中考数学几何选择填空精选-
初中数学中考复习 第3关 多结论的几何及二次函数问题为背景的选择填空题(原卷版)

第3关 多结论的几何及二次函数问题为背景的选择填空题【考查知识点】以多结论的几何图形为背景的选择填空题题,主要考察了学生对三角形、四边形、圆知识的综合运用能力;以二次函数为背景的选择填空题,主要考察了二次函数的性质及二次函数系数与图象的关系。
【解题思路】1.以多结论的几何图形为背景的选择填空题题中,用“全等法”和“相似法”证题应该是两个基本方法,为了更好掌握这两种方法,应该熟悉一对全等或一对相似三角形的基本图形,下图中是全等三角形的基本图形。
大量积累基本图形,并在此基础上“截长补短”,“能割善补”,是学习几何图形的一个诀窍,每一个重要概念,重要定理都有一个基本图形,三线八角可以算做一个基本图形.2. 以二次函数为背景的选择填空题中,根据图象的位置确定a 、b 、c 的符号,a >0开口向上,a <0开口向下.抛物线的对称轴为x=2ba-,由图像确定对称轴的位置,由a 的符号确定出b 的符号.由x=0时,y=c ,知c 的符号取决于图像与y 轴的交点纵坐标,与y 轴交点在y 轴的正半轴时,c >0,与y 轴交点在y 轴的负半轴时,c <0.确定了a 、b 、c 的符号,易确定abc 的符号;根据对称轴确定a 与b 的关系;根据图象还可以确定△的符号,及a+b+c 和a -b+c 的符号。
【典型例题】【例1】(2019·新疆中考真题)如图,正方形ABCD 的边长为2,点E 是BC 的中点,AE 与BD 交于点P ,F 是CD 上的一点,连接AF 分别交BD ,DE 于点M ,N ,且AF ⊥DE ,连接PN ,则下列结论中:①4ABMFDM SS=;②PN =;③tan ∠EAF=34;④.PMN DPE ∽正确的是()A .①②③B .①②④C .①③④D .②③④【名师点睛】此题考查三角函数,相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质难度较大,解题关键在于综合掌握各性质【例2】(2019·湖北中考真题)抛物线2y ax bx c =++的对称轴是直线1x =-,且过点(1,0).顶点位于第二象限,其部分图像如图所示,给出以下判断: ①0ab >且0c <; ②420a b c -+>; ③8>0+a c ; ④33c a b =-;⑤直线22y x =+与抛物线2y ax bx c =++两个交点的横坐标分别为12x x 、,则12125x x x x ++⋅=-.其中正确的个数有( )A .5个B .4个C .3个D .2个【名师点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab>0),对称轴在y 轴左侧;当a 与b 异号时(即ab<0),对称轴在y 轴右侧;常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac>0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac<0时,抛物线与x 轴没有交点.【例3】(2019·辽宁中考真题)如图,正方形ABCD 和正方形CGFE 的顶点C ,D ,E 在同一条直线上,顶点B ,C ,G 在同一条直线上.O 是EG 的中点,∠EGC 的平分线GH 过点D ,交BE 于点H ,连接FH 交EG 于点M ,连接OH .以下四个结论:①GH ⊥BE ;②△EHM ∽△GHF;③BCCG =﹣1;④HOM HOGS S =2)A.①②③B.①②④C.①③④D.②③④【名师点睛】本题考查了正方形的性质,以及全等三角形的判定与性质,相似三角形的判定与性质,正确求得两个三角形的边长的比是解决本题的关键.【例4】(2018·广西中考真题)如图,抛物线y=14(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1B.2C.3D.4【名师点睛】本题考查了二次函数与圆的综合题,涉及到抛物线的对称轴、圆的面积、平行四边形的判定、待定系数法、两直线垂直、切线的判定等,综合性较强,有一定的难度,运用数形结合的思想灵活应用相关知识是解题的关键.【方法归纳】1.多结论的几何选择填空题考查的知识点较多,如相似三角形的判定与性质、等腰直角三角形的性质、平行线的性质、直角三角形的性质、四边形的知识、圆的知识、等腰三角形的判定与性质以及特殊角三角函数等知识.这类题目的综合性很强,难度较大,解题的关键是注意数形结合思想的应用.2. 多结论的二次函数选择题主要考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.数形结合思想贯穿这类题目的始终,解题时应时时注意.【针对练习】1.(2018·四川中考真题)如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B 点落在点P 处,折痕为EC ,连结AP 并延长AP 交CD 于F 点,连结CP 并延长CP 交AD 于Q 点.给出以下结论:①四边形AECF 为平行四边形; ②∠PBA=∠APQ ; ③△FPC 为等腰三角形; ④△APB ≌△EPC ;其中正确结论的个数为( )A .1B .2C .3D .42.(2018·辽宁中考真题)已知抛物线y=ax 2+bx+c (0<2a≤b )与x 轴最多有一个交点.以下四个结论: ①abc >0;②该抛物线的对称轴在x=﹣1的右侧; ③关于x 的方程ax 2+bx+c+1=0无实数根; ④a b cb++≥2. 其中,正确结论的个数为( ) A .1个B .2个C .3个D .4个3.(2019·四川中考真题)如图,在正方形ABCD 的对角线AC 上取一点E .使得15CDE ︒∠=,连接BE 并延长BE 到F ,使CF CB =,BF 与CD 相交于点H ,若1AB =,有下列结论:①BE DE =;②CE DE EF +=;③14DEC S ∆=-;④1DH HC =-.则其中正确的结论有( )A .①②③B .①②③④C .①②④D .①③④4.(2019·广西中考真题)如图,E 是正方形ABCD 的边AB 的中点,点H 与B 关于CE 对称,EH 的延长线与AD 交于点F ,与CD 的延长线交于点N ,点P 在AD 的延长线上,作正方形DPMN ,连接CP ,记正方形ABCD ,DPMN 的面积分别为1S ,2S ,则下列结论错误的是( )A .212S S CP +=B .2AF FD =C .4CD PD = D .3cos 5HCD ∠=5.(2019·山东中考真题)如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,AE 、AF 分别交BD 于M 、N ,连按EN 、EF 、有以下结论:①AN =EN ,②当AE =AF 时,BEEC=2,③BE+DF =EF ,④存在点E 、F ,使得NF >DF ,其中正确的个数是( )A .1B .2C .3D .46.(2019·黑龙江中考真题)如图,在正方形ABCD 中,E F 、是对角线AC 上的两个动点,P 是正方形四边上的任意一点,且42AB EF =,=,设AE x =.当PEF 是等腰三角形时,下列关于P 点个数的说法中,一定正确的是( )①当0x =(即E A 、两点重合)时,P 点有6个②当02x <<时,P 点最多有9个③当P 点有8个时,x =﹣2④当PEF 是等边三角形时,P 点有4个 A .①③B .①④C .②④D .②③7.(2019·广东中考真题)如图,正方形ABCD 的边长为4,延长CB 至E 使2EB =,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①ANH GNF ∆≅∆;②AFN HFG ∠=∠;③2FN NK =;④:1:4AFN ADM S S ∆∆=.其中正确的结论有( )A .1个B .2个C .3个D .4个8.(2019·湖北中考真题)如图所示,已知二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴交于点C ,OA OC =,对称轴为直线1x =,则下列结论:①0abc <;②11024a b c ++=;③10ac b -+=;④2c +是关于x 的一元二次方程20ax bx c ++=的一个根.其中正确的有( )A .1个B .2个C .3个D .4个9.(2018·黑龙江中考真题)抛物线()2y ax bx c a 0=++≠的部分图象如图所示,与x 轴的一个交点坐标为()4,0,抛物线的对称轴是x 1.=下列结论中:abc 0>①;2a b 0+=②;③方程2ax bx c 3++=有两个不相等的实数根;④抛物线与x 轴的另一个交点坐标为()2,0-;⑤若点()A m,n 在该抛物线上,则2am bm c a b c ++≤++. 其中正确的有( )A .5个B .4个C .3个D .2个10.(2018·黑龙江中考真题)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC 、BD 于点E 、P ,连接OE ,∠ADC=60°,AB=12BC=1,则下列结论:①∠CAD=30°②③S 平行四边形ABCD =AB•AC ④OE=14AD ⑤S △APO =12,正确的个数是( )A .2B .3C .4D .511.(2018·山东中考真题)如图,在矩形ABCD 中,∠ADC 的平分线与AB 交于E ,点F 在DE 的延长线上,∠BFE=90°,连接AF 、CF ,CF 与AB 交于G ,有以下结论: ①AE=BC ②AF=CF ③BF 2=FG•FC ④EG•AE=BG•AB其中正确的个数是( )A .1B .2C .3D .412.(2019·四川中考真题)二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-,对称轴为直线x =1,下列结论:①0abc <;②b c <;③30a c +=;④当0y >时,13x -<<其中正确的结论有( )A .1个B .2个C .3个D .4个13.(2019·山东中考真题)如图,正方形ABCD ,点F 在边AB 上,且:1:2AF FB =,CE DF ⊥,垂足为M ,且交AD 于点E ,AC 与DF 交于点N ,延长CB 至G ,使12BG BC =,连接CM .有如下结论:①DE AF =;②4AN AB =;③ADF GMF ∠=∠;④:1:8ANF CNFB S S ∆=四边形.上述结论中,所有正确结论的序号是( )A .①②B .①③C .①②③D .②③④14.(2018·湖北中考真题)如图,在四边形ABCD 中,AB=AD=5,BC=CD 且BC >AB ,BD=8.给出以下判断:①AC 垂直平分BD ;②四边形ABCD 的面积S=AC•BD ;③顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形; ④当A ,B ,C ,D 四点在同一个圆上时,该圆的半径为256; ⑤将△ABD 沿直线BD 对折,点A 落在点E 处,连接BE 并延长交CD 于点F ,当BF ⊥CD 时,点F 到直线AB 的距离为678125. 其中正确的是_____.(写出所有正确判断的序号)15.(2019·广西中考真题)我们定义一种新函数:形如2y ax bx c =++(0a ≠,且240b a ->)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x 2-2x -3|223y x x =--的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为()1,0-,()3,0和()0,3;②图象具有对称性,对称轴是直线1x =;③当11x -≤≤或3x ≥时,函数值y 随x 值的增大而增大;④当1x =-或3x =时,函数的最小值是0;⑤当1x =时,函数的最大值是4.