高考数学解答题17题常见类型

合集下载

高中数学经典高考难题集锦(解析版)1

高中数学经典高考难题集锦(解析版)1

2021年10月18日姚杰的高中数学组卷一.选择题〔共17小题〕1.〔2021•浙江〕设△ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有那么〔〕A.∠ABC=90°B.∠BAC=90°C.AB=AC D.AC=BC2.〔2021•广东〕对任意两个非零的平面向量和,定义○=,假设平面向量、满足||≥||>0,与的夹角,且○和○都在集合中,那么○=〔〕A.B.1 C.D.3.〔2007•天津〕设两个向量和,其中λ,m,α为实数.假设,那么的取值范围是〔〕A.[﹣6,1]B.[4,8]C.〔﹣∞,1]D.[﹣1,6]4.〔2021•广东〕对任意两个非零的平面向量和,定义°=.假设两个非零的平面向量,满足与的夹角,且•和•都在集合中,那么•=〔〕A.B.C.1 D.5.〔2021•山东〕设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,假设〔λ∈R〕,〔μ∈R〕,且,那么称A3,A4调和分割A1,A2,点C〔c,0〕,D〔d,O〕〔c,d∈R〕调和分割点A〔0,0〕,B〔1,0〕,那么下面说法正确的选项是〔〕A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上6.〔2021•福建〕设,,为同一平面内具有相同起点的任意三个非零向量,且满足与不共线,⊥,||=||,那么|•|的值一定等于〔〕A.以,为邻边的平行四边形的面积B.以,为两边的三角形面积C.,为两边的三角形面积D.以,为邻边的平行四边形的面积7.〔2021•浙江〕,是平面内两个互相垂直的单位向量,假设向量满足〔﹣〕•〔﹣〕=0,那么||的最大值是〔〕A.1 B.2 C.D.8.〔2007•山东〕在直角△ABC中,CD是斜边AB上的高,那么以下等式不成立的是〔〕A.B.C.D.9.〔2007•湖北〕连掷两次骰子得到的点数分别为m和n,记向量与向量的夹角为θ,那么的概率是〔〕A.B.C.D.10.〔2006•福建〕||=1,||=,•=0,点C在∠AOB内,且∠AOC=30°,设=m+n〔m、n∈R〕,那么等于〔〕A.B.3 C.D.11.〔2005•湖南〕P是△ABC所在平面上一点,假设,那么P是△ABC的〔〕A.外心 B.内心 C.重心 D.垂心12.〔2005•江西〕在△OAB中,O为坐标原点,,那么当△OAB的面积达最大值时,θ=〔〕A.B.C.D.13.〔2005•安徽〕点O是三角形ABC所在平面内的一点,满足,那么点O是△ABC的〔〕A.三个内角的角平分线的交点 B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点14.平面上一点P在原坐标系中的坐标为〔0,m〕〔m≠0〕,而在平移后所得到的新坐标系中的坐标为〔m,0〕,那么新坐标系的原点O′在原坐标系中的坐标为〔A 〕A.〔﹣m,m〕B.〔m,﹣m〕C.〔m,m〕 D.〔﹣m,﹣m〕15.〔2021•桃城区校级模拟〕设向量,满足,,<>=60°,那么||的最大值等于〔〕A.2 B.C.D.116.〔2021•安徽〕在平面直角坐标系中,O是坐标原点,两定点A,B满足||=||=•=2,那么点集{P|=λ+μ,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是〔〕A.B. C. D.17.〔2021•上海〕在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.假设m、M分别为〔++〕•〔++〕的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},那么m、M满足〔〕A.m=0,M>0 B.m<0,M>0 C.m<0,M=0 D.m<0,M<0二.解答题〔共13小题〕18.〔2005•上海〕在直角坐标平面中,点P1〔1,2〕,P2〔2,22〕,P3〔3,23〕,…,P n〔n,2n〕,其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点,A2为A1关于点P2的对称点,…,A n为A n﹣1关于点P n的对称点.〔1〕求向量的坐标;〔2〕当点A0在曲线C上移动时,点A2的轨迹是函数y=f〔x〕的图象,其中f〔x〕是以3位周期的周期函数,且当x∈〔0,3]时,f〔x〕=lgx.求以曲线C为图象的函数在〔1,4]上的解析式;〔3〕对任意偶数n,用n表示向量的坐标.19.〔2021•上海〕定义向量=〔a,b〕的“相伴函数〞为f〔x〕=asinx+bcosx,函数f〔x〕=asinx+bcosx的“相伴向量〞为=〔a,b〕〔其中O为坐标原点〕.记平面内所有向量的“相伴函数〞构成的集合为S.〔1〕设g〔x〕=3sin〔x+〕+4sinx,求证:g〔x〕∈S;〔2〕h〔x〕=cos〔x+α〕+2cosx,且h〔x〕∈S,求其“相伴向量〞的模;〔3〕M〔a,b〕〔b≠0〕为圆C:〔x﹣2〕2+y2=1上一点,向量的“相伴函数〞f〔x〕在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值范围.20.〔2021•江苏〕如图,在正四棱柱ABCD﹣A1B1C1D1中,AA1=2,AB=1,点N是BC 的中点,点M在CC1上.设二面角A1﹣DN﹣M的大小为θ,〔1〕当θ=90°时,求AM的长;〔2〕当时,求CM的长.21.〔2021•山东〕设m∈R,在平面直角坐标系中,向量a=〔mx,y+1〕,向量b=〔x,y﹣1〕,a⊥b,动点M〔x,y〕的轨迹为E.〔Ⅰ〕求轨迹E的方程,并说明该方程所表示曲线的形状;〔Ⅱ〕m=.证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且OA⊥OB〔O为坐标原点〕,并求该圆的方程;〔Ⅲ〕m=.设直线l与圆C:x2+y2=R2〔1<R<2〕相切于A1,且l与轨迹E只有一个公共点B1.当R为何值时,|A1B1|取得最大值?并求最大值.22.〔2007•四川〕设F1、F2分别是椭圆=1的左、右焦点.〔Ⅰ〕假设P是第一象限内该椭圆上的一点,且,求点P的作标;〔Ⅱ〕设过定点M〔0,﹣2〕的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角〔其中O为坐标原点〕,求直线l的斜率k的取值范围.23.〔2021•丰台区校级一模〕如图,△OFP的面积为m,且=1.〔I〕假设,求向量与的夹角θ的取值范围;〔II〕设,且.假设以O为中心,F为焦点的椭圆经过点P,当取得最小值时,求此椭圆的方程.24.设、为平面向量,假设存在不全为零的实数λ,μ使得λ+μ=0,那么称、线性相关,下面的命题中,、、均为平面M上的向量.