概率论与数理统计第二章测验题答案
概率论与数理统计第二章习题参考答案]
![概率论与数理统计第二章习题参考答案]](https://img.taocdn.com/s3/m/02a7d8de6f1aff00bed51ebf.png)
(1)设
X
服从二项分布,其分布律为 P{X
=
k}=
C
k n
pk (1−
)p n−k
K=0,1,2,……n,问 K 取何值时 P{X = k}最大?
(2)设 X 服从泊松分布,其分布率为 p{X = k} = λke−λ ,k=0,1,2……
k!
问 K 取何值时 P{X = k}最大?
(1)
解: M
=
N 试确定常数 a
(2)设随机变量 X 的分布律为 P{X = k} = b ⋅ ⎜⎛ 2 ⎟⎞k , k = 1,2.....
⎝3⎠
试确定常数 b
(3)设随机变量 X 的分布律为 P{X = k} = c ⋅ λk , k = 0,1,2......λ > 0 为常数,
k!
试确定常数 c
N
解:(1) ∑ P{X
6、设随机变量 X 的分布律为 P{X = k} = k , k = 1,2,3,4,5
15
其分布函数为 F (x) ,试求:
(1)
P⎨⎧ ⎩
1 2
<
X
<
5 2
⎫ ⎬ ⎭
,
(2) P{1 ≤ X ≤ 2},
(3) F ⎜⎛ 1 ⎟⎞ ⎝5⎠
解:(1)
P⎨⎧ ⎩
1 2
<
X
<
5⎫
2
⎬ ⎭
=
P{X
= 1}+
0
2
1
x
xdx+
0
1
(2−
x)dx=
2x
−
x2
/
2−1
0< x ≤1 1< x≤2
概率论与数理统计第二章测验题答案

第二章测验题答案一. 填空(共28分,每题4分)1. 投掷一枚均匀对称的硬币,以X 表示正面出现的次数,则随机变量在区间 (0.5, 1.5)取值的概率为0.5 . 解:随机变量X 的分布律为所以{0.5}{1}0.551.P X P X <===≤2. 设随机变量~(1,6)U ξ, 则方程210x x ξ++=, 有实根的概率为 4/5 . 解:方程210x x ξ++=有实根,则判别式240ξ∆=-≥, 则2ξ≥或者2ξ≤-,所以()2{}{40}{2}{2}P P P ξξξ=∆=-≥=≥⋃≤-方程有实根{2}{2}P P ξξ=≥+≤-又因为随机变量ξ服从参数为(1,6)的均匀分布,所以其概率密度函数为11,16,16()6150,0,x x f x ⎧⎧<<<<⎪⎪==-⎨⎨⎪⎪⎩⎩其它其它所以6222214{2}(),55{2}()00.P f t dt dt P f t dt dt ξξ+∞---∞-∞≥===≤-===⎰⎰⎰⎰故{}P 方程有实根{2}{2}P P ξξ=≥+≤-45=. 3. 设(2,),(3,)X b p Y b p , 若519{}P X ≥=, 则{1}P Y ≥=19/27.解:由题意知随机变量X 和Y 分别服从参数为2和p 、3和p 的二项分布.5{1}1{0}9P X P X =≥=-=, 得到4{0}9P X ==, 即00222(1)(1)C p p p -=-49=,所以2(1)3p -=, 从而33333219{1}1{0}1(1)1(1)1.327P Y P Y C p p p ⎛⎫≥=-==--=--=-= ⎪⎝⎭4. 设X 的概率密度函数为1,[0,1]32(),[3,6]90,x f x x ⎧∈⎪⎪⎪=∈⎨⎪⎪⎪⎩其它,若k 使得2{}3P X k ≥=, 则k 的取值范围是13k ≤≤.解:此题用画图的方法来解:下图中红线即为()f x 的图像.其中S1表示由红线1()3f x =与x 轴所夹部分的面积,即{01}P X ≤≤13=;S2表示红线2()9f x =与x 轴所夹部分面积,即{36}P X ≤≤22393=⨯=.而{}P X k ≥即表示()f x 图像与x 轴所夹图形在直线x k =右侧的面积(绿色虚线所示范围). 因为2{}3P X k ≥={36}P X =≤≤,所以k 的取值范围只能在1和3之间, 即13k ≤≤.5. 设随机变量(1,4)X N , 则{12}P X <≤= 0.1915 .(已知(0.5)0.6915Φ=.) 解:由(1,4)X N 可知,1,2μσ==. 首先进行正态分布的标准化,在查表计算11211{12}{0}222X X P X P P μμσσ----⎧⎫<≤=<≤=<≤⎨⎬⎩⎭1()(0)2=Φ-Φ0.69150.5=-=0.19156. 设硕士研究生入学数学考试及格率为0.55,则15名考生中数学考试及格人数X 的概率分布是二项分布,参数为15和0.55, 解:15名考生参加考试,可以视为15次伯努利实验。