其中正确结论的个数是______.16.(2018·新疆中考真题)如图,已知抛物线y 1=﹣x 2+4x 和直线y 2=2x .我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2,若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M=y 1=y 2.①当x >2时,M=y 2;②当x <0时,M 随x 的增大而增大;③使得M 大于4的x 的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).17.(2018·黑龙江中考真题)如图,抛物线y=ax 2+bx+c (a≠0)的对称轴为直线x=﹣1,下列结论中: ①abc <0;②9a ﹣3b+c <0;③b 2﹣4ac >0;④a >b , 正确的结论是_____(只填序号)18.(2019·湖南中考真题)如图,函数ky x=(k 为常数,k >0)的图象与过原点的O 的直线相交于A ,B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①△ODM 与△OCA 的面积相等;②若BM ⊥AM于点M ,则∠MBA =30°;③若M 点的横坐标为1,△OAM 为等边三角形,则2k =④若25MF MB =,则MD =2MA .其中正确的结论的序号是_______.19.(2019·辽宁中考真题)如图,点P 是正方形ABCD 的对角线BD 延长线上的一点,连接PA ,过点P 作PE ⊥PA 交BC 的延长线于点E ,过点E 作EF ⊥BP 于点F ,则下列结论中:①PA =PE ;②CE PD ;③BF ﹣PD =12BD ;④S △PEF =S △ADP ,正确的是___(填写所有正确结论的序号)20.(2019·内蒙古中考真题)如图,在Rt ABC ∆中,90,3,ABC BC D ︒∠==为斜边AC 的中点,连接BD ,点F 是BC 边上的动点(不与点B C 、重合),过点B 作BE BD ⊥交DF 延长线交于点E ,连接CE ,下列结论:①若BF CF =,则222CE AD DE +=;②若,4BDE BAC AB ∠=∠=,则158CE =; ③ABD ∆和CBE ∆一定相似;④若30,90A BCE ︒︒∠=∠=,则DE =其中正确的是_____.(填写所有正确结论的序号)21.(2018·湖北中考真题)如图,已知∠MON=120°,点A ,B 分别在OM ,ON 上,且OA=OB=a ,将射线OM 绕点O 逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A 关于直线OM′的对称点C ,画直线BC 交OM′于点D ,连接AC ,AD ,有下列结论:①AD=CD ;②∠ACD 的大小随着α的变化而变化;③当α=30°时,四边形OADC 为菱形;④△ACD a 2;其中正确的是_____.(把你认为正确结论的序号都填上).。
中考数学几何图形专题训练50题含答案

中考数学几何图形专题训练50题含答案(单选、填空、解答题)一、单选题1.下列各图经过折叠后不能围成一个正方体的是()A.B.C.D.【答案】C【分析】根据平面图形的折叠、正方体的展开图的特点即可得出答案.【详解】解:A.是正方体的展开图,经过折叠后能围成一个正方体,故A不符合题意;B.是正方体的展开图,经过折叠后能围成一个正方体,故B不符合题意;C.不是正方体的展开图,经过折叠后不能围成一个正方体,故C符合题意;D.是正方体的展开图,经过折叠后能围成一个正方体,故D不符合题意.故选:C.【点睛】本题主要考查了展开图折叠成几何体,属于基础题,要充分展开想象,注意培养自己的立体感.2.一副三角板按如图所示的方式摆放,则∠1补角的度数为()A.45︒B.135︒C.75︒D.165︒【答案】D【分析】根据题意得出∠1=15°,再求∠1补角即可.∠=︒-︒=︒【详解】由图形可得1453015∠∠1补角的度数为18015165︒-︒=︒故选:D.【点睛】本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.3.用一个放大10倍的放大镜看一个10°的角,这个角是()A .100°B .10°C .110°D .170° 【答案】B 【分析】根据放大镜看一个角只会改变边的长度,不会改变角本身的度数即可求解.【详解】解:用放大镜看一个角,不会改变角本身的度数,故选:B .【点睛】本题考查角的大小比较,放大镜看到的角不会改变角本身的度数. 4.如果点C 在线段AB 所在直线上,则下列各式中AC AB =,AC CB =,2AB AC =,AC CB AB +=,能说明C 是线段AB 中点的有( )A .1个B .2个C .3个D .4个 【答案】A【分析】根据线段中点的定义,能判断AC=CB 的条件都能说明C 是线段AB 中点.【详解】根据分析得:若AC=AB ,则不能判断C 是线段AB 中点;若AC=CB ,则可判断C 是线段AB 中点;若AB=2AC ,则不能判断C 是线段AB 中点;若AC+CB=AB ,则不能判断C 是线段AB 中点;综上可得共有1个正确.故选A.【点睛】本题考查线段中点的定义,解题的关键是掌握线段中点的定义.5.如图,已知BD CF =,B F ∠=∠,//AC DE 下列结论不正确的是( )A .FD BC =B .EF CB =C .//EF ABD .AE ∠=∠【答案】B 【分析】根据全等三角形的判定和性质、平行线的判定和性质以及线段的和差进行判断即可得解.【详解】解:∠//AC DE∠ACB EDF ∠=∠∠BD CF =∠BD CD CF CD +=+∠BC DF =∠在ABC 和EFD △中B F BC FDACB EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∠()ABC EFD ASA ≌∠A E ∠=∠故说法D 正确;∠B F ∠=∠∠//EF AB故说法C 正确;∠BD CF =∠BD CD CF CD +=+∠BC DF =故说A 正确,说法B 错误.故选:B【点睛】本题考查了全等三角形的判定和性质、平行线的判定和性质以及线段的和差,熟悉各知识点是解题的关键.6.如图,OC 平分AOD ∠,30DOC AOB ∠-∠=︒,有下列结论:∠30BOC ∠=︒;∠BOC ∠的度数无法确定;∠若20AOB ∠=︒,则100AOD ∠=︒;∠若60AOB ∠=︒,则A ,O ,D 三点在同一条直线上.其中,正确的有( )A .1个B .2个C .3个D .4个【答案】C 【分析】根据角平分线定义得出DOC AOC ∠=∠,根据30DOC AOB ∠-∠=︒,即可求出30BOC ∠=︒,判断出∠正确,∠错误;根据30BOC ∠=︒,20AOB ∠=︒,求出50AOC AOB BOC ∠=∠+∠=︒,根据角平分线定义求出100AOD ∠=︒,即可判断∠正确;求出180AOD ∠=︒,即可判断∠正确.【详解】解:∠OC 平分AOD ∠,∠DOC AOC ∠=∠,∠30DOC AOB AOC AOB BOC ∠-∠=∠-∠=∠=︒,故∠正确,∠错误.由∠知,30BOC ∠=︒,∠50AOC AOB BOC ∠=∠+∠=︒,∠2100AOD AOC ∠=∠=︒,故∠正确.∠30BOC ∠=︒,60AOB ∠=︒,∠90AOC BOC AOB ∠=∠+∠=︒,∠2180AOD AOC ∠=∠=︒,∠A 、O 、D 三点在一条直线上,故∠正确.综上,正确的为∠∠∠,共3个,故C 正确.故选:C .【点睛】本题主要考查了角平分线的定义,几何图形中角的计算,解题的关键是根据角平分线的定义和已知条件,求出30BOC ∠=︒.7.如图,120AOB ∠=︒,13AOC BOC ∠=∠,OM 平分BOC ∠,则AOM ∠的度数为( )A .45︒B .65︒C .75︒D .80︒故选C.【点睛】本题考查了角平分线定义,角的有关计算的应用,解此题的关键是求出∠AOC和∠COM的大小.8.如图,这是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“爱”相对的面上的汉字是()A.西B.电C.附D.中【答案】C【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“电”是相对面,“爱”与“附”是相对面,“西”与“中”是相对面.故选:C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.如果A、B、C三点在同一直线上,线段AB=3cm,BC=2cm,那么A、C两点之间的距离为()A.1cmB.5cmC.1cm或5cmD.无法确定【答案】C【详解】试题解析:由题意可知,C点分两种情况,∠C点在线段AB延长线上,如图1,AC=AB+BC=3+2=5cm;∠C点在线段AB上,如图2,AC=AB-BC=3-2=1cm.综合∠∠A、C两点之间的距离为1cm或5cm.故选C.【点睛】由题意可知,点C分两种情况,画出线段图,结合已知数据即可求出结论.本题考查了两点间的距离,解题的关键是根据题意画出线段图,找准线段间的关系.10.如图,AD平分∠BAC,点E在AB上,EF∥AC交AD于点G,若∠DGF=40°,则∠BEF的度数为()A.20°B.40°C.50°D.80°【答案】D【分析】由EF∥AC,∠DGF=40°,得出∠DAC=∠DGF=40°,∠BEF=∠BAC,又AD 平分∠BAC,则∠BEF=∠BAC=2∠DAC=80°.【详解】解:∠EF∥AC,∠DGF=40°,∠∠DAC=∠DGF=40°,∠BEF=∠BAC,∠AD平分∠BAC,∠∠BEF=∠BAC=2∠DAC=80°.故选:D.【点睛】本题主要考查平行线的性质以及角平分线的定义,熟练掌握平行线的性质以及角平分线的定义是解决本题的关键.11.若钟表分针走30分钟,则钟表的时针转()A.5︒B.15︒C.30︒D.120︒【答案】B【分析】根据“整个钟面12小时,时针每小时转30︒”即可得..将一副直角三角尺按如图所示的不同方式摆放,则图中与不一定...相等的是( )A .B .C .D .【答案】B 【分析】A 选项由图形即直角三角形的性质即可判断;B 选项由两角互余即可的判断;C 选项由对顶角相等即可判断;D 选项由同角的余角相等即可判断.【详解】A 选项中,90,45αβα∠+∠=︒∠=︒,45βα∴∠=∠=︒,故不符合题意;B 选项中,90αβ∠+∠=︒,则α∠与∠β不一定相等,故符合题意;C 选项中,,αβ∠∠是对顶角,αβ∴∠=∠,故不符合题意;D 选项如图,190,190αβ∠+∠=︒∠+∠=︒,αβ∴∠=∠,故不符合题意;故选:B .【点睛】本题考查了对顶角相等,余角,同角的余角相等等知识点,熟练掌握这些知识是解题的关键.13.如下图的正方体,选项中哪一个图形是它的展开图( )A .B .C .D .【答案】A【分析】根据正方体相邻面及其表面展开图的特点解答即可.【详解】解:A 、展开图中,其三个相邻面上的线段位置,符合题意,B 、展开图中,其中有两个有线段的两个面相对,不符合题意;C 、展开图中,其中有两个面上的线段平行,不符合题意;D 、展开图中,其中有两个有线段的两个面相对,不符合题意,故选:A .【点睛】本题考查正方体的展开图,弄清正方体展开图中哪些面相邻,哪些面相对是解答的关键.14.