热传导方程和定解条件
第一章 三类典型方程和定解条件

a 其中,ij (x), bi (x), c x , f (x)都只是 x1 , x2, , xm 的已知 函数,与未知函数无关。
若一个函数具有某偏微分方程中所需 要的各阶连续偏导数,并且代入该方程中 能使它变成恒等式,则此函数称为该方程 的解(古典解)。 初始条件和边界条件都称为定解条件。 把某个偏微分方程和相应的定解条件 结合在一起,就构成了一个定解问题。 只有初始条件,没有边界条件的定解问题 称为始值问题(或柯西问题)。反之,只 有边界条件,没有初始条件的定解问题称 为边值问题。既有初始条件又有边界条件 的定解问题,称为混合问题。
数学物理方程
第一章 三类典型方程和定解条件 第二章 分离变量法 第三章 Laplace方程的格林函数法
第四章 贝塞尔函数及勒让德多项式
第一章 三类典型方程和定解条件
数学物理方程的研究对象——定解问题。 一个定解问题是由偏微分方程和相应的定解 条件组成。我们先来介绍三类典型的方程:
三类典型方程
一、波动方程 二、热传导方程
用以说明初始状态的条件称为初始条件。 用以说明边界上的约束情况的条件称为边 界条件。
一、初始条件
比如说波动方程(1.3)其初始条件有两 个,一个是参数u,一个是u的一阶导数。 即: u u t 0 及 都已知。 t
t 0
而热传导方程(1.7)其初始条件只有一 个,就是参数u。即:
Байду номын сангаасu t 0 是已知。
一个定解问题提的是否符合实际情况,从 数学角度来看,有三方面可以加以检验:
1、解的存在性,看定解问题是否有解。
2、解的唯一性,看是否只有一个解。
3、解的稳定性,看当定解条件有微小
变动时,解是否相应地只有微小的变 动,若确实如此,则称此解是稳定的。
热传导方程

热传导方程引言热传导方程是描述物质内部温度分布随时间演变的一种偏微分方程。
它广泛应用于热传导领域,如材料科学、工程热学、地球科学等。
热传导方程描述了热量在物质内部的传递方式,是研究热传导过程和温度场分布的重要工具。
热传导方程的一维形式考虑物质在一维情况下的热传导,热传导方程可以写作:∂u/∂t = α * ∂²u/∂x²其中,u为物质内部的温度,t为时间,x为空间坐标,α为热扩散系数。
热传导方程的二维形式对于二维的情况,假设热传导方程适用于平面内任意点,可以写作:∂u/∂t = α * (∂²u/∂x² + ∂²u/∂y²)其中,u为物质内部的温度,t为时间,x和y为平面内的空间坐标,α为热扩散系数。
热传导方程的三维形式在三维情况下,热传导方程可以写作:∂u/∂t = α * (∂²u/∂x² + ∂²u/∂y² + ∂²u/∂z²)其中,u为物质内部的温度,t为时间,x、y和z为空间坐标,α为热扩散系数。
定解条件为了求解热传导方程,需要给定一些定解条件。
常见的定解条件有:•初始条件:指定初始时刻的温度分布,即u(x, y, z, 0),其中u是温度,x、y和z分别是空间坐标,0表示初始时刻。
•边界条件:指定物体表面的温度或热流密度。
常见的边界条件有:第一类边界条件(温度指定),即u(x, y, z, t) = g(x, y, z, t);第二类边界条件(热流密度指定),即-k * ∂u/∂n = q(x, y, z, t),其中k为导热系数,n为法向量,q为热流密度。
热传导方程的数值解热传导方程是一个偏微分方程,通常无法得到解析解。
因此,需要借助数值计算方法来求解。
常见的数值方法有有限差分法、有限元法和边界元法等。
在有限差分法中,可以将空间离散为若干个网格点,时间离散为若干个时间步长。
热传导方程的导出及其定解问题的导出

热传导方程的导出及其定解问题的导出1. 热传导方程的导出考察空间某物体G 的热传导问题。
以函数u (x ,y ,z ,t )表示物体G 在位置(x ,y ,z )及时刻t 的温度。