①假设=2,那么、线性相关;②假设、为非零向量,且⊥,那么、线性相关;③假设、线性相关,、线性相关,那么、线性相关;④向量、线性相关的充要条件是、共线.上述命题中正确的选项是〔写出所有正确命题的编号〕25.〔2005•安徽〕椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A、B两点,与=〔3,﹣1〕共线.〔Ⅰ〕求椭圆的离心率;〔Ⅱ〕设M为椭圆上任意一点,且,证明λ2+μ2为定值.26.〔2021•江苏模拟〕如图,D是△ABC的中点,,那么λ1+λ2=.27.〔2021•泗县校级模拟〕单位圆⊙O:x2+y2=1,A〔1,0〕,B是圆上的动点,∥,.〔1〕求点P的轨迹E的方程;〔2〕求过A作直线l被E截得的弦长的最小值.28.〔2021•西安校级模拟〕向量,动点M到定直线y=1的距离等于d,并且满足,其中O是坐标原点,k是参数.〔1〕求动点M的轨迹方程,并判断曲线类型;〔2〕当时,求的最大值和最小值;〔3〕如果动点M的轨迹是圆锥曲线,其离心率e满足,求实数k的取值范围.29.〔2021•上海〕在直角坐标平面xOy上的一列点A1〔1,a1〕,A2〔2,a2〕,…,A n〔n,a n〕,…,简记为{A n}、假设由构成的数列{b n}满足b n+1>b n,n=1,2,…,其中为方向与y轴正方向相同的单位向量,那么称{A n}为T点列,〔1〕判断,,是否为T点列,并说明理由;〔2〕假设{A n}为T点列,且点A2在点A1的右上方、任取其中连续三点A k、A k+1、A k+2,判断△A k A k+1A k+2的形状〔锐角三角形、直角三角形、钝角三角形〕,并予以证明;〔3〕假设{A n}为T点列,正整数1≤m<n<p<q满足m+q=n+p,求证:.30.〔2021•临川区校级一模〕设点F〔,0〕〔p为正常数〕,点M在x轴的负半轴上,点P 在y轴上,且,.〔Ⅰ〕当点P在y轴上运动时,求点N的轨迹C的方程;〔Ⅱ〕直线l过点F且与曲线C相交于不同两点A,B,分别过点A,B作直线l1:x=﹣的垂线,对应的垂足分别为A1,B1,求的值;〔Ⅲ〕在〔Ⅱ〕的条件下,记,,,λ=,求λ的值.2021年10月18日姚杰的高中数学组卷参考答案与试题解析一.选择题〔共17小题〕1.〔2021•浙江〕设△ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有那么〔〕A.∠ABC=90°B.∠BAC=90°C.AB=AC D.AC=BC考点:平面向量数量积的运算.专题:平面向量及应用.分析:设||=4,那么||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,那么由数量积的几何意义可得||2﹣〔a+1〕||+a≥0恒成立,只需△=〔a+1〕2﹣4a=〔a﹣1〕2≤0即可,由此能求出△ABC是等腰三角形,AC=BC.解答:解:设||=4,那么||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,那么由数量积的几何意义可得,=||•||=||2﹣〔a+1〕〕||,•=﹣a,于是•≥••恒成立,整理得||2﹣〔a+1〕||+a≥0恒成立,只需△=〔a+1〕2﹣4a=〔a﹣1〕2≤0即可,于是a=1,因此我们得到HB=2,即H是AB的中点,故△ABC是等腰三角形,所以AC=BC.应选:D.点评:此题主要考查了平面向量的运算,向量的模及向量的数量积的概念,向量运算的几何意义的应用,还考查了利用向量解决简单的几何问题的能力2.〔2021•广东〕对任意两个非零的平面向量和,定义○=,假设平面向量、满足||≥||>0,与的夹角,且○和○都在集合中,那么○=〔〕A.B.1 C.D.考点:平面向量数量积的运算.专题:空间向量及应用.分析:由题意可得•==,同理可得•==,故有n≥m 且m、n∈z.再由cos2θ=,与的夹角θ∈〔0,〕,可得cos2θ∈〔,1〕,即∈〔,1〕,由此求得n=3,m=1,从而得到•==的值.解答:解:由题意可得•====.同理可得•====.由于||≥||>0,∴n≥m 且m、n∈z.∴cos2θ=.再由与的夹角θ∈〔0,〕,可得cos2θ∈〔,1〕,即∈〔,1〕.故有n=3,m=1,∴•==,应选C.点评:此题主要考查两个向量的数量积的定义,得到n≥m 且m、n∈z,且∈〔,1〕,是解题的关键,属于中档题.3.〔2007•天津〕设两个向量和,其中λ,m,α为实数.假设,那么的取值范围是〔〕A.[﹣6,1]B.[4,8]C.〔﹣∞,1]D.[﹣1,6]考点:相等向量与相反向量;平面向量共线〔平行〕的坐标表示.专题:压轴题.分析:利用,得到λ,m的关系,然后用三角函数的有界性求解的比值,为了简化,把换元.解答:解:由,,,可得,设代入方程组可得消去m化简得,再化简得再令代入上式得〔sinα﹣1〕2+〔16t2+18t+2〕=0可得﹣〔16t2+18t+2〕∈[0,4]解不等式得因而解得﹣6≤k≤1.应选A.点评:此题难度较大,题目涉及到向量、三角函数的有界性、还用到了换元和解不等式等知识,表达了化归的思想方法.4.〔2021•广东〕对任意两个非零的平面向量和,定义°=.假设两个非零的平面向量,满足与的夹角,且•和•都在集合中,那么•=〔〕A.B.C.1 D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:先求出•=,n∈N,•=,m∈N,再由cos2θ=∈〔0,〕,故m=n=1,从而求得•=的值.解答:解:∵°•=====,n∈N.同理可得°•====,m∈N.再由与的夹角,可得cosθ∈〔0,〕,∴cos2θ=∈〔0,〕,故m=n=1,∴•==,应选:D.点评:此题主要考查两个向量的数量积的定义,求得m=n=1,是解题的关键,属于中档题.5.〔2021•山东〕设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,假设〔λ∈R〕,〔μ∈R〕,且,那么称A3,A4调和分割A1,A2,点C〔c,0〕,D〔d,O〕〔c,d∈R〕调和分割点A〔0,0〕,B〔1,0〕,那么下面说法正确的选项是〔〕A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上考点:平面向量坐标表示的应用.专题:平面向量及应用.分析:由题意可得到c和d的关系,,只需结合答案考查方程的解的问题即可.A和B中方程无解,C中由c和d的范围可推出C和D点重合,由排除法选择答案即可.解答:解:由可得〔c,0〕=λ〔1,0〕,〔d,0〕=μ〔1,0〕,所以λ=c,μ=d,代入得〔1〕假设C是线段AB的中点,那么c=,代入〔1〕d不存在,故C不可能是线段AB 的中点,A错误;同理B错误;假设C,D同时在线段AB上,那么0≤c≤1,0≤d≤1,代入〔1〕得c=d=1,此时C和D点重合,与条件矛盾,故C错误.应选D点评:此题为新定义问题,考查信息的处理能力.正确理解新定义的含义是解决此题的关键.6.