概率论与数理统计2.第二章练习题(答案)

第二章练习题(答案)一、单项选择题1.已知连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤+<=ππx x b kx x x F ,10,0,0)( 则常数k 和b 分别为 ( A )(A )0,1==b k π (B )π1,0b k = (C )0,21==b k π (D )π21,0==b k . 2.下列函数哪个是某随机变量的分布函数 ( A )A. f (x )={xa e −x 22a,x ≥01, x <0(a >0); B. f (x )={12cosx, 0< x <π0, 其他C. f (x )={cosx, −π2< x <π20, 其他D. f (x )={sinx, −π2< x <π20, 其他3.若函数()f x 是某随机变量X 的概率密度函数,则一定成立的是 ( C ) A. ()f x 的定义域是[0,1] B. ()f x 的值域为[0,1] C. ()f x 非负 D. ()f x 在(,)-∞+∞内连续4. 设)1,1(~N X ,密度函数为)(x f ,则有( C ) A.{}{}00>=≤X P X P B. )()(x f x f -= C. {}{}11>=≤X P X P D. )(1)(x F x F --=5. 设随机变量()16,~μN X ,()25,~μN Y ,记()41-<=μX P p ,()52+>=μY P p ,则正确的是 ( A ).(A )对任意μ,均有21p p = (B )对任意μ,均有21p p < (C )对任意μ,均有21p p > (D )只对μ的个别值有21p p = 6. 设随机变量2~(10,)X N ,则随着的增加{10}P X ( C )A.递增B.递减C.不变D.不能确定7.设F 1(x )与F 2(x )分别为随机变量X 1、X 2的分布函数,为使F (x )=aF 1(x )-bF 2(x )是某一随机变量的分布函数,在下列给定的多组数值中应取 ( A )A . a =53, b =52-; B . a =32, b =32;C . 21-=a , 23=b ; D . 21=a , 23-=b .8.设X 1与X 2是任意两个相互独立的连续型随机变量,它们的概率密度函数分别为f 1(x )和f 2(x ),分布函数分别为F 1(x )和F 2(x ),则 ( D ) (A) f 1(x )+f 2(x ) 必为某个随机变量的概率密度; (B )f 1(x )•f 2(x ) 必为某个随机变量的概率密度; (C )F 1(x )+F 2(x ) 必为某个随机变量的分布函数; (D) F 1(x ) •F 2(x ) 必为某个随机变量的分布函数。
《概率论与数理统计》习题及答案 第二章

《概率论与数理统计》习题及答案第 二 章1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =‘任取一件是i 等品’ 1,2,3i =,所求概率为13133()(|)()P A A P A A P A =,因为 312A A A =+所以 312()()()0.60.30.9P A P A P A =+=+=131()()0.6P A A P A ==故1362(|)93P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =‘所取两件中有一件是不合格品’i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为2242112464()1(|)()5P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则345A B B B =++, 所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++. 5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -.解 ()()()() 1.1()(|) 1.10P AB P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。
概率论与数理统计答案第二章

= 1 e 1.2 e 1.6 (5)P{恰好 2.5 分钟}= P (X=2.5)=0
0, x 1, 18.[十七] 设随机变量 X 的分布函数为 FX ( x) ln x,1 x e, , 1, x e.