依据传热学中的Fourier 实验定律,物体在无穷小时段dt 内沿法线方向n 流过一个无穷小面积dS 的热量dQ 与物体温度沿曲面dS 法线方向的方向导数学成正比,即o n d udQ =-k (x ,y ,z )dSdt (1-1)o n 其中k (x ,y ,z )称为物体在点(x ,y ,z )处的热传导系数,它应取正值。
(1-1)式中负号的出 o u现是由于热量总是从温度高的一侧流向低的一侧,因此dQ 应和异号。
o n在物体G 内任取一闭曲面r ,它所包围的区域记为0,由(1-1)式,从时刻t 到t 流进12此闭曲面的全部热量为Q =f t 2仙k (x ,y ,z)—dS\dt (1-2)4I r O nJ这里表示u沿r 上单位外法线方向n 的方向导数。
o n流入的热量使物体内部的温度发生变化,在实践间隔(t ,t )中物体温度从u (x ,y ,z ,t )121变化到u (x‘y ,z ,t2),它所应该吸收的热量是JU c (x ,y ,z )P (x ,y ,z )[u (x ,y ,z ,t )一u (x ,y ,z ,t )]dxdydz其中c 为比热,P 为密度。
因此就成立 >dt=JfJ C (x ,y ,z )P (x,y ,z)[u (x,y ,z ,12)一U (x ,y ,z ,t i )]dxdydz(1-3)假设函数u 关于变量x ,y ,z 具有二阶连续偏导数,关于t 具有一阶连续偏导数,利用格林公式,可以把(1-3)化为交换积分次序,就得到J t t 12仰(x ,y ,z )护t10O x{k 譽'O x 丿(一O u 、 +—k 二+—°y°y 丿 O z (O u 、k 一>dxdydzdt =c P JI o 丿J 「E O u dtdxdydztO t 丿dxdydzdt =0(1-4)训c P '0、由于t i,t2,0都是任意的,我们得到(1-5)式称为非均匀的各向同性体得热传导方程。
大学物理-热传导方程的定解问题

在各向同性的介质中,热流强度 q 与温度的负梯度成正比, 即
(k:热传导系数)
|q|:单位时间垂直通过等温面单位面积的热量,即 q 的方向:等温面的法线方向 (由高温指向低温) 定律的物理意义:q 正比于温度的下降率 单位时间内流入 / 流出 V 的热量为
单位时间内热源在 V 中释放 / 吸收的热量为
单位时间内,V 中介质温度升高/降低所需/放出的热量为
能量守恒定律:Q3 = Q1 + Q2 则 由 V 的任意性,得到
若介质均匀,即 k 为常量,有来自定义:,因此得到
当 V 内无热源,即 f = 0,故有
二、扩散方程 1. 扩散现象:当空间各点浓度分布不均匀时,就有粒子
从高浓度处流向低浓度处。(浓度:单位体 积中的粒子数) 2. 方程的推导 设:空间中任一小体积 V,其边界面为 S
粒子源强度:F (x, y, z, t) ——单位时间,单位体积 内产生的粒子数
求:空间各点粒子浓度 u(x, y, z, t) 的方程 V 内粒子数增加的来源:扩散 + 粒子源
扩散浓度:N ——单位时间通过垂直于 v (粒子定向运动速 度) 的单位面积的粒子数 N=uv,方向:v 的方向
对于扩散现象,有斐克定律: 扩散强度与浓度的负梯度成正比,即 D:扩散系数
扩散导致 V 内粒子增加的数量:
粒子源 V 粒子增加的数量: 内粒子数总的增加数:
因粒子数守恒,有 由 V 的任意性,得到 若 D 为常量,且设 D = a2,则
若 V 内无粒子源,即 F = 0,因而
总结:热传导:热量的传递;扩散:粒子的运动,两 者物理本质不同,但满足同一微分方程。
热传导方程的热传输的边值问题

热传导方程的热传输的边值问题一、引言热传导方程是描述热能传输的偏微分方程。
在热传输的研究中,边值问题是一个关键的问题,因为通过边界的能量交换是决定热平衡的主要因素。
本文将着重探讨热传导方程的边界问题,包括定解问题、第一类边值问题、第二类边值问题和第三类边值问题等。
二、定解问题热传导方程的定解问题需同时确定初始条件和边界条件。
通常初始条件是物体初始的温度分布,而边界条件则是物体与外界的热交换方式。
其中边界条件的选择对于解的质量有着至关重要的作用。