〔2021•福建〕设,,为同一平面内具有相同起点的任意三个非零向量,且满足与不共线,⊥,||=||,那么|•|的值一定等于〔〕A.以,为邻边的平行四边形的面积B.以,为两边的三角形面积C.,为两边的三角形面积D.以,为邻边的平行四边形的面积考点:平面向量数量积的运算.专题:计算题;压轴题.分析:利用向量的数量积公式表示出,有得到的夹角与夹角的关系,利用三角函数的诱导公式和条件表示成的模及夹角形式,利用平行四边形的面积公式得到选项.解答:解:假设与的夹角为θ,|•|=||•||•|cos<,>|=||•||•|cos〔90°±θ〕|=||•||•sinθ,即为以,为邻边的平行四边形的面积.应选A.点评:此题考查向量的数量积公式、三角函数的诱导公式、平行四边形的面积公式.7.〔2021•浙江〕,是平面内两个互相垂直的单位向量,假设向量满足〔﹣〕•〔﹣〕=0,那么||的最大值是〔〕A.1 B.2 C.D.考点:平面向量数量积的坐标表示、模、夹角.专题:压轴题.分析:本小题主要考查向量的数量积及向量模的相关运算问题,所给出的两个向量是互相垂直的单位向量,这给运算带来很大方便,利用数量积为零的条件时要移项变化.解答:解:.∵,∵,∴,∵cosθ∈[﹣1,1],∴的最大值是.应选C.点评:启发学生在理解数量积的运算特点的根底上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质,此题也可以利用数形结合,,对应的点A,B在圆x2+y2=1上,对应的点C在圆x2+y2=2上即可.8.〔2007•山东〕在直角△ABC中,CD是斜边AB上的高,那么以下等式不成立的是〔〕A.B.C.D.考点:平面向量数量积的性质及其运算律.专题:压轴题.分析:根据,∴A是正确的,同理B也正确,再由D答案可变形为,通过等积变换判断为正确,从而得到答案.解答:解:∵,∴A是正确的,同理B也正确,对于D答案可变形为,通过等积变换判断为正确应选C.点评:此题主要考查平面向量的数量积的定义.要会巧妙变形和等积变换.9.〔2007•湖北〕连掷两次骰子得到的点数分别为m和n,记向量与向量的夹角为θ,那么的概率是〔〕A.B.C.D.考点:数量积表示两个向量的夹角;等可能事件的概率.专题:计算题;压轴题.分析:由题意知此题是一个古典概型,根据分步计数原理可以得到试验发生包含的所有事件数,满足条件的事件数要通过列举得到,题目大局部内容考查的是向量的问题,这是一个综合题.解答:解:由题意知此题是一个古典概型,试验发生包含的所有事件数6×6,∵m>0,n>0,∴=〔m,n〕与=〔1,﹣1〕不可能同向.∴夹角θ≠0.∵θ∈〔0,】•≥0,∴m﹣n≥0,即m≥n.当m=6时,n=6,5,4,3,2,1;当m=5时,n=5,4,3,2,1;当m=4时,n=4,3,2,1;当m=3时,n=3,2,1;当m=2时,n=2,1;当m=1时,n=1.∴满足条件的事件数6+5+4+3+2+1∴概率P==.应选C.点评:向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份〞能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点.10.〔2006•福建〕||=1,||=,•=0,点C在∠AOB内,且∠AOC=30°,设=m+n〔m、n∈R〕,那么等于〔〕A.B.3 C.D.考点:向量的共线定理;向量的模.专题:计算题;压轴题.分析:将向量沿与方向利用平行四边形原那么进行分解,构造出三角形,由题目,可得三角形中三边长及三个角,然后利用正弦定理解三角形即可得到答案.此题如果没有点C在∠AOB内的限制,应该有两种情况,即也可能为OC在OA顺时针方向30°角的位置,请大家注意分类讨论,防止出错.解答:解:法一:如下图:=+,设=x,那么=.=∴==3.法二:如下图,建立直角坐标系.那么=〔1,0〕,=〔0,〕,∴=m+n=〔m,n〕,∴tan30°==,∴=3.应选B点评:对一个向量根据平面向量根本定理进行分解,关键是要根据平行四边形法那么,找出向量在基底两个向量方向上的分量,再根据条件构造三角形,解三角形即可得到分解结果.11.〔2005•湖南〕P是△ABC所在平面上一点,假设,那么P是△ABC的〔〕A.外心 B.内心 C.重心 D.垂心考点:平面向量数量积的运算;数量积判断两个平面向量的垂直关系.专题:计算题;压轴题.分析:此题考查的知识点是平面向量的数量积运算,由,我们任取其中两个相等的量,如,根据平面向量乘法分配律,及减法法那么,我们可得,同理我们也可以得到PA⊥BC,PC⊥AB,由三角形垂心的性质,我们不难得到结论.解答:解:∵,那么由得:,∴PB⊥AC同理PA⊥BC,PC⊥AB,即P是垂心应选D点评:重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍.该点叫做三角形的重心.外心定理:三角形的三边的垂直平分线交于一点.该点叫做三角形的外心.垂心定理:三角形的三条高交于一点.该点叫做三角形的垂心.内心定理:三角形的三内角平分线交于一点.该点叫做三角形的内心.12.〔2005•江西〕在△OAB中,O为坐标原点,,那么当△OAB的面积达最大值时,θ=〔〕A.B.C.D.考点:数量积表示两个向量的夹角;向量在几何中的应用.专题:压轴题.分析:在边长为1的正方形中,减去要求的三角形以外的三角形的面积,把要求的结果表示为有三角函数的代数式,后面题目变为求三角函数的最值问题,逆用二倍角公式得到结果.解答:解:在直角坐标系里△OAB的面积=1﹣==∵θ∈〔0,],∴2θ∈〔0,π]∴当2θ=π时取得最大,即θ=应选D.点评:此题考查简单的图形面积和三角函数的最值问题,用三角函数表示的式子,因此代入后,还要进行简单的三角函数变换,二倍角公式逆用.13.〔2005•安徽〕点O是三角形ABC所在平面内的一点,满足,那么点O是△ABC的〔〕A.三个内角的角平分线的交点 B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点考点:平面向量数量积的运算;向量在几何中的应用.专题:计算题;压轴题.分析:由得到,从而所以OB⊥AC,同理得到OA⊥BC,所以点O是△ABC的三条高的交点解答:解;∵∴;∴;∴OB⊥AC,同理由得到OA⊥BC∴点O是△ABC的三条高的交点应选D点评:此题考查向量的数量积及向量的运算,对学生有一定的能力要求14.平面上一点P在原坐标系中的坐标为〔0,m〕〔m≠0〕,而在平移后所得到的新坐标系中的坐标为〔m,0〕,那么新坐标系的原点O′在原坐标系中的坐标为〔A 〕A.〔﹣m,m〕B.〔m,﹣m〕C.〔m,m〕 D.〔﹣m,﹣m〕考点:向量在几何中的应用.专题:压轴题;阅读型.分析:利用平移公式求出平移向量,再利用平移公式求出新坐标系的原点O′在原坐标系中的坐标.