,-Ex,-Ey,x2,y2);axis equal tighttitle('µãż¼«×ӵĵ糡Ïߺ͵ÈÊÆÏß','fontsize',12)(3)两个等量同号电荷的电场线和等势线;程序3:clear allq=-1;xm=2.5;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);U=1./R1-q./R2;u=-4:0.5:4;figurecontour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=0.1;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,Ex,Ey,x2,y2);axis equal tighttitle('µãż¼«×ӵĵ糡Ïߺ͵ÈÊÆÏß','fontsize',12)(4)两个不等量同号电荷的电场线和等势线(q2:q1 = 1 + n/2);程序4:clear allq=-15;xm=2.5;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);U=1./R1-q./R2;u=-4:0.5:4;contour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=0.1;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,Ex,Ey,x2,y2);axis equal tighttitle('µãż¼«×ӵĵ糡Ïߺ͵ÈÊÆÏß','fontsize',12)(5)三个电荷,q1、q2为(1)中的电偶极子,q3为位于(0,0,0)的单位正电荷程序5:clear allq3=-1;xm=2.5;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);R3=sqrt(X.^2+Y.^2);U=1./R1-q./R2-q3./R3;u=-4:0.5:4;figurecontour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=0.1;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,-Ex,-Ey,x2,y2);dth3=11;th3=(dth3:dth3:360-dth3)*pi/180;x3=r0*cos(th3);y3=r0*sin(th3);streamline(X,Y,Ex,Ey,x3,y3);axis equal tighttitle('µãż¼«×ӵĵ糡Ïߺ͵ÈÊÆÏß','fontsize',12)从实验过程中学习到的东西:1.灵活学习,大胆求证,当不清楚E1,E2,前面符号的正负时,随便假设一个,再根据电荷的正负关系,看得到的图形是否正确,若不正确则再修改符号2.注意q的正负与两电荷是否异号有关,异号与同号q的正负不同3.学习初步使用matlab软件,为以后的学习打好基础4.更加深入地了解电荷的电场线与等势线。

相关文档
最新文档