把立方体的六个面分别涂上六种不同的颜色,并画出朵数不等的花,各面上的颜色与花朵的朵数情况列表如下:现将上述大小相同,颜色、花朵分布完全样的四个立方体拼成一个水平放置的长方体,如图所示,那么长方体的下底面共有花朵数是( )A .11B .13C .15D .17 【答案】D【分析】由图中显示的规律,可分别求出,右边正方体的下边为白色,左边为绿色,后面为紫色,按此规律,可依次得出右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,即可求出下底面的花朵数.【详解】解:由题意可得,右一的立方体的下侧为白色,右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,那么长方体的下底面共有花数4+6+2+5=17朵.故长方体的下底面共有17朵花.故选D .【点睛】本题考查生活中的立体图形与平面图形,同时考查了学生的空间思维能力.注意正方体的空间图形,从相对面入手,分析及解答问题.15.如图,在四边形ABCD 中,90A BCD ∠=∠=︒,BC DC =,CE AD ⊥,垂足为E ,若3AE CE ==.则四边形ABCD 的面积为( )A .9B .12C .272D .无法求出 【答案】A 【分析】过点C 作CF 垂直AB 的延长线于点F ,先证明四边形AFCE 是矩形,再证明FCB ECD △≌△,进而将四边形ABCD 的面积转化为矩形AFCE 的面积求解即可.【详解】解:如图,过点C 作CF 垂直AB 的延长线于点F ,∠90A BCD ∠=∠=︒, CE AD ⊥,CF AF ⊥,∠四边形AFCE 是矩形,90==︒CED F ∠∠,∠90FCE FCB BCE ∠=∠+∠=︒,3CF AE CE === ,∠90BCD BCE DCE ∠=∠+∠=︒,∠FCB ECD ∠=∠,在FCB 和ECD 中,CED F FCB ECD BC DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠FCB ECD △≌△,∠==339ABCD AFCE AE CE S S ⋅=⨯=四边形矩形,故选:A .【点睛】本题主要考查了全等三角形的判定及性质、同角的余角相等,垂直定义以及矩形的判定及性质,熟练掌握全等三角形的判定及性质是解题的关键.16.如图,在ABC 中,以A 为圆心,适当长为半径作弧,分别交AB 、AC 于点D 、E ,再分别以D 、E 为圆心,相同长为半径作弧,分别交DB、EC 于点F 、G ,连接EF 、DG ,交于点H ,连接AH 并延长交BC 于点I ,则线段AI 是( )A .ABC 的高B .ABC 的中线 C .ABC 的角平分线D .以上都不对【答案】C 【分析】根据题意利用SAS 可证AFE AGD △≌△,即可得EG DF =,再利用AAS 可证EHG DHF ≌△△,即可得EH DH =,用SSS 可证明AHE AHD △≌△,即可得EAH DAH ∠=∠,即可得.【详解】解:由作图可知,AE AD =,EG DF =,∠AE EG AD DF +=+,即AG AF =,在AFE △和AGD △中,AE AD EAF DAG AF AG =⎧⎪∠=∠⎨⎪=⎩,∠AFE AGD △≌△(SAS ),∠AFE AGD ∠=∠,在EHG 和DHF △中,EHG DHF EGH DFH EG DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠EHG DHF ≌△△(AAS ),∠EH DH =在AHE 和AHD 中,AE AD AH AH EH DH =⎧⎪=⎨⎪=⎩,∠AHE AHD △≌△(SSS ),∠EAH DAH ∠=∠,∠AI 是ABC 的角平分线.故选:C .【点睛】本题考查了全等三角形的判定与性质,角平分线的判定,解题的关键是掌握全等三角形的判定与性质.17.如图:∠AOB :∠BOC :∠COD =2:3:4,射线OM 、ON ,分别平分∠AOB 与∠COD ,又∠MON =84°,则∠AOB 为( )A .28°B .30°C .32°D .38°【答案】A 【分析】首先设∠AOB =2x °,则∠BOC =3x °,∠COD =4x °,然后利用角的和差关系和角平分线的定义列出方程,即可求出∠AOB 的度数.【详解】解:设∠AOB =2x °,则∠BOC =3x °,∠COD =4x °,∠射线OM 、ON 分别平分∠AOB 与∠COD ,18.如图,在ABCD 中,DAB ∠的平分线AE 交CD 于E ,6AB =,4BC =,则EC的长为( )A .2B .2.5C .3D .3.5【答案】A 【分析】根据平行四边形的性质及AE 为角平分线可知:BC=AD=DE=4,又有CD=AB=6,可求EC 的长.【详解】解:根据平行四边形的对边相等,得:CD=AB=6,AD=BC=4.根据平行四边形的对边平行,得:CD∠AB ,∠∠AED=∠BAE ,又∠DAE=∠BAE ,∠∠DAE=∠AED .∠ED=AD=4,∠EC=CD-ED=6-4=2.故选:A .【点睛】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.19.如图,直线EO∠CD ,垂足为点O ,AB 平分∠EOD ,则∠BOD 的度数为( )A.120°B.130°C.135°D.140°【答案】C【详解】试题分析:根据直线EO∠CD,可知∠EOD=90°,根据AB平分∠EOD,可知∠AOD=45°,再根据邻补角的定义即可求出∠∠BOD=180°-45°=135°考点:垂线、角平分线的性质、邻补角定义.二、填空题20.已知:∠AOC=146°,OD为∠AOC的平分线,∠AOB=90°,∠BOD的度数_____.21.2022年10月16日,党的第二十次全国代表大会在北京召开,这是一次在全党全国各族人民迈上全面建设社会主义现代化国家新征程、向第二个百年奋斗目标进军的关键时刻召开的十分重要的大会.如图是一个正方体的展开图,请你判断,正方体上与“荣”字相对的面上的汉字是_______.【答案】祖【分析】根据正方体展开图中相对的面总是隔着一个面的特征解题即可.【详解】解:根据正方体展开图中相对的面总是隔着一个面的特征可得荣字相对的面上的汉字为“祖”,故答案为:祖.【点睛】本题主要考查正方体展开图的特征,能够根据特征得出结论是解题关键.22.用一个平面截圆锥,可以得到________、________及类似拱形形状.如图:【答案】圆等腰三角形【解析】略23.如图,要用一张长方形的纸片折成一个纸袋,两条折痕的夹角为80°(即∠POQ=80°),就可以做成一个纸袋,那么粘胶水部分所构成的这个角∠A'OB'=_____.【答案】20°【分析】根据折叠性质得出∠POA=∠POA′,∠QOB=∠QOB′,根据∠AOB为平角,∠POA+∠QOB=180°-∠POQ=100°,再利用∠A′OB′=∠POA′+∠QOB′-∠POQ=20°即可.【详解】解:∠OP为折痕,OQ为折痕,∠∠POA=∠POA′,∠QOB=∠QOB′,∠∠AOB为平角∠∠POA+∠QOB=180°-∠POQ=100°,∠∠A′OB′=∠POA′+∠QOB′-∠POQ=∠POA+∠QOB-∠POQ=100°-80°=20°.故答案为:20°.【点睛】本题考查折叠性质,平角,角的和差,掌握折叠性质,平角,角的和差是解题关键.24.下午三点半时,时针与分针所夹的锐角的大小为________.【答案】75︒##75度【分析】先求出时钟上,每一个大格的度数为30︒,再根据下午三点半时,时针与分针所夹的锐角为2.5个大格即可得.︒÷=︒,【详解】解:时钟上,共有12个大格,每一个大格的度数为3601230因为下午三点半时,时针与分针所夹的锐角为2.5个大格,⨯︒=︒,所以下午三点半时,时针与分针所夹的锐角的大小为2.53075故答案为:75︒.【点睛】本题考查了钟面角,熟练掌握时钟上,每一个大格的度数为30︒是解题关键.25.点C是线段AB上的一点,2=,点M、N分别是线段AC、BC的中点,BC ACMN BC等于_________.那么:26.已知∠a=50°18′,则∠a的余角是________°________′.【答案】3942【分析】互余的概念:和为90度的两个角互为余角.用90°减去一个角的余角就等于这个角的度数.【详解】根据余角的定义,知∠A的余角是90°﹣50°18'=39°42'.故答案为39,42.【点睛】本题考查了余角和角度的计算,关键是记住互为余角的两个角的和为90度.27.在一个圆形时钟的表面,OA 表示秒针,OB 表示分针(O 为两针的旋转中心)若现在时间恰好是12点整,则经过__________秒钟后,∠OAB 的面积第一次达到最大. 【答案】151559##9005928.如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,COB ∠为100︒,则AOE ∠=___________度识是解题的关键.29.小王从家出发向南偏东30°的方向走了100米到达小军家,此时小王家在小军家的_________方向. 【答案】北偏西30︒【分析】根据方向角的定义作出示意图,根据图形即可解答.【详解】解:如图所示,由题意知∠BAC =30°,则在∠ABC 中,∠BAC +∠ACB =90°,∠∠ACB =60°.又∠∠ACB +∠ACD =90°,∠∠ACD =30°,即小王家在小军家北偏西30°方向.故答案是:北偏西30°.【点睛】本题考查了方向角的定义,理解定义作出示意图是关键.30.如图所示,已知ABC 的周长为12,5BC =,在边AC 、AB 上有两个动点P 、Q ,它们同时从点A 分别向点C 、B 运动,速度分别为m 和n ,运动时间t 后,PC CB BQ ++=__________.【答案】()12m n t -+【分析】根据PC AC AP BQ AB AQ =-=-,,可得PC BQ AC AB AP AQ +=+--,进一步得到PC CB BQ ++,依此即可求解.【详解】解:PC AC AP BQ AB AQ =-=-,,()1257PC BQ AC AB AP AQ mt nt m n t ∴+=+--=---=-+,()()7512PC CB BQ m n t m n t ∴++=-++=-+.故答案为:()12m n t -+.【点睛】本题考查了列代数式,线段的和差关系,整式的加减运算,关键是得到PC BQ +的表达式.31.已知∠α=60°,则∠α的补角等于_______. 【答案】120°【分析】利用互为补角的两个角之和为180°,解题即可【详解】因为∠α=60°,所以∠α的补角是180°-60°=120°故填120°32.将三角尺按右图所示的方式放置在一张长方形纸片上,90EGF ∠=︒,30FEG ∠=︒,1130∠=︒,则BFG ∠的度数为___________.【答案】110°【分析】由长方形AD 与BC 平行,求出∠EFB ,由直角三角形求∠EFG ,再求两角的和即可.【详解】∠AD ∠BC ,∠∠1+∠EFB =180゜∠∠1=130゜∠∠EFB =180゜-130゜=50゜,∠∠EGF =90°,∠FEG =30°,∠∠EFG =180°-∠EGF -∠FEG =60°∠∠BFG =∠EFB +∠EFG =50°+60゜=110゜.故答案为:110゜.【点睛】本题考查角的度数问题,关键抓住平行线,同旁内角互补,三角形两锐角互余.33.若船A 在灯塔B 的北偏东30°方向上,则灯塔B 在船A 的_________方向上.【答案】南偏西30°【分析】本题画出A 、B 的位置,即分别以A 、B 为为原点,分别画出A 、B 的正北、正南、正西、正东方向,标出A 与B 的关系即可求解.