求(1)P (X<2), P {0<X≤3}, P (2<X< 5 2 ); (2)求概率密度 fX (x). 解: (1)P (X≤2)=FX (2)= ln2, P (0<X≤3)= FX (3)-FX (0)=1,
第二章
随机变量及其分布
1.[一] 一袋中有 5 只乒乓球,编号为 1、2、3、4、5,在其中同时取三只,以 X 表示取出的三只球中的最大号码,写出随机变量 X 的分布律 解:X 可以取值 3,4,5,分布律为
2 1 C2 3 C5
P ( X 3) P (一球为3号, 两球为 1,2号)
P( X 1) 1 P( X 0) 1 0.59049 0.40951
[五] 一房间有 3 扇同样大小的窗子,其中只有一扇是打开的。有一只鸟自开着的 窗子飞入了房间,它只能从开着的窗子飞出去。鸟在房子里飞来飞去,试图飞出房间。 假定鸟是没有记忆的,鸟飞向各扇窗子是随机的。 (1)以 X 表示鸟为了飞出房间试飞的次数,求 X 的分布律。 (2)户主声称,他养的一只鸟,是有记忆的,它飞向任一窗子的尝试不多于一次。 以 Y 表示这只聪明的鸟为了飞出房间试飞的次数,如户主所说是确实的,试求 Y 的分布 律。 (3)求试飞次数 X 小于 Y 的概率;求试飞次数 Y 小于 X 的概率。
38 81
8.[八] 甲、乙二人投篮,投中的概率各为 0.6, 0.7,令各投三次。求 (1)二人投中次数相等的概率。 记 X 表甲三次投篮中投中的次数 Y 表乙三次投篮中投中的次数 由于甲、乙每次投篮独立,且彼此投篮也独立。 P (X=Y)=P (X=0, Y=0)+P (X=2, Y=2)+P (X=3, Y=3) = P (X=0) P (Y=0)+ P (X=1) P (Y=1)+ P (X=2) P (Y=2)+ P (X=3) P (Y=3)
概率论及数理统计第二章考试题答案

第二章考试题答案一. 填空(共28分,每题4分)1. 抛掷一枚均匀对称的硬币,以X 表示正面出现的次数,则随机变量在区间2. , 取值的概率为 . 解:随机变量X 的散布律为所以{0.5}{1}0.551.P X P X <===≤3. 设随机变量~(1,6)U ξ, 则方程210x x ξ++=, 有实根的概率为 4/5 . 解:方程210x x ξ++=有实根,则判别式240ξ∆=-≥, 则2ξ≥或2ξ≤-,所以()2{}{40}{2}{2}P P P ξξξ=∆=-≥=≥⋃≤-方程有实根{2}{2}P P ξξ=≥+≤-又因为随机变量ξ服从参数为(1,6)的均匀散布,所以其概率密度函数为11,16,16()6150,0,x x f x ⎧⎧<<<<⎪⎪==-⎨⎨⎪⎪⎩⎩其它其它所以6222214{2}(),55{2}()00.P f t dt dt P f t dt dt ξξ+∞---∞-∞≥===≤-===⎰⎰⎰⎰ 故{}P 方程有实根{2}{2}P P ξξ=≥+≤-45=. 4. 设(2,),(3,)X b p Y b p , 若519{}P X ≥=, 则{1}P Y ≥=19/27. 解:由题意知随机变量X 和Y 别离服从参数为2和p 、3和p 的二项散布.5{1}1{0}9P X P X =≥=-=, 取得4{0}9P X ==, 即00222(1)(1)C p p p -=-49=,1329S2S1所以2(1)3p -=, 从而 300333219{1}1{0}1(1)1(1)1.327P Y P Y C p p p ⎛⎫≥=-==--=--=-= ⎪⎝⎭5. 设X 的概率密度函数为1,[0,1]32(),[3,6]90,x f x x ⎧∈⎪⎪⎪=∈⎨⎪⎪⎪⎩其它,若k 使得2{}3P X k ≥=, 则k 的取值范围是13k ≤≤. 解:此题用画图的方式来解:下图中红线即为()f x 的图像.()f xx0 1 2 3 4 5 6其中S1表示由红线1()3f x =与x 轴所夹部份的面积,即{01}P X ≤≤13=;S2表示红线2()9f x =与x 轴所夹部份面积,即{36}P X ≤≤22393=⨯=. 而{}P X k ≥即表示()f x 图像与x 轴所夹图形在直线x k =右边的面积(绿色虚线所示x=k范围). 因为2{}3P X k ≥={36}P X =≤≤,所以k 的取值范围只能在1和3之间, 即 13k ≤≤. 6. 设随机变量(1,4)XN , 则{12}P X <≤= .(已知(0.5)0.6915Φ=.)解:由(1,4)XN 可知,1,2μσ==. 第一进行正态散布的标准化,在查表计算11211{12}{0}222X X P X P P μμσσ----⎧⎫<≤=<≤=<≤⎨⎬⎩⎭ 1()(0)2=Φ-Φ0.69150.5=-=7. 设硕士研究生入学数学考试合格率为,则15名考生中数学考试合格人数X 的概率散布是二项散布,参数为15和, 解:15名考生参加考试,能够视为15次伯努利实验。