我们将从第一类边值问题开始探讨。
三、第一类边值问题第一类边值问题也称为Dirichlet边值问题,它的边界条件为固定的温度分布。
在第一类边值问题的研究中,需要根据温度场的分布确定物体内部的热流分布,以及物体与环境之间的热通量。
Dirichlet边值问题的一个典型应用是研究物体表面温度的分布,对于特定的材料和结构,可以通过先前的实验数据来确定温度的分布。
四、第二类边值问题第二类边值问题也称为Neumann边值问题,它的边界条件为固定的热流密度。
在第二类边值问题的研究中,需要根据热流密度的分布确定物体内部的温度分布,以及物体与环境之间的热通量。
通常情况下,第二类边值问题用于研究物体表面的热通量分布。
五、第三类边值问题第三类边值问题也称为Robin边值问题,它的边界条件为固定的温度和热流密度的线性组合。
在第三类边值问题的研究中,需要根据温度和热流密度的线性关系来确定物体内部的温度分布,以及物体与环境之间的热通量。
Robin边值问题具有较广泛的应用,例如许多机械工程中的冷却问题就可以归类为第三类边值问题。
六、总结本文主要探讨了热传导方程的边值问题,包括了定解问题、第一类边值问题、第二类边值问题以及第三类边值问题等。
在实际的工程应用中,热传导方程是研究热传输问题的基础,而针对不同的物理场景和问题,不同类型的边值问题也需要采取不同的求解方法。
对于工程领域中的热传输问题,深入地研究热传导方程的边值问题具有非常重要的意义。
热传导方程热传导方程的导出及其定解条件

(1.9)
二、扩散方程
在研究分子扩散过程中也会遇到类似的方程。例如气体的扩散,液体的渗透,半
导体材料中的杂质扩散等。下面,我们来建立所考察介质扩散过程所满足的偏微分方
程。
由于扩散方程和热传导方程的导出极为类似,我们不重复这一过程。只要将扩散
过程所满足的物理规律与热传导过程所满足的物理规律作个类比,扩散方程就不难写
本章中的讨论仅限于对一个空间变量的方程进行,对于多个空间变量的情形, 可 以 进 行 类 似 的 讨 论 , 有 兴 趣 的 读 者 可 以 参 看F. John编 著 的 《Partial Differential Equations》, Springer-Verlag, 1982.
§ 1. 热传导方程的导出及其定解条件
出。
在 推 导 热 传 导 方 程 的 过 程 中 起 基 本 作 用 的 是Fourier定 律 与 热 量 守 恒 定 律 , 即 方
程(1.1)与方程(1.3)式。在考虑扩散过程时,我们碰到的是相应的扩散定律与质量守恒
定律,即
dm
=
−γ(x,
y,
z)
∂U ∂n
dS
dt,
(1.10)
t2 t1
S
由于t1,t2与区域Ω都是任意的,于是
νρ
∂u ∂t
=
∂ ∂x
k
∂u ∂x
+
∂ ∂y
k
∂u ∂y
+
∂ ∂z
k
∂u ∂z
.
(1.4) (1.5)
(1.5)式称为非均匀的各向同性介质的:热:::传::导:::方::程:::。如果介质是均匀的,此时k ,ν 及ρ均 为常数,记k/νρ = c2,即得
热传导中的傅立叶热传导定律和热传导方程

热传导中的傅立叶热传导定律和热传导方程热传导是物体中热能由高温区域向低温区域传递的过程。
为了准确描述热传导现象,在热力学中引入了傅立叶热传导定律和热传导方程。
本文将详细介绍这两个概念,帮助读者更好地理解热传导的基本原理和数学描述。
一、傅立叶热传导定律傅立叶热传导定律是基于傅立叶分析的理论,用于描述物体内部热传导的规律。
根据傅立叶热传导定律,热流密度(q)正比于温度梯度(▽T)的负方向,即:q = -k▽T其中,q表示热流密度,单位为瓦特/平方米(W/m²),表示单位时间内通过单位面积传输的热量;k表示热导率,单位为瓦特/米·开尔文(W/m·K),表示物质导热能力的大小;▽T表示温度梯度,单位为开尔文/米(K/m),表示单位长度内温度的变化量。
根据傅立叶热传导定律,热流由高温区域到低温区域,且热流密度的大小与温度梯度成正比。