解答:解:设按向量,那么新坐标系的原点O′在原坐标系中的坐标为〔k,l〕那么据平移公式故∴解得即新坐标系的原点O′在原坐标系中的坐标为〔﹣m,m〕应选项为A点评:此题考查平移公式的应用.15.〔2021•桃城区校级模拟〕设向量,满足,,<>=60°,那么||的最大值等于〔〕A.2 B.C.D.1考点:平面向量数量积的坐标表示、模、夹角.专题:计算题;压轴题.分析:利用向量的数量积求出的夹角;利用向量的运算法那么作出图;结合图,判断出四点共圆;利用正弦定理求出外接圆的直径,求出最大值.解答:解:∵,∴的夹角为120°,设,那么;=如下图那么∠AOB=120°;∠ACB=60°∴∠AOB+∠ACB=180°∴A,O,B,C四点共圆∵∴∴由三角形的正弦定理得外接圆的直径2R=当OC为直径时,模最大,最大为2应选A点评:此题考查向量的数量积公式、向量的运算法那么、四点共圆的判断定理、三角形的正弦定理.16.〔2021•安徽〕在平面直角坐标系中,O是坐标原点,两定点A,B满足||=||=•=2,那么点集{P|=λ+μ,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是〔〕A.B. C. D.考点:平面向量的根本定理及其意义;二元一次不等式〔组〕与平面区域;向量的模.专题:压轴题;平面向量及应用.分析:由两定点A,B满足==2,说明O,A,B三点构成边长为2的等边三角形,设出两个定点的坐标,再设出P点坐标,由平面向量根本定理,把P的坐标用A,B的坐标及λ,μ表示,把不等式|λ|+|μ|≤1去绝对值后可得线性约束条件,画出可行域可求点集P所表示区域的面积.解答:解:由两定点A,B满足==2,说明O,A,B三点构成边长为2的等边三角形.不妨设A〔〕,B〔〕.再设P〔x,y〕.由,得:.所以,解得①.由|λ|+|μ|≤1.所以①等价于或或或.可行域如图中矩形ABCD及其内部区域,那么区域面积为.应选D.点评:此题考查了平面向量的根本定理及其意义,考查了二元一次不等式〔组〕所表示的平面区域,考查了数学转化思想方法,解答此题的关键在于读懂题意,属中档题.17.〔2021•上海〕在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.假设m、M分别为〔++〕•〔++〕的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},那么m、M满足〔〕A.m=0,M>0 B.m<0,M>0 C.m<0,M=0 D.m<0,M<0考点:平面向量数量积的运算;进行简单的合情推理.专题:压轴题;平面向量及应用.分析:利用向量的数量积公式,可知只有,其余数量积均小于等于0,从而可结论.解答:解:由题意,以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、,∴利用向量的数量积公式,可知只有,其余数量积均小于等于0,∵m、M分别为〔++〕•〔++〕的最小值、最大值,∴m<0,M<0应选D.点评:此题考查向量的数量积运算,考查学生分析解决问题的能力,分析出向量数量积的正负是关键.二.解答题〔共13小题〕18.〔2005•上海〕在直角坐标平面中,点P1〔1,2〕,P2〔2,22〕,P3〔3,23〕,…,P n〔n,2n〕,其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点,A2为A1关于点P2的对称点,…,A n为A n﹣1关于点P n的对称点.〔1〕求向量的坐标;〔2〕当点A0在曲线C上移动时,点A2的轨迹是函数y=f〔x〕的图象,其中f〔x〕是以3位周期的周期函数,且当x∈〔0,3]时,f〔x〕=lgx.求以曲线C为图象的函数在〔1,4]上的解析式;〔3〕对任意偶数n,用n表示向量的坐标.考点:平面向量的综合题.专题:综合题;压轴题;平面向量及应用;圆锥曲线的定义、性质与方程.分析:〔1〕利用中点坐标公式求出点A1,A2的坐标,再利用向量的坐标公式求出的坐标.〔2〕由判断出y=f〔x〕的图象是由C按平移得到的;得到C是由f〔x〕左移两个单位,下移4个单位得到,利用图象变换求出C的解析式.〔3〕利用向量的运算法那么将有以P n为起点终点的向量表示,利用向量的坐标公式求出各向量的坐标,利用等比数列的前n项和公式求出向量的坐标.解答:解:〔1〕设点A0〔x,y〕,A1为A0关于点P1的对称点,A1的坐标为〔2﹣x,4﹣y〕,A1为P2关于点的对称点A2的坐标为〔2+x,4+y〕,∴={2,4}.〔2〕∵={2,4},∴f〔x〕的图象由曲线C向右平移2个单位,再向上平移4个单位得到.因此,设曲线C是函数y=g〔x〕的图象,其中g〔x〕是以3为周期的周期函数,且当x∈〔﹣2,1]时,g〔x〕=lg〔x+2〕﹣4.于是,当x∈〔1,4]时,g〔x〕=lg〔x﹣1〕﹣4.〔3〕=++…+,由于=,得=2〔++…+〕=2〔{1,2}+{1,23}+…+{1,2n﹣1}〕=2{,}={n,}点评:此题考查中点坐标公式、向量的坐标公式、图象的平移变换、等比数列的前n项和公式.19.〔2021•上海〕定义向量=〔a,b〕的“相伴函数〞为f〔x〕=asinx+bcosx,函数f〔x〕=asinx+bcosx的“相伴向量〞为=〔a,b〕〔其中O为坐标原点〕.记平面内所有向量的“相伴函数〞构成的集合为S.〔1〕设g〔x〕=3sin〔x+〕+4sinx,求证:g〔x〕∈S;〔2〕h〔x〕=cos〔x+α〕+2cosx,且h〔x〕∈S,求其“相伴向量〞的模;〔3〕M〔a,b〕〔b≠0〕为圆C:〔x﹣2〕2+y2=1上一点,向量的“相伴函数〞f〔x〕在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值范围.考点:平面向量的综合题;复合三角函数的单调性.专题:计算题;压轴题;新定义.分析:〔1〕先利用诱导公式对其化简,再结合定义即可得到证明;〔2〕先根据定义求出其相伴向量,再代入模长计算公式即可;〔3〕先根据定义得到函数f〔x〕取得最大值时对应的自变量x0;再结合几何意义求出的范围,最后利用二倍角的正切公式即可得到结论.解答:解:〔1〕g〔x〕=3sin〔x+〕+4sinx=4sinx+3cosx,其‘相伴向量’=〔4,3〕,g〔x〕∈S.〔2〕h〔x〕=cos〔x+α〕+2cosx=〔cosxcosα﹣sinxsinα〕+2cosx=﹣sinαsinx+〔cosα+2〕cosx∴函数h〔x〕的‘相伴向量’=〔﹣sinα,cosα+2〕.那么||==.〔3〕的‘相伴函数’f〔x〕=asinx+bcosx=sin〔x+φ〕,其中cosφ=,sinφ=.当x+φ=2kπ+,k∈Z时,f〔x〕取到最大值,故x0=2kπ+﹣φ,k∈Z.∴tanx0=tan〔2kπ+﹣φ〕=cotφ=,tan2x0===.为直线OM的斜率,由几何意义知:∈[﹣,0〕∪〔0,].令m=,那么tan2x0=,m∈[﹣,0〕∪〔0,}.当﹣≤m<0时,函数tan2x0=单调递减,∴0<tan2x0≤;当0<m≤时,函数tan2x0=单调递减,∴﹣≤tan2x0<0.