概率论与数理统计第二章答案

第二章 随机变量及其分布1、解:设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为投保一年内因其他原因死亡:5万,概率为投保一年内没有死亡:0X0 P2、一袋中有55,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为 也可列为下表 X : 3, 4,5P :106,103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。
解:任取三只,其中新含次品个数X 可能为0,1,2个。
3522)0(315313===C C X P3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表 X : 0, 1, 2P : 351,3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1) (1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。
(此时称X 服从以p 为参数的几何分布。
)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。
(此时称Y 服从以r, p 为参数的巴斯卡分布。
) x1 2 O P(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。
解:(1)P (X=k )=q k -1p k=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p ,或记r+n=k ,则 P {Y=k }= ,1,,)1(11+=----r r k p p C rk r r k (3)P (X=k ) = k - k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P 5、 一房间有3扇同样大小的窗子,其中只有一扇是打开的。
概率论与数理统计-第二章习题附答案

概率论与数理统计-第二章习题附答案习题2-21. 设A 为任一随机事件, 且P (A )=p (0<p <1). 定义随机变量1,,0,A X A =⎧⎨⎩发生不发生.写出随机变量X 的分布律. 解X0 1P1-p p2. 已知随机变量X 只能取-1,0,1,2四个值,且取这四个值的相应概率依次为c c c c 167,85,43,21. 试确定常数c , 并计算条件概率}0|1{≠<X X P .解 由离散型随机变量的分布律的性质知,13571,24816c c c c+++= 所以3716c =.所求概率为P {X <1| X≠}=258167852121}0{}1{=++=≠-=cc c c X P X P .3. 设随机变量X 服从参数为2, p 的二项分布, 随机变量Y 服从参数为3, p 的二项分布, 若{P X ≥51}9=, 求{P Y ≥1}. 解 注意p{x=k}=kk n knC p q -,由题设5{9P X =≥21}1{0}1,P X q =-==- 故213q p =-=. 从而{P Y≥32191}1{0}1().327P Y =-==-=4. 在三次独立的重复试验中, 每次试验成功的概率相同, 已知至少成功一次的概率为1927, 求每次试验成功的概率.解 设每次试验成功的概率为p , 由题意知至少成功一次的概率是2719,那么一次都没有成功的概率是278. 即278)1(3=-p , 故 p =31. 5. 若X 服从参数为λ的泊松分布, 且{1}{3}P X P X ===, 求参数λ.解 由泊松分布的分布律可知6=λ.6. 一袋中装有5只球, 编号为1,2,3,4,5. 在袋中同时取3只球, 以X 表示取出的3只球中的最大号码, 写出随机变量X 的分布律.解 X 的分布律是X3 4 5 P 110 31035 习题2-3求分布函数F (x ), 并计算概率P {X <0}, P {X <2},P {-2≤X <1}.