【详解】从图中可以看出,B 在A 的南偏西30°.故答案为南偏西30°.【点睛】本题考查一个物体相对于另一物体的位置,注意这类题中“北偏东30°”的含义,是从正北方向开始,向东方向偏,偏角为30°.34.18°33′25″×3=_________.【答案】55°40′15″【分析】将度分秒分别乘以3后进位化简即可.【详解】1833253549975'''︒'"⨯==55°40′15″,故答案为:55°40′15″.【点睛】此题考查角度的计算,根据乘法法则进行计算,计算后每个单位满60向前一单位进一.35.如图,将一副三角板()90CAB DAE ∠=∠=︒按如图放置,则下列结论:∠13∠=∠;∠如果230∠=︒,则有//AC DE ;∠如果230∠=︒,则有//BC AD ;∠如果230∠=︒,必有4C ∠=∠.其中正确的有________.(填序号)【答案】∠∠∠【分析】根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.【详解】解:∠∠∠CAB=∠EAD=90°,∠∠1=∠CAB-∠2,∠3=∠EAD-∠2,∠∠1=∠3.∠∠正确.∠∠∠2=30°,∠∠1=90°-30°=60°,∠∠E=60°,∠∠1=∠E,∠AC∠DE.∠∠正确.∠∠∠2=30°,∠∠3=90°-30°=60°,∠∠B=45°,∠BC不平行于A D.∠∠错误.∠由∠得AC∠DE.∠∠4=∠C.∠∠正确.故答案为:∠∠∠.【点睛】此题主要考查学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.36.如图,OC是∠AOB的平分线,如果∠AOB=130°,∠BOD=24°48',那么∠COD=_____.【答案】40.2°【分析】由角平分线定义,求出∠BOC的度数,然后利用角的和差关系,即可得到答案.【详解】解:∠OC是∠AOB的平分线,∠AOB=130°,37.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.【答案】14 【分析】如图,作点A 关于CM 的对称点A ′,点B 关于DM 的对称点B ′,证明△A ′MB ′为等边三角形,即可解决问题.【详解】解:如图,作点A 关于CM 的对称点'A ,点B 关于DM 的对称点B'. 120CMD ∠=,60AMC DMB ∴∠+∠=,∴''60CMA DMB ∠+∠=,''60A MB ∴∠=,''MA MB =,''A MB ∴∆为等边三角形''''14CD CA A B B D CA AM BD ≤++=++=,CD ∴的最大值为14,故答案为14.【点睛】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题38.如图,在四边形ABCD 中,DAB ∠的角平分线与ABC ∠的外角平分线相交于点P ,且240D C ∠+∠=°,则P ∠=______.【答案】30︒##30度39.如图,在边长为2的菱形ABCD 中,60ABC ∠=︒,将BCD △沿直线BD 平移得到B C D ''',连接AC '、AD ',则AC AD ''+的最小值为________.ABC∠=由对称性可得:三、解答题∠,40.按要求补全图形并证明.如图,150∠=︒,OC垂直OB,OD平分AOCAOB∠.OE平分BOC(1)利用三角板依题意补全图形(2)求DOE∠的度数75【分析】(190,根据150,得出60,根据∠∠,即可得出EOC BOC30AOC=,4575.)解:补全图形,如图所示:90,150,60,AOC ,30AOC ∠, 45, 75.【点睛】本题主要考查了角平分线的定义,垂线的定义,解题的关键是数形结合,熟练掌握角平分线的定义.41.已知,,,AE GF BC GF EF DC EF AB ∥∥∥∥,猜想A ∠与C ∠的关系如何?并说明理由.解:因为,AE GF BC GF ∥∥(已知)所以AE BC ∥(______)所以______180(______)A ∠+=︒;同理,______180C ∠+=︒;所以______(______).【答案】平行于同一条直线的两直线平行;∠B ;两直线平行,同旁内角互补;∠A =∠C ;同角的补角相等或等式性质【分析】根据平行线的判定和性质以及同角的补角相等求解即可.【详解】解:因为AE GF ∥,BC GF ∥(已知)所以AE BC ∥(平行于同一条直线的两直线平行);所以∠A+∠B=180°(两直线平行,同旁内角互补);同理,∠C+∠B=180°;∠∠A=∠C(同角的补角相等或等式的性质).故答案为:平行于同一条直线的两直线平行;∠B;两直线平行,同旁内角互补;∠A =∠C;同角的补角相等或等式的性质.【点睛】本题主要考查了平行线的性质与判定,同角的补角相等,熟知平行线的性质与判定是解题的关键.42.如图,点B在线段AC上,点E在线段DF上,EC,AF,DB∠EC,下面写出了说明“∠C=∠D”的过程.说明:∠∠A=∠F(已知),∠DF∠.根据:∠∠DEC+∠C=180°.根据:∠DB∠EC(已知),∠∠DEC+∠=180°.根据:∠∠C=∠D.根据:.【答案】AC;内错角相等,两直线平行;两直线平行,同旁内角互补;D;两直线平行,同旁内角互补;同角的补角相等.【分析】根据平行线的性质与判定进行求解即可.【详解】说明:∠∠A=∠F(已知),∠DF∥AC.根据:内错角相等,两直线平行;∠∠DEC+∠C=180°.根据:两直线平行,同旁内角互补;∠DB∥EC(已知),∠∠DEC+∠D=180°.根据:两直线平行,同旁内角互补;∠∠C=∠D.根据:同角的补角相等.故答案为:AC;内错角相等,两直线平行;两直线平行,同旁内角互补;D;两直线平行,同旁内角互补;同角的补角相等.【点睛】本题主要考查了平行线的性质与判定,同角的补角相等,解题的关键在于能够熟练掌握相关知识进行求解.43.如图,O为直线AB上一点,∠BOC=α.(1)若α=40°,OD平分∠AOC,∠DOE=90°,如图(a)所示,求∠AOE的度数;(2)若∠AOD=13∠AOC,∠DOE=60°,如图(b)所示,请用α表示∠AOE的度数;(3)若∠AOD=1n∠AOC,∠DOE=180n︒(n≥2,且n为正整数),如图(c)所示,请用α和n表示∠AOE的度数(直接写出结果).44.如图,在△ABC中,AB∠BC,BE∠AC于E,AF平分∠BAC交BE于点F,DF∠BC.(1)试说明:BF=DF;(2)延长AF交BC于点G,试说明:BG=DF.【答案】(1)说明见解析;(2)说明见解析.【分析】(1)由角平分线的性质可得FE=FH,由“ASA”可证∠DEF∠∠BHF,可得BF=DF;(2)由等角的余角相等可得∠AFE=∠AGB=∠BFG,可得BF=BG=DF.【详解】解:(1)如图,延长DF交AB于H,延长AF交BC于G,∠AB∠BC,DF∠BC,∠DH∠AB,∠AF平分∠BAC,BE∠AC,DH∠AB,∠FE=FH,又∠∠DFE=∠BFH,∠DEF=∠BHF=90°,∠∠DEF∠∠BHF(ASA),∠BF=DF;(2)∠AF平分∠BAC,∠∠EAF=∠BAG,∠∠EAF+∠AFE=90°,∠BAG+∠AGB=90°,∠∠AFE=∠AGB,∠∠BFG=∠AGB,∠BF=BG,∠BG=DF.【点睛】本题考查了全等三角形的判定和性质,角平分线的性质,直角三角形的性质,灵活运用全等三角形的性质是本题的关键.45.如图,在Rt∠ABC中,∠ACB=90°,∠A=40°,∠ABC的外角∠CBD的平分线BE 交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.(3)若把直线FD绕点F旋转,直线DF和直线BE相交于点M,当DF和三角形ABC的一边平行时,请直接写出∠FME的度数.【答案】(1)65°(2)25°(3)65°或115°.【分析】(1)根据三角形外角的性质得出∠CBD的度数,再根据角平分线定义即可求得∠CBE的度数;(2)先根据三角形外角的性质得出∠CEB的度数,再根据平行线的性质求出∠F的度数;(3)根据题意分别画出图形,再利用平行线的性质解决.(1)解:∠Rt∠ABC中,∠ACB=90°,∠A=40°,∠∠CBD=∠ACB+∠A=130°,∠BE是∠CBD的角平分线,46.已知a=﹣(﹣2)2×3,b=|﹣9|+7,c=1115 53⎛⎫-⨯⎪⎝⎭.(1)求3[a﹣(b+c)]﹣2[b﹣(a﹣2c)]的值.(2)若A=2212119272⎛⎫⎛⎫⎛⎫-÷-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭×(1﹣3)2,B=|a|﹣b+c,试比较A和B的大小.(3)如图,已知点D是线段AC的中点,点B是线段DC上的一点,且CB:BD=2:3,若AB=ab12ccm,求BC的长.∠BC =2cm .【点睛】本题主要考查了有理数的混合运算以及与线段的中点有关的计算,熟练掌握运算法则是解答本题的关键.47.如图1,已知直线EF 与直线AB 交于点E ,直线EF 与直线CD 交于点F ,EM 平分AEF ∠交直线CD 于点M ,且FEM FME ∠=∠,点G 是射线MD 上的一个动点(不与点M F 、重合),EH 平分FEG ∠交直线CD 于点H ,过点H 作HN EM ∥交直线AB 于点N ,设EHN a ∠=,EGF β∠=.(1)求证:AB CD ∥;(2)当点G 在点F 的右侧时,∠依据题意在图1中补全图形;∠若70β=︒,则α=________°;(3)当点G 在运动过程中,α和β之间有怎样的数量关系?直接写出你的结论. AB CD ;根据题目要求画出图形即可;110︒=,再根据,再根据ME )分两种情况进行讨论:当点G 在点F2248.如图,上面的图形分别是下面哪个立体图形展开的形状,请你把有对应关系的平面图形与立体图形连接起来.【答案】见解析.【分析】根据常见的各种立体几何图形的展开图的特征即可得答案.【详解】∠三个长方形和两个三角形如图摆放是三棱柱的展开图,一个扇形和一个圆是圆锥如图摆放的展开图,六个长方形如图摆放是长方体的展开图,一个长方形和两个圆如图摆放是圆柱的展开图,∠连接如图:【点睛】本题考查常见立体几何图形的展开图,熟记各立体几何图形的展开图是解题关键.49.如图,把一个棱长8厘米的正方体的六个面都涂上红色,再将它的棱四等分,然后从等分点把正方体锯开.(1)能得到多少个棱长为2厘米的小正方体?(2)三个面有红色的小正方体有多少个?(3)两个面有红色的小正方体有多少个?(4)一个面有红色的小正方体有多少个?(5)有没有各面都没有红色的小正方体?如果有,那么有多少个?【答案】(1)64个(2)8个(3)24个(4)24个(5)有,8个【分析】(1)棱长是8cm的立方体体积512cm3,棱长为2cm的小正方体体积为8cm3,由此能求出共得到多少个棱长为2cm的小正方体;(2)三面涂色的小正方体是位于棱长是8cm的立方体的顶点处的小正方体,由此能求出三面涂色的小正方体有多少个;(3)二面涂色的小正方体是位于棱长是8cm的立方体的各边上的正方体,由此能求出二面涂色的小正方体有多少个;(4)一个面有红色的小正方体位于棱长是8cm的立方体的表面上既不是顶点又不是各边上的正方体,由此能求出二面涂色的小正方体有多少个;(5)六个面均没涂色的小正方体为棱长是8cm的立方体中心的正方体,由此能求出六个面均没有涂色的小正方体有多少个.【详解】(1)棱长是8cm的立方体体积为:8×8×8=512(cm3),棱长为2cm的小正方体体积为8cm3,∠共得到512÷8=64个小正方体.(2)三面涂色的小正方体是位于棱长是8cm的立方体的顶点处的小正方体,∠立方体共有8个顶点,∠三面涂色的小正方体有8个,(3)二面涂色的小正方体是位于棱长是8cm的立方体的各边上的正方体,∠立方体共有12条边,每边有2个正方体,∠二面涂色的小正方体有24个,(4)一面涂色的小正方体在棱长是8cm的立方体的表面上既不是顶点又不是各边上的正方体,∠立方体共有6个面,每个面有4个正方体,∠一面涂色的小正方体有24个,(5)六个面均没涂色的小正方体为棱长是8cm的立方体中心的正方体,共有64-8-24-24=8个,【点睛】本题考查大正方体分割成小正方体的计算,是中档题,解题时要认真审题,要熟练掌握正方体的结构特征.。