如果物体温度均匀分布,即温度梯度为零,那么热流密度也为零,即没有热传导现象发生。
二、热传导方程热传导方程是描述热传导过程的偏微分方程,通过时间和空间导数描述了热量在物体内部的传递规律。
一维空间中的热传导方程可以表达为:∂u/∂t = α∂²u/∂x²其中,u(x,t)表示温度场,即温度随着时间和空间变化的函数;α表示热扩散系数,单位为米²/秒(m²/s),表示热量在物体内部传递的速率。
热传导方程的解得到了温度场随时间和位置的变化规律,通过求解热传导方程,可以预测物体内部温度的变化情况。
根据不同的边界条件和初值条件,可以得到具体问题的解析解或数值解。
三、热传导现象的应用热传导现象在日常生活中有着广泛的应用。
首先,热传导是制冷和加热技术的基础,如空调、冰箱、电磁炉等设备的工作原理都与热传导密切相关。
其次,热传导定律和热传导方程在工程领域中应用广泛,如热传导材料的选择、热传导的优化设计等方面。
另外,热传导也在科学研究中起着重要的作用。
第7章 热传导

5. 二维、三维非稳态导热
1. 薄壁物体非稳态导热 ----集总热容法 ( lumped capacity method ) 薄壁——当物体内部的导热热阻比物体与环境
的对流热阻小的很多时,可归结为薄壁物体的导热 问题。
集总热容法——当物体体积不大,而导热系
数又比较大,认为物体内部的温度在任意时刻都是均 匀的,好像该物体原来连续分布的质量和热容量汇 总到一点,因而只有一个温度值,这种分析法称为 总集热容法。
第一类边界条件(记为B.C.I)
直接给出边界上(任意时刻)的数值。
传热 传质
T TS
A AS
第二类边界条件(记为B.C.II)
给出边界上的导数值(梯度值、通量值)
传热 传质
q ys
T k y
S
j Ays D AB
A y
S
T 0 如某一端面(L)绝热,则可具体写为 q k x x l T 如温度分布中心对称(x =0),则写为 x 0 0 x
初始条件(I.C.)
反映研究对象的特定历史条件。 追溯了在某个初始时刻的状态。
边界条件(B.C.)
反映所研究对象是处于怎样的特定环境。 环境通过体系的边界将如何影响所研究的对象。
下面以传热为例写出相应的初始条件和边界条件。
1)初始条件
给定某时刻物体内的温度或浓度分布,写为:
传热 传质 传热 传质
三、非稳态导热
在工程问题中,需要知道当物体表面的热状态
发生变化时,物体内给定的温度变化到某一确 定值需要的时间,这也是非稳态导热问题。
在本节将着重讨论薄壁、无限大物体、厚
壁物体 非稳态导热中的 温度分布及求解 方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果所考察的物体内部没有热源, 由于热量守恒,
Q2 Q1
c[u(x, y, z,t2 ) u(x, y, z,t1)]dv
[t2
t1
k u dS]dt n
4
先对 Q1 进行变形
Q1
t2 [
t1
k u dS]dt, n
Q1
[t2
t1
k 为常数, n 为曲面 dS 沿热流方向的法线.
2
dQ k(x, y, z) u dSdt, n
为了导出温度 u 所满足的方程, 在物体G内任取
一闭曲面 , 它所包围的区域记作 , 则从时刻 t1
到时刻 t2 经过曲面 流入区域 的热量为
Q1
t2 [
t1
k u dS]dt, n
其中 u 表示 u 对曲面的外法向导数.
已知物体表面上各点的热流量 q, 也就是说在
单位时间内流过单位面积的热量是已知的,
由傅里叶实验定律可知
q
k
u n
|S
,
u n |S f2 (x, y, z,t),
其中 f2 (x, y, z,t) q / k 是定义在边界曲面S,且
t 0 上的已知函数.
特别地,如果物体表面上各点的热流量为0,
电流,或有化学反应等情况), 设热源密度(单位时
间内单位体积所产生的热量)为 F(x, y, z,t),
则在时间间隔 (t1,t2 ) 中区域 内所产生的热量为
Q3
Hale Waihona Puke t2 (t1F(x, y, z,t)dv)dt.