解 (1) F (x )=0,1,0.15,10,0.35,01,1,1.x x x x <-⎧⎪-<⎪⎨<⎪⎪⎩≤≤≥(2) P {X <0}=P {X =-1}=0.15;(3) P {X <2}= P {X =-1}+P {X =0}+P {X =1}=1;(4) P {-2≤x <1}=P {X =-1}+P {X =0}=0.35. 2. 设随机变量X 的分布函数为F (x ) = A +B arctan x -∞<x <+∞.试求: (1) 常数A 与B ; (2) X 落在(-1, 1]内的概率.解 (1) 由于F (-∞) = 0, F (+∞) = 1, 可知()0112,.2()12A B A B A B πππ⎧+-=⎪⎪⇒==⎨⎪+=⎪⎩(2){11}(1)(1)P X F F -<=--≤1111(arctan1)(arctan(1))22ππ=+-+- 11111().24242ππππ=+⋅---= 3. 设随机变量X 的分布函数为F (x )=0, 0, 01,21,1,,x xx x <<⎧⎪⎪⎨⎪⎪⎩ ≤ ≥求P {X ≤-1}, P {0.3 <X <0.7}, P {0<X ≤2}.解 P {X 1}(1)0F -=-=≤,P {0.3<X <0.7}=F (0.7)-F {0.3}-P {X =0.7}=0.2,P {0<X ≤2}=F (2)-F (0)=1.习题2-41. 选择题(1) 设2, [0,],()0, [0,].x x c f x x c ∈=∉⎧⎨⎩如果c =( ), 则()f x 是某一随机变量的概率密度函数.(A) 13. (B) 12. (C) 1. (D) 32. 本题应选(C ).(2) 设~(0,1),X N 又常数c 满足{}{}P X c P X c =<≥, 则c 等于( ).(A) 1. (B) 0. (C) 12. (D) -1. 本题应选(B).(3) 下列函数中可以作为某一随机变量的概率密度的是( ).(A) cos ,[0,],()0,x x f x π∈=⎧⎨⎩其它. (B) 1,2,()20,x f x <=⎧⎪⎨⎪⎩其它.(C)22()2,0,()20,0.≥x x f x x μσπσ--=<⎧⎪⎨⎪⎩ (D)e ,0,()0,0.≥x x f x x -=<⎧⎨⎩本题应选(D).(6) 设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{1}{1},P X P Y μμ-<>-< 则下式中成立的是( ).(A) σ1 < σ2. (B) σ1 > σ2. (C) μ1<μ2. (D) μ1 >μ2.答案是(A).(7) 设随机变量X 服从正态分布N (0,1), 对给定的正数)10(<<αα, 数αu 满足{}P X u αα>=, 若{}P X x α<=, 则x 等于( ).(A) 2u α . (B) 21α-u . (C) 1-2u α.(D)α-1u .答案是(C).2. 设连续型随机变量X 服从参数为λ的指数分布, 要使1{2}4P k X k <<=成立, 应当怎样选择数k ? 解X 其分布函数为1e ,0,()0,0.≤x x F x x λ-->=⎧⎨⎩由题意可知221{2}(2)()(1e )(1e )e e 4k k k kP k X k F k F k λλλλ----=<<=-=---=-.于是ln 2k λ=.3. 设随机变量X 有概率密度34,01,()0,x x f x <<=⎧⎨⎩其它,要使{}{}≥P X a P X a =<(其中a >0)成立, 应当怎样选择数a ?解 由条件变形,得到1{}{}P X a P X a -<=<,可知{}0.5P X a <=, 于是34d 0.5ax x =⎰, 因此42a =. 4. 设连续型随机变量X 的分布函数为20,0,()01,1,1,,≤≤x F x x x x <=>⎧⎪⎨⎪⎩求: (1) X 的概率密度; (2){0.30.7}P X <<.解 (1) 由()()F x f x '=得2,01()0,其它.x x f x <<⎧=⎨⎩ (2) 22{0.30.7}(0.7)(0.3)0.70.30.4P X F F <<=-=-=.5. 设随机变量X 的概率密度为f (x )= 2,01,0,x x ⎧⎨⎩ ≤≤ 其它,求P {X ≤12}与P {14X <≤2}. 解{P X≤12201112d 2240}x x x ===⎰; 1{4P X <≤12141152}2d 1164x x x ===⎰.6. 设连续型随机变量X 具有概率密度函数,01,(),12,0,x x f x A x x <=-<⎧⎪⎨⎪⎩≤≤其它.