中考数学几何题总汇

1.三角形的有关概念知识考点:理解三角形三边的关系及三角形的主要线段(中线、高线、角平分线)和三角形的内角和定理。
关键是正确理解有关概念,学会概念和定理的运用。
应用方程知识求解几何题是这部分知识常用的方法。
【例1】已知一个三角形中两条边的长分别是a 、b ,且b a >,那么这个三角形的周长L 的取值范围是( ) A 、b L a 33>> B 、a L b a 2)(2>>+ C 、a b L b a +>>+262 D 、b a L b a 23+>>- 变式与思考:在△ABC 中,AC =5,中线AD =7,则AB 边的取值范围是( ) A 、1<AB <29 B 、4<AB <24 C 、5<AB <19 D 、9<AB <19 【例2】如图,已知△ABC 中,∠ABC =450,∠ACB =610,延长BC 至E ,使CE =AC ,延长CB 至D ,使DB =AB ,求∠DAE 的度数。
一、填空题:1、三角形的三边为1,a -1,9,则a 的取值范围是 。
2、已知三角形两边的长分别为1和2,如果第三边的长也是整数,那么第三边的长为 。
3、在△ABC 中,若∠C =2(∠A +∠B ),则∠C = 度。
4、如果△ABC 的一个外角等于1500,且∠B =∠C ,则∠A = 。
5、如果△ABC 中,∠ACB =900,CD 是AB 边上的高,则与∠A 相等的角是 。
6、如图,在△ABC 中,∠A =800,∠ABC 和∠ACB 的外角平分线相交于点D ,那么∠BDC = 。
7、如图,CE 平分∠ACB ,且CE ⊥DB ,∠DAB =∠DBA ,AC =18cm ,△CBD 的周长为28 cm ,则DB = 。
8、纸片△ABC 中,∠A =650,∠B =750,将纸片的一角折叠,使点C 落在△ABC 内(如图),若∠1=200,则∠2的度数为 。
填空压轴题(几何篇)-2023年中考数学压轴题专项训练(学生版)

2023年中考数学压轴题专项训练--填空压轴题(几何篇)一、压轴题速练1一.填空题(共40小题)1(2023•龙湾区二模)如图,在△ABC中,AB=13,BC=14,AC=15,点D是线段AC上任意一点,分别过点A、C作直线BD的垂线,垂足为E、F,AE=m,CF=n,则n+m的最大值是,最小值是.2(2023•湖北模拟)如图,正方形ABCD的对角线交于点O,AB=22,现有半径足够大的扇形OEF,∠EOF=90°,当扇形OEF绕点O转动时,扇形OEF和正方形ABCD重叠部分的面积为.3(2023•榆树市二模)如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD,连结EG并延长交BC于点M.若AB=13,EF=1,则GM的长为.4(2023•道外区二模)如图,在四边形ABCD中,AB=BC,∠A=∠ABC=90°,以CD为斜边作等腰直角△ECD,连接BE,若CD=213,BE=2,则AB=.5(2023•包河区二模)Rt△ABC中,点D是斜边AB的中点.(1)如图1,若DE ⊥BC 与E ,DF ⊥AC 于F ,DE =3,DF =4,则AB =;(2)如图2,若点P 是CD 的中点,且CP =52,则PA 2+PB 2=.6(2023•庐江县三模)如图,四边形ABCD 中,AB =AC =AD ,点M 、N 分别是BC 、CD 的中点,连接MN ,若∠DAM =105°,∠BAN =75°,若AM AN=3+12,则∠ANM =°.7(2023•中山市二模)如图,△ABC 与△BDE 均为等腰直角三角形,点A ,B ,E 在同一直线上,BD ⊥AE ,垂足为点B ,点C 在BD 上,AB =4,BE =10.将△ABC 沿BE 方向平移,当这两个三角形重叠部分的面积等于△ABC 面积的一半时,△ABC 平移的距离为.8(2023•新都区模拟)青朱出入图,是魏晋时期数学家刘徽根据“割补术”运用数形关系证明勾股定理的几何证明法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂.开方除之,即弦也.”,若图中DF =1,CF =2,则AE 的长为.9(2023•黄埔区一模)△ABC为等腰直角三角形,AB=AC=6,∠BAC=90°,动点D在边BC上运动.以A为直角顶点,在AD右侧作等腰直角三角形△ADE(如图).M为DE中点,N为BC三等分点,CN=13BC,连接MN,则线段MN的最小值为.10(2023•雁塔区校级模拟)如图,菱形ABCD的边长为5,将一个直角的顶点放置在菱形的中心O 处,此时直角的两边分别交边AD,CD于点E,F,当OE⊥AD时,OE的长为2,则EF的长是.11(2023•奉贤区二模)如果四边形有一组邻边相等,且一条对角线平分这组邻边的夹角,我们把这样的四边形称为“准菱形”.有一个四边形是“准菱形”,它相等的邻边长为2,这两条边的夹角是90°,那么这个“准菱形”的另外一组邻边的中点间的距离是 2 .12(2023•吕梁一模)如图,在正方形ABCD中,点P在对角线BD上,点E,F分别在边AB和BC 上,且∠EPF=45°,若CF=2DP=4,AE=12,则AB的长度为.13(2023•蚌埠二模)如图,点E为正方形ABCD的边CD上一点,以点A为圆心,AE长为半径画弧EF,交边BC于点F,已知正方形边长为1.(1)若∠DAE=15°,则DE的长为;(2)△AEF的面积为S的最大值是.14(2023•兰考县一模)如图,方形ABCD中,AB=8,点P为射线BC上任意一点(与点B、C不重合),连接AP,在AP的右侧作正方形APGH,连接AG,交射线CD于E,当ED长为2时,点BP的长为.15(2023•本溪一模)由4个形状相同,大小相等的菱形组成如图所示的网格,菱形的顶点称为格点,点A,B,C,D都在格点上,∠A=60°,则cos∠CDB的值为.16(2023•沂南县校级一模)如图,矩形ABCD中,AC、BD相交于点O,过点B作BF⊥AC交CD 于点F,交AC与点M,过点D作DE∥BF交AB于点E,交AC于点N,连接FN、EM,则下列结论:①DN=BM;②EM∥FN;③AE=FC;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的个数是.17(2023•琼海一模)如图,菱形ABCD,AE⊥BC,点E为垂足,点F为AE的中点,连接BF并延长交AD于点G,连接CG,CE=2,CG=211,则DG=,AG=,AF=.18(2023•镇江一模)如图,在矩形ABCD中,AB=6,BC=8,△BEF的顶点E在对角线AC上运动,且∠BFE=90°,∠EBF=∠BAC,连接AF,则AF的最小值为.19(2023•泉州模拟)如图,在菱形ABCD 中,∠A =60°,点E 在边AD 上,以BE 为边在菱形ABCD 的内部作等边三角形BEF ,若∠DEF =α,∠EBD =β,则α与β之间的数量关系可用等式表示为.20(2023•市南区一模)如图,正方形ABCD 中,E 、F 分别为BC 、CD 边上的点,∠EAF =45°,则下列结论中正确的有.(填序号)①BE +DF =EF ;②tan ∠AMD =CD DF; ③BM 2+DN 2=MN 2;④若EF =1.5,S △AEF =3,则.S 正方形ABCD =4.21(2023•大连一模)学习菱形时,我们从它的边、角和对角线等方面进行研究,可以发现并证明:菱形的每一条对角线平分一组对角.小明参考平行四边形、矩形判定方法的研究过程,得出下面的猜想:①一条对角线平分一组对角的四边形是菱形;②每一条对角线平分一组对角的四边形是菱形;③一条对角线平分一组对角的平行四边形是菱形.其中正确的是(填序号,填写一个即可).22(2023•石景山区一模)如图,在菱形ABCD 中,点E ,F 分别在BC ,AD 上,BE =DF .只需添加一个条件即可证明四边形AECF 是矩形,这个条件可以是(写出一个即可).23(2023•河东区一模)已知,如图,已知菱形ABCD 的边长为6,∠ABC =60°,点E ,F 分别在AB ,CB 的延长线上,且BE =BF =13AB ,G 是DF 的中点,连接GE ,则GE 的长是.24(2023•合肥模拟)如图,点P在正方形ABCD内,∠BPC=135°,连接PA、PB、PC、PD.(1)若PA=AB,则∠CPD=;(2)若PB=2,PC=3,则PD的长为.25(2023•鄞州区一模)如图,Rt△ABC中,∠C=90°,AC=BC=8,作正方形CDEF,其中顶点E 在边AB上.(1)若正方形CDEF的边长为26,则线段AE的长是;(2)若点D到AB的距离是2,则正方形CDEF的边长是.26(2023•郓城县校级模拟)如图,在平行四边形ABCD中,对角线AC、BD交于点O.点M是BC 边的中点,连接AM、OM,作CF∥AM.已知OC平分∠BCF,OB平分∠AOM,若BD=32,则sin∠BAM的值为.27(2023•三原县二模)如图,点M是▱ABCD内一点,连接MA,MB,MC,MD,过点A作AP∥BM,过点D作DP∥CM,AP与DP交于点P,若四边形AMDP的面积为6,则▱ABCD的面积为.28(2023•和平区二模)如图,已知正方形ABCD的边长为4,点E为边BC上一点,BE=3,在AE的右侧,以AE为边作正方形AEFG,H为BG的中点,则AH的长等于.29(2023•鼓楼区校级模拟)如图,在矩形ABCD中,AD=3,AB=4,B是边AB上一点,△BCE与△FCE关于直线CE对称,连接BF并延长交AD于点G,过点F作FH⊥AD,垂足为点H,设BE=a,若点H为AG的中点,则BE的长为.30(2023•呼和浩特一模)如图在菱形ABCD中,O为对角线AC与BD的交点,点P为边AB上的任一点(不与A、B重合),过点P分别作PM⊥AC,PN⊥BD,M、N为垂足,则可以判断四边形MPNO 的形状为.若菱形的边长为a,∠ADC=120°,则MN的最小值为.(用含a的式子表示)31(2023•洛阳一模)在扇形OAB中,∠AOB=60°,点C是半径OA上一点,且OC=6,将线段OC 沿OB方向平移,当平移距离是6时,点C的对应点C'恰好落在弧AB上,则图中阴影部分的面积为.32(2023•临渭区二模)如图,正六边形纸片ABCDEF的边长为6cm,从这个正六边形纸片上剪出一个扇形(图中阴影部分),则这个扇形的面积为cm2.(结果保留π)33(2023•桂林二模)如图,在Rt△ABC中,∠C=90°,AB=10,BC=6,半径为1的⊙O在Rt△ABC内移动,当⊙O与∠A的两边都相切时,圆心O到点B的距离为2 .34(2023•万州区模拟)如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,以点B为圆心,AB为半径作圆弧交CB的延长线于点D,以点A为圆心,AC为半径作圆弧交AD于点E.则图中阴影部分的面积为.35(2023•九龙坡区校级模拟)如图,AC、AD是⊙O中关于直径AB对称的两条弦,以弦AC、AD 为折线将弧AC、弧AD折叠后过圆心O,若⊙O的半径r=4,则圆中阴影部分的面积为.36(2023•烟台一模)如图,GC,GB是⊙O的切线,AB是⊙O的直径,延长GC,与BA的延长线交于点E,过点C作弦CD∥AB,连接DO并延长与圆交于点F,连接CF,若AE=2,CE=4,则CD的长度为.37(2023•历下区二模)如图,已知扇形AOB的半径OA=2,∠AOB=120°将扇形AOB绕点A顺时针旋转30°得到扇形AO′B′,则图中阴影部分的面积是.38(2023•邓州市一模)如图,在扇形AOB中,∠AOB=60°,OA=3,半径OC平分AB,点D为半径OA中点,点E为半径OC上一动点,当AE+DE取得最小值时,由AC,AE,CE围成的阴影部分的面积为.39(2023•龙口市二模)如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB 为直径的圆经过点C,D,则cos∠ADC的值为.40(2023•渝中区校级二模)如图,扇形纸片AOB的半径为2,沿AB折叠扇形纸片,点O恰好落在AB上的点C处,图中阴影部分的面积为.。