综上所述,tan2x0∈[﹣,0〕∪〔0,].点评:本体主要在新定义下考查平面向量的根本运算性质以及三角函数的有关知识.是对根底知识的综合考查,需要有比拟扎实的根本功.20.〔2021•江苏〕如图,在正四棱柱ABCD﹣A1B1C1D1中,AA1=2,AB=1,点N是BC 的中点,点M在CC1上.设二面角A1﹣DN﹣M的大小为θ,〔1〕当θ=90°时,求AM的长;〔2〕当时,求CM的长.考点:向量在几何中的应用.专题:立体几何.分析:〔1〕建立如下图的空间直角坐标系,D﹣xyz,设CM=t〔0≤t≤2〕,通过,求出平面DMN的法向量为,,求出平面A1DN 的法向量为,推出〔1〕利用θ=90°求出M的坐标,然后求出AM 的长.〔2〕利用cos=以及,求出CM 的长.解答:解:建立如下图的空间直角坐标系,D﹣xyz,设CM=t〔0≤t≤2〕,那么各点的坐标为A〔1,0,0〕,A1〔1,0,2〕,N〔,1,0〕,M〔0,1,t〕;所以=〔,1,0〕.=〔1,0,2〕,=〔0,1,t〕设平面DMN的法向量为=〔x1,y1,z1〕,那么,,即x1+2y1=0,y1+tz1=0,令z1=1,那么y1=﹣t,x1=2t所以=〔2t,﹣t,1〕,设平面A1DN的法向量为=〔x2,y2,z2〕,那么,,即x2+2z2=0,x2+2y2=0,令z2=1那么y2=1,x2=﹣2所以=〔﹣2,1,1〕,〔1〕因为θ=90°,所以解得t=从而M〔0,1,〕,所以AM=〔2〕因为,所以,cos==因为=θ或π﹣θ,所以=解得t=0或t=根据图形和〔1〕的结论,可知t=,从而CM的长为.点评:此题是中档题,考查直线与平面,直线与直线的位置关系,考查转化思想的应用,向量法解答立体几何问题,方便简洁,但是注意向量的夹角,计算数据的准确性.21.〔2021•山东〕设m∈R,在平面直角坐标系中,向量a=〔mx,y+1〕,向量b=〔x,y﹣1〕,a⊥b,动点M〔x,y〕的轨迹为E.〔Ⅰ〕求轨迹E的方程,并说明该方程所表示曲线的形状;〔Ⅱ〕m=.证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且OA⊥OB〔O为坐标原点〕,并求该圆的方程;〔Ⅲ〕m=.设直线l与圆C:x2+y2=R2〔1<R<2〕相切于A1,且l与轨迹E只有一个公共点B1.当R为何值时,|A1B1|取得最大值?并求最大值.考点:平面向量数量积的运算;圆的标准方程;轨迹方程;直线和圆的方程的应用.专题:平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:〔1〕由a⊥b,所以a•b=0,代入坐标化简整理即得轨迹E的方程mx2+y2=1.此为二元二次曲线,可分m=0、m=1、m>0且m≠1和m<0四种情况讨论;〔2〕当m=时,轨迹E的方程为=1,表示椭圆,设圆的方程为x2+y2=r2〔0<r<1〕,当切线斜率存在时,可设圆的任一切线方程为y=kx+t,由直线和圆相切可得k和t的关系,由OA⊥OB,所以x1x2+y1y1=0,只需联立直线和圆的方程,消元,维达定理,又可以得到k和t的关系,这样就可解出r.当切线斜率不存在时,代入检验即可.〔3〕因为l与圆C相切,故△OA1B1为直角△,故|A1B1|2=|OB1|2﹣|OA1|2,只需求出OB1和OA1的长度即可,直线l与圆C相切,且与椭圆相切找出关系,将|A1B1|表示为R的函数,转化为函数求最值.解答:解:〔Ⅰ〕因为a⊥b,所以a•b=0,即〔mx,y+1〕•〔x,y﹣1〕=0,故mx2+y2﹣1=0,即mx2+y2=1.当m=0时,该方程表示两条直线;当m=1时,该方程表示圆;当m>0且m≠1时,该方程表示椭圆;当m<0时,该方程表示双曲线.〔Ⅱ〕当时,轨迹E的方程为,设圆的方程为x2+y2=r2〔0<r<1〕,当切线斜率存在时,可设圆的任一切线方程为y=kx+t,A〔x1,y1〕,B〔x2,y2〕,所以,即t2=r2〔1+k2〕.①因为OA⊥OB,所以x1x2+y1y1=0,即x1x2+〔kx1+t〕〔kx2+t〕=0,整理得〔1+k2〕x1x2+kt〔x1+x2〕+t2=0.②由方程组消去y得〔1+4k2〕x2+8ktx+4t2﹣4=0.③由韦达定理代入②式并整理得〔1+k2〕,即5t2=4+4k2.结合①式有5r2=4,r=,当切线斜率不存在时,x2+y2=也满足题意,故所求圆的方程为x2+y2=.〔Ⅲ〕显然,直线l的斜率存在,设l的方程y=k1x+t1,B1〔x3,y3〕轨迹E的方程为.由直线l与圆相切得t12=R2〔1+k12〕,且对应③式有△=〔8k1t1〕2﹣4〔1+4k12〕〔4t12﹣4〕=0,即t12=1+4k12,由方程组,解得当l与轨迹E只有一个公共点时,对应的方程③应有两个相等的.由韦达定理x32===,又B1在椭圆上,所以,因为l与圆C相切,所以|A1B1|2=|OB1|2﹣|OA1|2=x32+y32﹣R2===≤,其中,等号成立的条件,。

易错点17 双曲线答案-备战2023年高考数学易错题

易错点17  双曲线答案-备战2023年高考数学易错题

易错点17 双曲线易错点1:焦点位置不确定导致漏解 要注意根据焦点的位置选择双曲线方程的标准形式,知道,,a b c 之间的大小关系和等量关系:易错点2:双曲线的几何性质,渐近线、离心率、焦半经、通径; 易错点3:直线与双曲线的位置关系(1)忽视直线斜率与渐近线平行的情况;(2)在用椭圆与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).题组一:定义与标准方程1.(2015福建理)若双曲线22:1916x y E -= 的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2PF 等于( )A .11B .9C .5D .3 【答案】B【解析】由双曲线定义得,即,解得,故选B . 2.(2019年新课标1卷)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( ) A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】B【解答】∵22||2||AF F B =,∴23AB BF =, 又1||||AB BF =,∴|BF 1|=3|BF 2|, 又|BF 1|+|BF 2|=2a ,∴|BF 2|=2a , ∴|AF 2|=a ,|BF 1|=32a , 在Rt △AF 2O 中,cos ∠AF 2O =1a, 1226PF PF a -==236PF -=29PF =在△BF 1F 2中,由余弦定理可得cos ∠BF 2F 1=223422222a a a ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭⨯⨯, 根据cos∠AF 2O +cos∠BF 2F 1=0,可得214202a a a-+=,解得a 2=3,∠a =b 2=a 2﹣c 2=3﹣1=2.