求: (1) 常数A ;(2) X 的分布函数F (x ).解 (1) 由概率密度的性质可得1222011201111d ()d []122x x A x x x Ax x A =+-=+-=-⎰⎰, 于是 2A =; (2) 由公式()()d x F x f x x -∞=⎰可得(过程简略)220,0,1()221, 2.1,021,12x F x x x x x x x =->⎧⎪⎪<⎪⎨⎪-<⎪⎪⎩≤≤,≤,7. 设随机变量X 的概率密度为1(1),02,()40,x x f x ⎧⎪⎨⎪⎩+<<=其它,对X 独立观察3次, 求至少有2次的结果大于1的概率. 解 2115{1}(1)d 48P X x x >=+=⎰.所以, 3次观察中至少有2次的结果大于1的概率为223333535175()()()888256C C +=.8. 设~(0,5)X U , 求关于x 的方程24420x Xx ++=有实根的概率.解 若方程有实根, 则 21632X -≥0, 于是2X ≥2. 故方程有实根的概率为P {2X ≥2}=21{2}P X -<1{22}P X =--<<21d 5x =-215=-10. 设随机变量2~(2,)X N σ, 若{04}0.3P X <<=, 求{0}P X <.解 因为()~2,X N σ2,所以~(0,1)X Z N μσ-=. 由条件{04}0.3P X <<=可知02242220.3{04}{}()()X P X P ΦΦσσσσσ---=<<=<<=--, 于是22()10.3Φσ-=, 从而2()0.65Φσ=. 所以{{}2020}P P X X σσ==--<<22()1()0.35ΦΦσσ-=-=.习题2-52. 设~(1,2),23X N Z X =+, 求Z 所服从的分布及概率密度.解 若随机变量2~(,)X N μσ, 则X 的线性函数Y aX b =+也服从正态分布, 即2~(,()).Y aX b N a b a μσ=++ 这里1,μσ==所以Z ~(5,8)N .概率密度为()f z=2(5)16,x x ---∞<<+∞. 3. 已知随机变量X 的分布律为X-1137P 0.37 0.05 0.2 0.13 0.25(1) 求Y =2-X 的分布律; (2) 求Y =3+X 2分布律.解 (1)2-X-5 -1 1 2 3P 0.25 0.13 0.2 0.05 0.37 (2) 3+X 23 4 12 52P 0.05 0.57 0.13 0.254. 已知随机变量X 的概率密度为()X f x =1142ln 20x x <<⎧⎪⎨⎪⎩, , , 其它,且Y =2-X , 试求Y 的概率密度.解 )(y F Y={P Y ≤}{2y P X =-≤}{y P X =≥2}y -1{2}P X y =-<-=1-2()d yX f x x--∞⎰. 于是可得Y 的概率密度为121,2(2)ln 20, ,()其它.Y y y f y -<<-⎧⎪=⎨⎪⎩5. 设随机变量X 服从区间(-2,2)上的均匀分布, 求随机变量2Y X =的概率密度.解 因为对于0<y <4,(){Y F y P Y=≤2}{y P X =≤}{y P y =-X y ()()XX F y F y =--.于是随机变量2Y X =的概率密度函数为()Y f y ()22X X f y f y yy=-0 4.4y y=<< 即 ()04,40,.其它f y y y=<<⎩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章测验题答案一. 填空(共28分,每题4分)1. 投掷一枚均匀对称的硬币,以X 表示正面出现的次数,则随机变量在区间 (0.5, 1.5)取值的概率为0.5 . 解:随机变量X 的分布律为所以{0.5}{1}0.551.P X P X <===≤2. 设随机变量~(1,6)U ξ, 则方程210x x ξ++=, 有实根的概率为 4/5 . 解:方程210x x ξ++=有实根,则判别式240ξ∆=-≥, 则2ξ≥或者2ξ≤-,所以()2{}{40}{2}{2}P P P ξξξ=∆=-≥=≥⋃≤-方程有实根{2}{2}P P ξξ=≥+≤-又因为随机变量ξ服从参数为(1,6)的均匀分布,所以其概率密度函数为11,16,16()6150,0,x x f x ⎧⎧<<<<⎪⎪==-⎨⎨⎪⎪⎩⎩其它其它所以6222214{2}(),55{2}()00.P f t dt dt P f t dt dt ξξ+∞---∞-∞≥===≤-===⎰⎰⎰⎰ 故{}P 方程有实根{2}{2}P P ξξ=≥+≤-45=. 