同样由于热量要平衡,
c[u(x, y, z,t2) u(x, y, z,t1)]dv
其中 (x, y, z) 为已知函数。 1、第一类边界条件(狄利克雷Dirichlet)
设所考察的物体G的边界曲面为S,已知物
表面体温度函数为 f1(x, y, z, t), 即
u(x, y, z,t) |S f1(x, y, z,t), (x, y, z) S.
10
2、第二类边界条件(诺伊曼Neumann)
u 0 或 2u 0.
12
2.泊松方程(非齐次的拉普拉斯方程)
1.2 热传导方程与定解条件
热传导现象: 如果空间某物体G内各处的温度 不同,则热量就从温度较高的点处向温度较 低的点流动。
一、下面先从物理G内的热传导问题出发来导出 热传导方程。
为此,我们用函数 u(x, y, z,t) 表示物体G
在位置 (x, y, z) 处及时刻 t 的温度。
1
热的传播按傅立叶(Fourier)实验定律进行:
n
u u cos u cos u cos .
n x
y
z
3
流入的热量使区域 内部的温度发生变化, 在时间间隔 (t1,t2 ) 中物理温度从 u(x, y, z,t1) 变化到 u(x, y, z,t2) 所需要的热量为
Q2 c(x, y, z)(x, y, z)[u(x, y, z,t2) u(x, y, z,t1)]dv,
物体在无穷小时段 dt 内流过一个无穷小面积
dS 的热量 dQ 与物体温度沿曲面 dS 法线方向 的方向导数 u 成正比,而热流方向与温度升高的
n
方向相反,即
dQ k(x, y, z) u dSdt, n
其中 k(x, y, z) 称为物体在点 (x, y, z) 处的热传导 系数,为正值. 当物体为均匀且各向同性时,
t x x y y z z
u t
a
2
(
2u x 2
2u y 2
2u z2 )
f
(x,
y, z,t).
其中 f (x, y, z,t) F(x, y, z,t) / c.
非齐次热传 导方程
相对应的一维、二维热传导方程可 类似写出。
9
二、定解条件
初始条件:表示初始时刻物体内温度的分布情况
u(x, y, z,t) |t0 (x, y, z),
[t2 k u dS]dt t2 ( F(x, y, z,t)dv)dt.
t1 n
t1
8
{t2 [c u (k u ) (k u ) (k u )]dv}dt
t1
t x x y y z z
t2 ( F(x, y, z,t)dv)dt.
t1
c u (k u ) (k u ) (k u ) F(x, y, z,t).
是连续的,于是得
c u (k u ) (k u ) (k u ).
t x x y y z z
上式称为非均匀的各向同性体的热传导方程.
如果物体是均匀的,此时 k,c, 为常数, 记
k / c a2, 则得
u t
a
2
(
2u x 2
2u y 2
2u z 2 ).
齐次热传导 方程
7
如果所考察的物体内部有热源(例如物体中通有
(t2 c udv)dt
t1
t
{t2 [ (k u ) (k u ) (k u )]dv}dt
t1 x x y y z z
移项即得 6
{t2 [c u (k u ) (k u ) (k u )]dv}dt 0.
t1
t x x y y z z
由于 t1,t2 与区域 都是任意取的,并且被积函数
5
而 Q2 可化为 (利用牛顿-莱布尼兹公式)
Q2 c[u(x, y, z,t2) u(x, y, z,t1)]dv
c( t2 udt)dv
t1 t
因此由
t2 (
t1
c udv)dt,
t
c[u(x, y, z,t2 ) u(x, y, z,t1)]dv
[t2
t1
k u dS]dt n
k(u cos u cos u cos )dS]dt.
x
y
z
利用奥-高(Gauss)公式
(
P x
Q y
R z
)dv
(P
cos
Q
cos
R
cos
)dS
设函数 u 关于变量 x, y, z 具有二阶连续偏导数,
关于变量 t 具有一阶连续偏导数, Q1 可化为
Q1
{t2
t1
[ (k u ) (k u ) (k u )]dv}dt; x x y y z z
则相应的边界条件为
u n
|S
0.
绝热性边界条 件
11
1.3 拉普拉斯方程与定解条件
拉普拉斯方程描述的是稳定状态下物理量的 分布规律.
1.三维拉普拉斯(Laplace)方程 (调和方程)
2u x 2
2u y 2
2u z 2
0
(1)
凡具有二阶连续偏导数并满足方程(1)的连 续函数为调和函数.
方程(1)通常表示成