所以椭圆C 的方程为22132x y +=故选:B .3.(2017新课标Ⅲ理)已知双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线方程为2y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 【答案】B【解析】由题意可得:b a =3c =,又222a b c +=,解得24a =,25b =, 则C 的方程为2145x y 2-=,故选B . 4.(2016年新课标1卷)已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) A.(-1,3) B.(-1,3) C.(0,3) D.(0,3) 【答案】A【解析】由题意知c=2,()()2224=3,1m n m n m ++-=解得,因为方程132222=--+nm y n m x 表示双曲线, 所以()()()()2230,130m n m n n n +->+->可得 解得-1<n<3,故选A.题组二:焦点三角形5.(2020·新课标∠文)设12,F F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P在C 上且||2OP =,则12PF F △的面积为( ) A .72B .3C .52D .2【答案】B【解析】由已知,不妨设12(2,0),(2,0)F F -, 则1,2a c ==,∵121||1||2OP F F ==,∴点P 在以12F F 为直径的圆上, 即12F F P 是以P 为直角顶点的直角三角形,故2221212||||||PF PF F F +=, 即2212||||16PF PF +=,又12||||22PF PF a -==,∴2124||||PF PF =-=2212||||2PF PF +-12||||162PF PF =-12||||PF PF ,解得12||||6PF PF =,∴12F F P S =△121||||32PF PF =,故选B . 6.【2020年高考全国Ⅲ卷理数11】已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点12,F F ,离心率为5.P 是C 上的一点,且P F P F 21⊥.若21F PF ∆的面积为4,则=a ( )A .1B .2C .4D .8 【答案】A 【解析】解法一:5ca=,c ∴=,根据双曲线的定义可得122PF PF a -=, 12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=, 12F P F P ⊥,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选A .解法二:由题意知,双曲线的焦点三角形面积为2tan 221θb S F PF =.∴︒45tan 2b =4,则2=b , 又∵5==ace ,∴1=a . 解法三:设n PF m PF ==21,,则421==mn S F PF ,a n m 2=-,5,4222===+ace c n m ,求的1=a .7.(2015全国1卷)已知00(,)M x y 是双曲线22:12x C y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF <,则0y 的取值范围是( )A.⎛⎝⎭B.⎛ ⎝⎭C.⎛ ⎝⎭D.⎛ ⎝⎭【答案】A【解析】法1:根据题意12,F F的坐标分别为()),,所以()()1002003,,3,,MF x y MF xy =---=--所以()()2221200000003,,3310MF MF x y x y x y y ⋅=-⋅-=-+=-<所以033y -<<.故选A. 秒杀法2:012==90F MF θ∠当 当由等面积得:33y ⇒y 212tan00212===F F b S θ 因为120MF MF <,所以12F MF ∠为钝角,根据变化规律,可得3333-0<<y 故选A.8.(2016全国II 理)已知1F ,2F 是双曲线E :22221x y a b-=的左、右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( )AB .32C D .2 【答案】A【解析】设1(,0)F c -,将x c =-代入双曲线方程,得22221c y a b -=,化简得2by a=±,因为211sin 3MF F ∠=,所以222212112||tan ||222b MF b c a a MF F F F c ac ac -∠=====12222c a e a c e -=-=,所以210e --=,所以e =A . 题组三:渐进线9.(2019全国3卷)双曲线的右焦点为,点在的一条渐近线上,为22:142x y C -=F P C O坐标原点,若,则的面积为ABC.D.【答案】A【解析】双曲线的右焦点为,渐近线方程为:,不妨设点在第一象限,可得,,所以的面积为:,故选A.10.(2018全国2卷)双曲线22221(0,0)-=>>x ya ba bA.=y B.=yC.2=±y x D.=y x【答案】A【解析】解法一由题意知,==cea,所以=c,所以==b,所以=ba=±=by xa,故选A .解法二由===cea,得=ba,所以该双曲线的渐近线方程为=±=by xa.故选A.11.(2017天津理)已知双曲线22221(0,0)x ya ba b-=>>的左焦点为F,.若经过F和(0,4)P两点的直线平行于双曲线的一条渐近线,则双曲线的方程为A.22144x y-=B.22188x y-=C.22148x y-=D.22184x y-=【答案】B【解析】设(,0)F c-,双曲线的渐近线方程为by xa=±,由44PFkc c-==-,由题意有4bc a=,又ca=222c a b=+,得b=,a=,故选B.12.(2015新课标1文)已知双曲线过点,且渐近线方程为,则该双曲||||PO PF=PFO∆()22:142x yC-=F2y x=±P tan2POF∠=P PFO△124=)3,4(xy21±=线的标准方程为 .【答案】2214x y -=【解析】∵双曲线的渐近线方程为,故可设双曲线的方程为22(0)4x y λλ-=>,又双曲线过点,∴2244λ-=,∴1λ=,故双曲线的方程为2214x y -=. 题组四:离心率13.(2021年高考全国甲卷理科)已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为 ( )A.2B.2CD【答案】A 【解析】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==,所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即2e =.