3. 设(2,),(3,)X b p Y b p , 若519{}P X ≥=, 则{1}P Y ≥=19/27. 解:由题意知随机变量X 和Y 分别服从参数为2和p 、3和p 的二项分布.5{1}1{0}9P X P X =≥=-=, 得到4{0}9P X ==, 即00222(1)(1)C p p p -=-49=, 所以2(1)3p -=, 从而3300333219{1}1{0}1(1)1(1)1.327P Y P Y C p p p ⎛⎫≥=-==--=--=-= ⎪⎝⎭4. 设X 的概率密度函数为1,[0,1]32(),[3,6]90,x f x x ⎧∈⎪⎪⎪=∈⎨⎪⎪⎪⎩其它,若k 使得2{}3P X k ≥=, 则k 的取值范围是13k ≤≤.解:此题用画图的方法来解:下图中红线即为()f x 的图像.其中S1表示由红线1()3f x =与x 轴所夹部分的面积,即{01}P X ≤≤13=;S2表示红线2()9f x =与x 轴所夹部分面积,即{36}P X ≤≤22393=⨯=. 而{}P X k ≥即表示()f x 图像与x 轴所夹图形在直线x k =右侧的面积(绿色虚线所示范围). 因为2{}3P X k ≥={36}P X =≤≤,所以k 的取值范围只能在1和3之间, 即 13k ≤≤.5. 设随机变量(1,4)X N , 则{12}P X <≤= 0.1915 .(已知(0.5)0.6915Φ=.) 解:由(1,4)X N 可知,1,2μσ==. 首先进行正态分布的标准化,在查表计算11211{12}{0}222X X P X P P μμσσ----⎧⎫<≤=<≤=<≤⎨⎬⎩⎭1()(0)2=Φ-Φ0.69150.5=-=0.19156. 设硕士研究生入学数学考试及格率为0.55,则15名考生中数学考试及格人数X 的概率分布是二项分布,参数为15和0.55, 解:15名考生参加考试,可以视为15次伯努利实验。
每一名考生考试及格为成功A ,不及格为失败A ,成功的概率为p=0.55. 因此,15名考生中及格人数X 服从参数为(15, 0.55)的二项分布.7. 用还原抽样的方式从1, 2, …, 9等九个阿拉伯数字中一个接一个地抽取数字,直到出现被3整除的数字为止,则被3整除的数字出现在第三次抽取的概率为__4/27__. 解:从1,2,…,9中随意抽取一个数,能被3整除的概率为p=1/3. 以X 表示题中要求的抽样次数,则X 的概率分布为1,1,2{}(1...),n P X n p p n -==-=即参数为p=1/3的几何分布,因此被3整除的数字出现在第三次抽取的概率为2124.37{3}32P X ⎛⎫⎪⎭= ⎝==二. 选择(共24分,每题4分)1. 设1()F x 和2()F x 分别是随机变量1X 和2X 的分布函数,为使12()()()F x aF x bF x =-是某一随机变量的分布函数,在下列数值中a 和b 应取[ A](A) 32,55a b ==- (B)22,33a b ==-(C) 13,22a b =-= (D)13,22a b ==-解:为使F(x)也成为分布函数,则需要满足分布函数的四个性质,其中为判定a,b 的取值,则利用121()lim ()()()x F F x aF bF a b →+∞=+∞==+∞-+∞=-,各选项中仅有选项(A)符合这个条件.2. 如果X 的可能值充满区间[A,B],那么sin x 可以成为这个随机变量的密度函 数.(此题有两个答案)(A) [0,0.5]π (B) [0.5,]ππ (C) [0,]π (D) [,1.5]ππ解:X 的可能值充满某区间[a, b],即表示X 落在这个区间以外的概率为0,密度函数在此区间以外就等于0. 又因为希望s i n x 为密度函数,则利用密度函数的性质()1f x dx +∞-∞=⎰来判定,即1sin sin baxdx xdx +∞-∞==⎰⎰, 通过对这四个选项的计算,发现只有(A)、(B)满足这个条件.3. 设随机变量X的密度函数为|1()0,||1x f x x <=≥⎩,则c=[ C ].(A) 2π (B) 12π (C) 1π (D) 2π解:利用密度函数的性质来做:1111()arcsin 2|[()2]f x dx c x c c πππ+∞--∞-===⋅=--=⎰⎰所以1c π=.4. 设随机变量2(,)X N μσ ,则概率{}P X μ≤的值[ D ].(A)与μ有关,但是与σ无关 (B) 与μ无关,但是与σ有关 (C)与μ和σ均有关 (D) 与μ和σ均无关解:由正态曲线可知,1{}2P X μ≤=,与μ和σ均无关.5. 