初中数学几何选择填空难题及答案

《几何》选择填空姓名:一、【勾股定理】1、如图,直角梯形ABCD 中,AD ∥BC ,∠ADC =∠BAC =90°,AB =2,CD =3,E 是BC 的中点,则DE 的长为7 .【解】等量迁移。
直角三角形中线性质,勾股定理2、如图,Rt △ABC 中,∠ABC =90°,DE 垂直平分AC ,垂足为O ,AD ∥BC ,且AB =3,BC =4,则AD 的长为825.【解】AE=CE=AD 设AE= x , 222AE BE AB =+ ∴222)4(3x x =-+ ∴825=x 3、两张大小相同的纸片,每张都分成7个大小相同的矩形,如图放置,重合的顶点记作A ,顶点C 在另一张纸的分隔线上,若BC =28,则AB 的长是_______1414_____.4、如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,CE =5,F 为DE 的中点.若E DCBAAB C△CEF的周长为18,则OF的长为(D)A.3 B.4 C.D.【解】直角三角形的性质,勾股定理,三角形中位线定理。
∵CE=5,△CEF的周长为18,∴CF+EF=18﹣5=13.∵F为DE的中点,∴DF=EF.∵∠BCD=90°,∴CF=DE,∴EF=CF=DE=6.5,∴DE=2EF=13,∴CD=.∵四边形ABCD是正方形,∴BC=CD=12,O为BD的中点,∴OF是△BDE的中位线,∴OF=(BC﹣CE)=(12﹣5)=.5、如图,在正方形ABCD中,AB=2,延长AB至点E,使得BE=1,EF⊥AE,EF=AE.分别连接AF,26CF,M为CF的中点,则AM的长为2【解】连接AC,∵四边形ABCD是正方形,∴∠BAC=45°.∵EF⊥AE,EF=AE,∴△AEF是等腰直角三角形,∴∠EAF=45°,∴∠CAF=90°.∵AB=BC=2,∴AC==2.∵AE=EF=AB+BE=2+1=3,∴AF==3,∴CF===.∵M为CF的中点,∴AM=CF=.6、如图,在矩形ABCD 中,AB =3,BC =4,点E 是AD 上一个动点,把△BAE 沿BE 向矩形内部折叠,当点A 的对应点A 1恰落在∠BCD 的平分线上时,CA 1的长为 122±【解】设FC =x , 则x FC F A ==1, x CA 21=,在直角BF A 1∆中:22121BF F A B A +=∴ 222)4(3x x +-= ∴ 222±=x ∴ 12221±==x CA二、【对折问题】1、如图,在R t △ABC 中,∠ACB =90°,∠A <∠B ,CM 是斜边AB 的中线,将△ACM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,则∠A = 30 °【解】直角三角形中线性质。
中考数学填空题专项练习知识点

一、选择题1.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .2.下列图形中既是轴对称图形又是中心对称图形的是( ) A .正三角形 B .平行四边形 C .正五边形 D .正六边形 3.把抛物线y =2(x ﹣3)2+k 向下平移1个单位长度后经过点(2,3),则k 的值是( ) A .2B .1C .0D .﹣14.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .45.如图,在Rt △ABC 中,∠ACB=90°,AC=BC=1,将绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( )A .6πB .3π C .2π-12D .126.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足等式( )A .16(1+2x)=25B .25(1-2x)=16C .25(1-x)²=16D .16(1+x)²=257.已知m 、n 是方程2210x x --=的两根,且22(714)(367)8m m a n n -+--=,则a 的值等于A .5-B .5C .9-D .98.如图中∠BOD 的度数是( )A .150°B .125°C .110°D .55°9.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>10.若将抛物线y=x 2平移,得到新抛物线2(3)y x =+,则下列平移方法中,正确的是( )A .向左平移3个单位B .向右平移3个单位C .向上平移3个单位D .向下平移3个单位11.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ) A .12B .14C .16D .11212.二次函数2y (x 3)2=-++图象的开口方向、对称轴和顶点坐标分别为( )A .向下,直线x 3=,()3,2B .向下,直线x 3=-,()3,2C .向上,直线x 3=-,()3,2D .向下,直线x 3=-,()3,2-13.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( ) A .310B .925C .920D .3514.如图,AB 为⊙O 的直径,四边形ABCD 为⊙O 的内接四边形,点P 在BA 的延长线上,PD 与⊙O 相切,D 为切点,若∠BCD =125°,则∠ADP 的大小为( )A .25°B .40°C .35°D .30°15.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( ) A .y=1+12x 2B .y=(2x+1)2C .y=(x ﹣1)2D .y=2x 2二、填空题16.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.17.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.18.一个等腰三角形的两条边长分别是方程x 2﹣7x +10=0的两根,则该等腰三角形的周长是_____.19.如图,在直角坐标系中,已知点30A -(,)、04B (,),对OAB 连续作旋转变换,依次得到1234、、、,则2019的直角顶点的坐标为__________.20.如图,AB 是⊙O 的直径,∠AOE =78°,点C 、D 是弧BE 的三等分点,则∠COE =_____.21.从甲地到乙地有A ,B ,C 三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下: 公交车用时 公交车用时的频数 线路 3035t ≤≤ 3540t <≤ 4045t <≤ 4550t <≤ 合计A 59 151 166 124 500B 50 50 122 278 500 C4526516723500早高峰期间,乘坐_________(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.22.已知在同一坐标系中,抛物线y1=ax2的开口向上,且它的开口比抛物线y2=3x2+2的开口小,请你写出一个满足条件的a值:_____.23.若一元二次方程x2+px﹣2=0的一个根为2,则p=_____,另一个根是_____.24.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A,B,C,则ac的值是________.25.某地区2017年投入教育经费2 500万元,2019年计划投入教育经费3 025万元,则2017年至2019年,该地区投入教育经费的年平均增长率为_____.三、解答题26.在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张,不放回,再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D 表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.27.已知关于x的方程x2-2(k-1)x+k2 =0有两个实数根x1.x2.(1)求实数k的取值范围;(2)若(x1+1)(x2+1)=2,试求k的值.28.2019年第六届世界互联网大会在乌镇召开,小南和小西参加了某分会场的志愿服务工作,本次志愿服务工作一共设置了三个岗位,分别是引导员、联络员和咨询员.请你用画树状图或列表法求出小南和小西恰好被分配到同一个岗位进行志愿服务的概率.29.从甲、乙、丙、丁4名同学中随机抽取同学参加学校的座谈会(1)抽取一名同学,恰好是甲的概率为(2) 抽取两名同学,求甲在其中的概率。
2020年中考数学5.几何综合选择填空压轴题(含解析)

几何综合-填空选择压轴题51、以正方形ABCD勺边AD作等边△ ADE则/ BEC勺度数是 __________2、如图.在厶ABC中, / ACB=60 , AC=1, D是边AB的中点,E是边BC上一点.若DE平分△ ABC的周长,则DE的长是 ____ .3、已知CD是△ ABC的边AB上的高,若CD・3,AD=1AB=2AC则BC的长为__4、如图,将面积为32V2的矩形ABCC沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若BE=J,贝U AP的长为____ .p5、如图,△ ABC是等边三角形,△ ABD是等腰直角三角形,/ BAD=90 , AE L BD 于点E,连CD分别交AE AB于点F, G过点A作AH L CD交BD于点H.则下列结论:①/ ADC=15 :② AF=AG ③ AH=DF ④厶AF3A CBQ ⑤AF= (V3 - 1)EF.其中正确结论的个数为()A. 5 B . 4 C . 3 D . 26 已知O 0的半径为10cm AB CD是O O的两条弦,AB// CD AB=16cm CD=12cm则弦AB和CD之间的距离是cm513 13 13 7 77、如图,将矩形ABCD 沿 EF 折叠,使点B 落在AD 边上的点G 处,点C 落在点H 处,已知/ DGH=30,连接BG 则/ AGB ________ .8、如图,?ABCD 勺对角线相交于点 0,且A 》CD 过点0作OM L AC,交AD 于点 M.如果△ CDM 勺周长为8,那么?ABCD 勺周长是 _____ .9、如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为 49,则 sin a - COS a =( ) A 13 B10、如图,P是厶ABC的内心,连接PA PB PC, △ PAB △ PBG △ PAC的面积分别为S、S、S.则Si ____ S2+S3.(填“v” 或“二”或“〉”)11、如图,△ ABC中, AB=AC AD L BC 于D点,DEL AB 于点E, BF 丄AC 于点F,DE=3cryi 则BF= ______ cm12、如图,已知半圆O与四边形ABCD勺边AD AB BC都相切,切点分别为DE、C,半径OC=1 则AE?BE=_.13、《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,冋该直角二角形能容纳的正方形边长最大是多少步?”该问题的答案是____________ 步.14、如图,以AB为直径的。