故选:A14.(2021全国乙卷理科)设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A.2⎫⎪⎢⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭ C.0,2⎛ ⎝⎦D .10,2⎛⎤ ⎥⎝⎦【答案】C【解析】设()00,P x y ,由()0,B b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32bb c-≤-,即22b c ≥时,22max 4PB b =,即max 2PB b =,符合x y 21±=)3,4(题意,由22b c ≥可得222a c ≥,即202e <≤; 当32b b c->-,即22b c <时,42222max b PB a b c =++,即422224b a b b c ++≤,化简得,()2220cb-≤,显然该不等式不成立.故选:C .15.(2019全国1卷)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B =,则C 的离心率为 . 【答案】2【解析】如图,1F A AB =,120F B F B =,∴OA ⊥F1B , 则F 1B :()a y x c b =+①,渐近线OB 为by x a=② 联立①②,解得B 22222,a c abc b a b a ⎛⎫⎪--⎝⎭, 则222212222a c abc F B c b a b a ⎛⎫⎛⎫=++ ⎪ ⎪--⎝⎭⎝⎭, 222222222a c abc F B c b a b a ⎛⎫⎛⎫=-+ ⎪ ⎪--⎝⎭⎝⎭, 又2221212F B F B F F +=,所以2222222222222224a c abc a c abc c c c b a b a b a b a ⎛⎫⎛⎫⎛⎫⎛⎫+++-+= ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭ 整理得:22222223,3,4b a a a a c 所以c 即=-==,故C 的离心率为2ce a== 16.(2019全国2卷)设为双曲线的右焦点,为坐标原点,以为直径的圆与圆交于,两点,若,则的离心率为( ). A .B .C .2D .【答案】AF 2222:1(0,0)x y C a b a b-=>>O OF 222x y a +=P Q ||||PQ OF =C【解析】法1:由题意,把代入,得,再由,得,即,所以,解得.故选A .法2:如图所示,由可知为以 为直径圆的另一条直径, 所以,代入得, 所以,解得.故选A .法3:由可知为以为直径圆的另一条直径,则,.故选A . 题组五:距离17.【2020年高考北京卷12】已知双曲线22:163x y C -=,则C 的右焦点的坐标为________;C 的焦点到其渐近线的距离是__________.【答案】(3,0),3【解析】∵双曲线22163x y -=,∴26a =,23b =,222639c a b =+=+=,∴3c =,∴右焦点坐标为(3,0),∵双曲线中焦点到渐近线距离为b ,∴3b =.18.【2018·全国Ⅲ文】已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,则点(4,0)到C 的渐近线的距离为 A .2B .2C .322D .22【答案】D 【解析】21()2c b e a a==+=,1b a ∴=,∴双曲线C 的渐近线方程为0x y ±=,∴2c x =222x y a +=2224c PQ a =-PQ OF =2224ca c -=222a c =222c a=2c e a ==PQ OF =PQ OF ,22cc P ⎛⎫±⎪⎝⎭222x y a +=222a c =222c a=2c e a ==PQ OF =PQ OF 12222OP a OF c==⋅=2c e a ==点(4,0)到渐近线的距离d ==,故选D . 19.(2018全国1卷)已知双曲线C :x 23 - y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N.若ΔOMN 为直角三角形,则|MN|=____. 【答案】3【解析】因为双曲线2213-=x y的渐近线方程为=±y x ,所以60∠=MON .不妨设过点F 的直线与直线3=y x 交于点M ,由∆OMN 为直角三角形,不妨设90∠=OMN ,则60∠=MFO ,又直线MN 过点(2,0)F ,所以直线MN的方程为2)=-y x ,由2)⎧=-⎪⎨=⎪⎩y x y x,得322⎧=⎪⎪⎨⎪=⎪⎩x y,所以3(2M ,所以||==OM|||3==MN OM . 20.【2020年高考浙江卷8】已知点()()()0,0,2,0,2,0O A B -.设点P 满足–2PA PB =,且P为函数y =OP =( )A.2 B.5CD【答案】D【解析】由条件可知点P 在以,A B 为焦点的双曲线的右支上,并且2,1c a ==,∴23b =,方程为()22103y x x -=> 且点P 为函数y =上的点,联立方程()22103y x x y ⎧-=>⎪⎨⎪=⎩,解得:2134x =,2274y =,OP ∴==,故选D .1.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =C 的实轴长为( )B. 4 D.8 【答案】C【解析】设等轴双曲线C:2220x y a a ,x y 162=的准线:4l x因为C 与抛物线x y 162=的准线交于,A B 两点,AB = 所以4,23,4,23AB ,将A 点代入双曲线方程得2224234,2,24a a a 所以,故选C.2.双曲线的渐进线方程为x y 21±=,且焦距为10,则双曲线方程为( ) A.152022=-y x B.120522=-y x 或152022=-y x C.120522=-y x D.1|520|22=-y x 【答案】D【解析】当焦点在x 轴时,渐进线方程为x y 21±=, 所以2221,210,2b c a b c a 又,解得25,5a b,所以双曲线的方程为221205x y .焦点在y 轴时,渐进线方程为x y 21±=, 所以2221,210,2a c abc b 又,解得5,25a b,所以双曲线的方程为221205x y .故选D.3.