设随机变量2(,)X N μσ ,且{}{}P X c P X c ≤=>,则c 的值为 [ B ]. (A) 0 (B)μ (C) μ- (D) σ解:由{}{}P X c P X c ≤=>可知,正态曲线与x 轴所夹部分在直线x c =两侧的面积相等,则x c =即为曲线对称轴,所以c μ=. 6. 设随机变量X 的概率密度为()f x ,且()()f x f x -=,()F x 是X 的分布函数,则对任意实数a >0,()F a -=[ B ](A)01()a f x dx -⎰ (B)01()2a f x dx -⎰ (C) ()F a (D) 2()1F a -解:由()()f x f x -=可知,密度函数的曲线是关于y 轴对称的,则由曲线与x周所围部分的面积及相互关系可知()1()F a F a -=-,0011()()()22a a F a f x dx f x dx --=-=-⎰⎰.三. 解答题(请写明求解过程,共48分) 1. (12分)已知连续型随机变量X 的分布函数为0,()arcsin ,,(0)1,x ax F x A B a x a a a x a<-⎧⎪⎪=+-≤≤>⎨⎪>⎪⎩求(1) A, B; (2)()f x .解:(1) 利用分布函数的性质求其中的未知系数:因为X 是连续型随机变量,所以其分布函数F(x)在整个实轴上是连续函数,即在,x a x a =-=两个点均连续,因此有:在x a =-点去左极限:()()lim ()lim 00arcsin2x a x a a F x A B A B a π→--→---===+=- 在x a =点取右极限:lim ()lim 11arcsin2x a x a a F x A B A B a π→+→+===+=+ 所以解得11,.2A B π== 0,()arcsin ,12,1,1x a x F x a x a a x aπ<-⎧⎪⎪=+-≤≤⎨⎪>⎪⎩其中0a >.(2) 对分布函数在各区间求x 的导数得到,注意()f x 的不连续点x a =-和x a =-, 对这两个间断点赋值为零即可,所以有()011,,a x a f x a π⎧-<<⎪⎪=⎨⎪⎪⎩其它0,a x a -<<=⎩其它. 2. (12分)已知X 的密度函数为,()000,x x x xe f x -=≤>⎧⎨⎩求(1)()F x ; (2) P{X=1}; (3){1}P X ≥ 解:(1) 分别考虑0x ≤和0x >两种情况:当0x ≤时,(){}()0xF x P X x f t dt -∞=≤==⎰;当0x >时,00(){}()()x x xt t F x P X x f t dt te dt td e ---∞=≤===-⎰⎰⎰(利用分部积分法)()000|()|xx xt x t x t x t x t xte e dt xe e dt xe d e xe e --------=--=-+=--=--⎰⎰⎰11(1)x x x xe e x e ---=--+=-+所以1(1),0()0,0x x e x F x x -⎧-+>=⎨≤⎩,(注意此分布函数为连续函数.)(2) 出现概率密度了,所以X 一定是连续型随机变量,所以单点处的概率为0.如果题目中只给出了分布函数,且分布函数为连续函数,则单点处的概率也为0,不用讨论X 是什么类型的随机变量。
(3) {1}1{1}1{1}P X P X P X ≥=-<=-≤111(1)11(11)2.F e e --⎡⎤=-=--+=⎣⎦3. (8分)已知连续型随机变量的密度函数为1||,11()0,x x f x --<<⎧=⎨⎩其它求(1)1{2}4P X -≤<; (2)(2)F .解:由题意得到 1,10()1,010,x x f x x x +-<<⎧⎪=-≤<⎨⎪⎩其它 (1) 11104422101{2}()()()()4P X f x dx f x dx f x dx f x dx -----≤<==++⎰⎰⎰⎰114210(1)(1)dx x dx x dx ---=+++-⎰⎰⎰172323232=+=. (2) 法一:利用分布函数的定义直接结算:2(2){2}()F P X f t dt -∞=≤=⎰101211()()()()f t dt f t dt f t dt f t dt --∞-=+++⎰⎰⎰⎰1012110(1)(1)0dt x dt x dt dt --∞-=+++-+⎰⎰⎰⎰1=法二:利用密度函数的图像直接求面积即可。