中考数学总复习《选择、填空题》专项练习题含有答案

中考数学总复习《选择、填空题》专项练习题含有答案(测试时间:30分钟;总分:45分)一、选择题(每小题3分,共30分) 1. -14的相反数是( )A. -14B. 14C. -4D. 42. 下列图形中,既是轴对称图形,又是中心对称图形的是( )3. 不等式组的解集在数轴上表示为( )4. 下列几何体是由大小相同的小正方体组成,其中主视图和俯视图相同的是( )5. 如图,四个长和宽分别为x +2和x 的矩形拼接成大正方形.若四个矩形和中间小正方形的面积和为4×35+22,则根据题意能列出的方程是( )A. x 2+2x -35=0B. x 2+2x +35=0C. x 2+2x -4=0D. x 2+2x +4=0 第5题图24030x x -<⎧⎨+≥⎩6. 如图,一次函数y 1=-x +1与反比例函数y 2=-2x 的图象都经过A ,B 两点,则当y 1<y 2时,x 的取值范围是( )A. x <-1B. x <-1或0<x <2C. -1<x <2D. -1<x <0或x >2 第6题图7. 某校的5名同学在“国学经典诵读”比赛中,成绩(分)分别是93,96,91,93,87,关于这组数据,下列说法正确的是( )A. 平均数是92.5B. 中位数是91C. 众数是93D. 方差是08. 在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( )A. y =-xB. y =x +2C. y =2xD. y =x 2-2x9. 如图,在▱ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F .若AE =20,CE =15,CF =7,AF =24,则BE 的长为( )A. 10B. 254C. 15D. 252第9题图10. 如图,Rt △ABC 中,∠C =90°,AC =6,BC =8,以点A 为圆心,BC 的长为半径作弧交AB 于点D ,再分别以点A ,D 为圆心,AB ,AC 的长为半径作弧交于点E ,连接AE ,DE ,若点F 为AE 的中点,则DF 的长为( )A. 4B. 5C. 6D. 8 第10题图 二、填空题(每小题3分,共15分)11. 对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =a +b a -b ,如:3⊕2=3+23-2=5,那么12⊕4=________.12. 方程x 2x -4-12-x=1的解为________.13. 2020年6月21日,第二届全球文旅创作者大会在河南省云台山举行,现从2位文旅大咖,2位文旅创作者中随机抽取2人分享经验,则抽取的2人中,一位是文旅大咖,一位是文旅创作者的概率是________.14. 如图,在扇形OAB 中,∠AOB =90°,C 是OA 的中点,D 是AB ︵的中点,连接CD 、C B.若OA =2,则阴影部分的面积为________.(结果保留π)第14题图15. 如图,已知Rt △ABC 中,∠C =90°,AC =4,AB =a ,点M 在边AB 上,且AM =14a ,点N 是AC上一动点,将△AMN 沿MN 折叠,使点A 的对应点A ′恰好落在BC 上,若△BMA ′是直角三角形,则a 的值为________.第15题图参考答案1. B2. D 【解析】逐项分析如下:3. C 【解析】⎩⎪⎨⎪⎧2x -4<0①x +3≥0②,解不等式①,得x <2,解不等式②,得x ≥-3,∴不等式组的解集为-3≤x <2,表示在数轴上如选项C .4. C 【解析】逐项分析如下:5. A 【解析】依题意,得(x +x +2)2=4×35+22,即x 2+2x -35=0.6. D 【解析】联立⎩⎪⎨⎪⎧y =-x +1y =-2x ,解得⎩⎪⎨⎪⎧x =-1y =2或⎩⎪⎨⎪⎧x =2y =-1.∴A (-1,2),B (2,-1),y 1<y 2即一次函数的图象在反比例函数图象的下方,结合题图可知,当y 1<y 2时,x 的取值范围是-1<x <0或x >2.7. C 【解析】这组数据的平均数=15×(93+96+91+93+87)=92(分),∴A 选项错误;这组数据按从小到大的顺序排列为:87、91、93、93、96,∴这组数据的中位数为93分,∴B 选项错误;∵93出现的次数最多,∴这组数据的众数为93分,∴C 选项正确;∵这组数据有变化,∴方差不为0,∴D 选项错误.8. B 【解析】根据“好点”的定义,好点即为直线y =x 上的点,令各函数中y =x ,x =-x ,解得x =0,即“好点”为(0,0),故A 选项不符合;x =x +2,无解,即该函数图象中不存在“好点”,故B 选项符合;x =2x ,解得x =±2,经检验x =±2是原方程的解,即“好点”为(2,2)和(-2,-2),故C选项不符合;x =x 2-2x ,解得x =0或3,即“好点”为(0,0)和(3,3),故D 选项不符合.9. C 【解析】∵四边形ABCD 是平行四边形,∴∠B =∠D ,∵AE ⊥BC ,AF ⊥CD ,∴∠AEB =∠AFD =90°,∴△AEB ∽△AFD ,∴BE DF =AE AF =2024=56,设BE =5x ,则DF =6x ,AB =CD =7+6x ,在Rt △ABE 中,(7+6x )2=(5x )2+202,即11x 2+84x -351=0,解得x =3或x =-11711(舍去),∴BE =5x =15.10. B 【解析】由作图可知△ADE ≌△BCA .∴∠ADE =∠C =90°,AE =AB .又∵AC =6,BC =8,∠C =90°,∴AB =10=AE .∵点F 为AE 的中点,∴DF =12AE =12AB =5.11. 2 【解析】由题意得12⊕4=12+412-4=422= 2.12. x =6 【解析】去分母得x -(-2)=2x -4,去括号得x +2=2x -4,移项得x -2x =-4-2,合并同类项得-x =-6,解得x =6,检验:当x =6时,2x -4≠0,2-x ≠0,∴原方程的解为x =6.13. 23【解析】2名文旅大咖记为A 1、A 2,2名文旅创作者记为B 1、B 2,列表如下:由表格可知,共有12种等可能的结果,其中抽到一位文旅大咖,一位文旅创作者的情况有8种,∴P (抽取的2人中,一位是文旅大咖,一位是文旅创作者)=812=23. 14.π2+22-1 【解析】如解图,连接OD ,过点D 作DH ⊥OA 于点H ,∵∠AOB =90°,D 是AB ︵的中点,∴∠AOD =∠BOD =45°,∵OD =OA =2,∴DH =22OD =2,∵C 是OA 的中点,∴OC =1,∴S 阴影=S 扇形DOB +S △CDO -S △BCO =45×π×22360+12×2×1-12×1×2=π2+22-1.第14题解图15. 410或12 【解析】由折叠性质可得A ′M =AM =14a ,分两种情况:①如解图①,当∠BMA ′=90°时,△BMA ′是直角三角形,tanB=A ′M BM =AC BC ,即14a 34a =4BC,解得BC =12,由勾股定理得a =BC 2+AC 2=42+122=410;②如解图②,当∠BA ′M =90°时,△BMA ′是直角三角形,sin B =A ′M BM =ACAB ,即14a 34a =4a,解得a =12,∴a 的值为410或12.第15题解图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学几何选择填空压轴题精选一.选择题1.如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为()①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.A. 1个B. 2个C. 3个D. 4个解:作EJ⊥BD于J,连接EF①∵BE平分∠DBC ∴EC=EJ,∴△DJE≌△ECF∴DE=FE ∴∠HEF=45°+22.5°=67.5°∴∠HFE==22.5°∴∠EHF=180°﹣67.5°﹣22.5°=90°∵DH=HF,OH是△DBF的中位线∴OH∥BF ∴OH=BF②∵四边形ABCD是正方形,BE是∠DBC的平分线,∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,∵CE=CF,∴Rt△BCE≌Rt△DCF,∴∠EBC=∠CDF=22.5°,∴∠BFH=90°﹣∠CDF=90°﹣22.5°=67.5°,∵OH是△DBF的中位线,CD⊥AF,∴OH是CD的垂直平分线,∴DH=CH,∴∠CDF=∠DCH=22.5°,∴∠HCF=90°﹣∠DCH=90°﹣22.5°=67.5°,∴∠CHF=180°﹣∠HCF﹣∠BFH=180°﹣67.5°﹣67.5°=45°,故②正确;③∵OH是△BFD的中位线,∴DG=CG=BC,GH=CF,∵CE=CF,∴GH=CF=CE∵CE<CG=BC,∴GH<BC,故此结论不成立;④∵∠DBE=45°,BE是∠DBF的平分线,∴∠DBH=22.5°,由②知∠HBC=∠CDF=22.5°,∴∠DBH=∠CDF,∵∠BHD=∠BHD,∴△DHE∽△BHD,∴=∴DH=HE•HB,故④成立;所以①②④正确.故选C.2.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个解:根据BE=AE,∠GBE=∠CAE,∠BEG=∠CEA可判定①△BEG≌△AEC;用反证法证明②∠GAC≠∠GCA,假设∠GAC=∠GCA,则有△AGC为等腰三角形,F为AC的中点,又BF⊥AC,可证得AB=BC,与题设不符;由①知△BEG≌△AEC 所以GE=CE 连接ED、四边形ABED为平行四边形,∵∠ABC=45°,AE⊥BC于点E,∴∠GED=∠CED=45°,∴△GED≌△CED,∴DG=DC;④设AG为X,则易求出GE=EC=2﹣X因此,S△AGC=S AEC﹣S GEC=﹣+x=﹣(x2﹣2x)=﹣(x2﹣2x+1﹣1)=﹣(x﹣1)2+,当X取1时,面积最大,所以AG等于1,所以G是AE中点,故G为AE中点时,GF最长,故此时△AGC的面积有最大值.故正确的个数有3个.故选C.3.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S▭DHGE;④图中有8个等腰三角形.其中正确的是()A. ①③B. ②④C. ①④D. ②③解:∵DF=BD,∴∠DFB=∠DBF,∵AD∥BC,DE=BC,∴∠DEC=∠DBC=45°,∴∠DEC=2∠EFB,∴∠EFB=22.5°,∠CGB=∠CBG=22.5°,∴CG=BC=DE,∵DE=DC,∴∠DEG=∠DCE,∵∠GHC=∠CDF+∠DFB=90°+22.5°=112.5°,∠DGE=180°﹣(∠BGD+∠EGF)=180°﹣(∠BGD+∠BGC),=180°﹣(180°﹣∠DCG)÷2=180°﹣(180°﹣45°)÷2=112.5°,∴∠GHC=∠DGE,∴△CHG≌△EGD,∴∠EDG=∠CGB=∠CBF,∴∠GDH=∠GHD,∴S△CDG=S▭DHGE.故选D.4.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为()A.B. C. D.解:∵矩形ABCD的对角线互相平分,面积为5,∴平行四边形ABC1O1的面积为,∵平行四边形ABC1O1的对角线互相平分,∴平行四边形ABC2O2的面积为×=,…,依此类推,平行四边形ABC2009O2009的面积为.故选B.5.(2013•牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,正确;③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∴BN=CN,∵P为BC边的中点,∴PN⊥BC,△BPN为等腰直角三角形∴BN=PB=PC,正确.故选D.6.(2012•黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①(BE+CF)=BC;②S△AEF≤S△ABC;③S四边形AEDF=AD•EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是()A. 1个B. 2个C. 3个D. 4个解:∵Rt△ABC中,AB=AC,点D为BC中点,∴∠C=∠BAD=45°,AD=BD=CD,∵∠MDN=90°,∴∠ADE+∠ADF=∠ADF+∠CDF=90°,∴∠ADE=∠CDF.在△AED与△CFD中,∵,∴△AED≌△CFD(ASA),∴AE=CF,在Rt△ABD中,BE+CF=BE+AE=AB==BD=BC.故①正确;设AB=AC=a,AE=CF=x,则AF=a﹣x.∵S△AEF=AE•AF=x(a﹣x)=﹣(x﹣a)2+a2,∴当x=a时,S△AEF有最大值a2,又∵S△ABC=×a2=a2,∴S△AEF≤S△ABC.故②正确;EF2=AE2+AF2=x2+(a﹣x)2=2(x﹣a)2+a2,∴当x=a时,EF2取得最小值a2,∴EF≥a(等号当且仅当x=a时成立),而AD=a,∴EF≥AD.故④错误;由①的证明知△AED≌△CFD,∴S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=AD2,∵EF≥AD,∴AD•EF≥AD2,∴AD•EF>S四边形AEDF故③错误;当E、F分别为AB、AC的中点时,四边形AEDF为正方形,此时AD与EF互相平分.故⑤正确.综上所述,正确的有:①②⑤,共3个.故选C.7.如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF.下列结论①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确的结论有()A. ①④⑤B. ①②④C. ③④⑤D. ②③④解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确.∵tan∠AED=,由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴tan∠AED=>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确.∴其中正确结论的序号是:①④⑤.故选:A.8.如图,正方形ABCD中,O为BD中点,以BC为边向正方形内作等边△BCE,连接并延长AE 交CD于F,连接BD分别交CE、AF于G、H,下列结论:①∠CEH=45°;②GF∥DE;③2OH+DH=BD;④BG=DG;⑤.其中正确的结论是()A. ①②③B. ①②④C. ①②⑤D. ②④⑤解:①由∠ABC=90°,△BEC为等边三角形,△ABE为等腰三角形,∠AEB+∠BEC+∠CEH=180°,可求得∠CEH=45°,此结论正确;②由△EGD≌△DFE,EF=GD,再由△HDE为等腰三角形,∠DEH=30°,得出△HGF为等腰三角形,∠HFG=30°,可求得GF∥DE,此结论正确;③由图可知2(OH+HD)=2OD=BD,所以2OH+DH=BD此结论不正确;④如图,过点G作GM⊥CD垂足为M,GN⊥BC垂足为N,设GM=x,则GN=x,进一步利用勾股定理求得GD=x,BG=x,得出BG=GD,此结论不正确;⑤由图可知△BCE和△BCG同底不等高,它们的面积比即是两个三角形的高之比,由④可知△BCE的高为(x+x)和△BCG的高为x,因此S△BCE:S△BCG=(x+x):x=,此结论正确;故正确的结论有①②⑤.故选C.9.如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有()A. ①②③B. ①②④C. ①③④D. ①②③④解:(1)连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.(2)∵FH⊥AE,FH=AF,∴∠HAE=45°.(3)连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.(4)延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,根据△MEC≌△CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故(1)(2)(3)(4)结论都正确.故选D.10.正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为()A. 10B. 12C. 14D. 16解:如图,连DB,GE,FK,则DB∥GE∥FK,在梯形GDBE中,S△DGE=S△GEB(同底等高的两三角形面积相等),同理S△GKE=S△GFE.∴S阴影=S△DGE+S△GKE=S△GEB+S△GEF=S正方形GBEF=4×4=16 故选D.二.填空题1.如图,观察图中菱形的个数:图1中有1个菱形,图2中有5个菱形,图3中有14个菱形,图4中有30个菱形…,则第6个图中菱形的个数是个.解:观察图形,发现规律:图1中有1个菱形,图2中有1+22=5个菱形,图3中有5+32=14个菱形,图4中有14+42=30个菱形,则第5个图中菱形的个数是30+52=55,第6个图中菱形的个数是55+62=91个.故答案为91.2.如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=.解:∵∠ABC与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,根据三角形的外角性质,∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,∴∠A1+∠A1BC=∠A1+∠ABC=(∠A+∠ABC),整理得,∠A1=∠A=,同理可得,∠A2=∠A1=×=,…,∠A2012=.故答案为:.3.如图,已知Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1=,=.解:在Rt△ABC中,AC=3,BC=4,∴AB=,又因为CA1⊥AB,∴AB•CA1=AC•BC,即CA1===.∵C4A5⊥AB,∴△BA5C4∽△BCA,∴,∴==.所以应填和.4.如图,点A1,A2,A3,A4,…,A n在射线OA上,点B1,B2,B3,…,B n﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥A n﹣1B n﹣1,A2B1∥A3B2∥A4B3∥…∥A n B n﹣1,△A1A2B1,△A2A3B2,…,△A n A n B n﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为;﹣1面积小于2011的阴影三角形共有6个.解:由题意得,△A2B1B2∽△A3B2B3,∴==,==,又∵A1B1∥A2B2∥A3B3,∴===,==,∴OA1=A1A2,B1B2=B2B3继而可得出规律:A1A2=A2A3=A3A4…;B1B2=B2B3=B3B4…又△A2B1B2,△A3B2B3的面积分别为1、4,∴S△A1B1A2=,S△A2B2A3=2,继而可推出S△A3B3A4=8,S△A4B4A5=32,S△A5B5A6=128,S△A6B6A7=512,S△A7B7A8=2048,故可得小于2011的阴影三角形的有:△A1B1A2,△A2B2A3,△A3B3A4,△A4B4A5,△A5B5A6,△A6B6A7,共6个.故答案是:;6.5.如图,已知点A1(a,1)在直线l:上,以点A1为圆心,以为半径画弧,交x轴于点B1、B2,过点B2作A1B1的平行线交直线l于点A2,在x轴上取一点B3,使得A2B3=A2B2,再过点B3作A2B2的平行线交直线l于点A3,在x轴上取一点B4,使得A3B4=A3B3,按此规律继续作下去,则①a=;②△A4B4B5的面积是.解:如图所示:①将点A1(a,1)代入直线1中,可得,所以a=.②△A1B1B2的面积为:S==;因为△OA1B1∽△OA2B2,所以2A1B1=A2B2,又因为两线段平行,可知△A1B1B2∽△A2B2B3,所以△A2B2B3的面积为S1=4S;以此类推,△A4B4B5的面积等于64S=.6.如图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②A E⊥BC;③∠BMC=90°;④EF=EG;⑤△BMC是等腰直角三角形.上述结论中始终正确的序号有.解:∵梯形ABCD中,AD∥BC,EA⊥AD,∴AE⊥BC,即②正确.∵∠MBE=45°,∴BE=ME.在△ABE与△CME中,∵∠BAE=∠MCE,∠AEB=∠CEM=90°,BE=ME,∴△ABE≌△CME,∴AB=CM,即①正确.∵∠MCE=∠BAE=90°﹣∠ABE<90°﹣∠MBE=45°,∴∠MCE+∠MBC<90°,∴∠BMC>90°,即③⑤错误.∵∠AEB=∠CEM=90°,F、G分别是AB、CM的中点,∴EF=AB,EG=CM.又∵AB=CM,∴EF=EG,即④正确.故正确的是①②④.7.如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为.解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM==,∴AC=,同理可得AC1=AC=()2,AC2=AC1=3=()3,按此规律所作的第n个菱形的边长为()n﹣1故答案为()n﹣1.8.如图,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于.解:∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形.∴EH=FG(矩形的对边相等);又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得HF=,∴HF=5,又∵HE•EF=HF•EM,∴EM=,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=,∴AD:AB=5:=.故答案为:.9.如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为cm2.解:如图,连接EF∵△ADF与△DEF同底等高,∴S△ADF=S△DEF即S△ADF﹣S△DPF=S△DEF﹣S△DPF,即S△APD=S△EPF=15cm2,同理可得S△BQC=S△EFQ=25cm2,∴阴影部分的面积为S△EPF+S△EFQ=15+25=40cm2.故答案为40.。