已知双曲线E 的中心为原点,(3,0)F 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为( )A.22136x y -=B.22145x y -=C.22163x y -= D.22154x y -= 【答案】B【解析】由双曲线E 的中心为原点,(3,0)P 是E 的焦点可设双曲线的方程为2222221(9)x y a b a b -=+=,设1122(,),(,)A x y B x y ,即 2222112222221,1x y x y a b a b -=-= 则22121222121212015115312y y x x b b x x a y y a -+-+=⋅=⋅==-+-+,则22225,5,44b b a a ===,故E 的方程式为22145x y -=.应选B . 4. 已知双曲线C :)0,0(12222>>=-b a by a x 的离心率为25,则C 的渐近线方程为( )A.x y 41±=B.x y 31±=C.x y 21±= D.x y ±= 【答案】C【解析】由题意22511,22c b b e a a a 得==+==,所以C 的渐近线方程为,21x a b y ±=±=故选C. 5. 已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )A.3B.3C.3mD.3m 【答案】A【解析】由C:223(0)x my m m -=>得2221,33,33,33x y c m c m m -==+=+ ()33,0,Fm 设+33y x m一条渐近线为=即0x m y -=, 则点F 到C 得一条渐近线得距离333,1m d m+==+故选A.6.P 是双曲线右支上的一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则的内切圆的圆心的横坐标为 . 【答案】x=a【解析】如图所示:()()12,0,,0F c F c -,设内切圆与x 轴的切点是点H ,PF 1,PF 2与内切圆的切点分别为M 、N ,由双曲线定义有|PF 1|-|PF 2|=2a ,由圆的切线长定理知, |PM|=|PN|,所以|MF 1|-|NF 2|=2a ,即|HF 1|-|HF 2|=2a,设内切圆的圆心横坐标为x ,)0,0(12222>>=-b a by a x 21F PF ∆则点H 的横坐标为x ,所以(x+c)-(c -x)=2a ,得x=a.7.已知F 1、F 2为双曲线C :122=-y x 的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则P 到x 轴的距离为________.【解析】法1:设12,,PF m PF n m n 不妨设==>,可知1,1,a b c ===,根据双曲线定义222,24m n a m n mn 即-=+-=①, 在ΔPF 1F 2中,根据余弦定理22201212122cos60,F F PF PF PF PF =+-228m n mn 即+-=②联立①②得4mn =,设P 到x 轴得距离为h ,则011sin 60,22h mn h ⨯==所有秒杀法2:由等面积得:4⇒3πsin 2132θtan 21212====PF PF PF PF b S设P 到x 轴得距离为h ,01211sin 60,22h PF PF h 所有⨯==8.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为_____.【解析】根据题意,设双曲线()222210,0x y a b a b-=>>,不妨设点M 在第一象限,所以|AB|=|BM|=2a,∠MBA=1200,作MH ⊥x 轴于点H ,则∠MBH=600,故|BH|=a,(),2,MH M a =将点M 代入()222210,0x y a b a b-=>>得a=b,所以e =9.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为___.【答案】2【解析】双曲线C 的渐近线方程为0bx ay ±=,圆心(2,0)到渐近线的距离为2bd c==,圆心(2,0)到弦的距离也为d ==所以2b c =222c a b =+,所以得2c a =,所以离心率2ce a== 10.设F 1,F 2是双曲线C: x 2a 2-y2b 2=1(a >0,b >0)的左,右焦点,O 是坐标原点.过F 2作C的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP|,则C 的离心率为_____.【解析】法1:不妨设一条渐近线的方程为by x a=, 则2F 到by x a =的距离d b ==, 在2Rt F PO ∆中,2||F O c =,所以||PO a =,所以1||PF =,又1||F O c =,所以在1F PO ∆与2Rt F PO ∆中,根据余弦定理得22212)cos cos 2a c aPOF POF ac c+-∠==-∠=-,即2223)0a c +-=,得223a c =.所以ce a==. 法2:选C 设P(t,- b a t),∵PF 2与y=- ba x 垂直,∴-bt a(t-c)=a b ,解得t=a 2c 即P(a 2c ,- abc ) ∴|OP|=(a 2c )2+(-ab c)2=a ,|PF 1|=(a 2c +c)2+(-ab c)2,依题有(a 2c +c)2+(- ab c )2=6a 2,化简得c 2=3a 2,即c e a ==。

【2023高考必备】2013-2022十年全国高考数学真题分类(全国通用版):数列解答题(解析版)

【2023高考必备】2013-2022十年全国高考数学真题分类(全国通用版):数列解答题(解析版)
2013-2022 十年全国高考数学真题分类汇编
专题 06 数列解答题
1.(2022
年全国甲卷理科·第
17
题)记
Sn
为数列 an 的前
n
项和.已知
2Sn n
n
2an
1.
(1)证明: an 是等差数列;
(2)若 a4, a7 , a9 成等比数列,求 Sn 的最小值.
【答案】(1)证明见解析:; (2) 78 .
解析:(1)设数列an 的公差为d
,所以,
aa11dd22bb118ab11
2d
a1
4b1 3d
,即可解得,
b1
a1
d 2

所以原命题得证.
(2)由(1)知, b1
a1
d 2
,所以 bk
am
a1
b1 2k1
a1
m 1 d
a1 ,即 2k1
2m ,亦即
m 2k2 1,500 ,解得 2 k 10 ,所以满足等式的解 k 2,3, 4,,10 ,故集合
解析:(1)解:因为
2Sn n
n
2an
1,即 2Sn
n2
2nan
n
①,
当 n 2 时, 2Sn1 n 12 2 n 1 an1 n 1 ②,
① ②得, 2Sn n2 2Sn1 n 12 2nan n 2n 1 an1 n 1 ,
即 2an 2n 1 2nan 2n 1 an1 1 ,
k | bk am a1,1 m 500 中的元素个数为10 2 1 9 .
【题目栏目】数列\数列的综合应用\数列的综合问题 【题目来源】2022 新高考全国 II 卷·第 17 题

【全国1卷】【个题分析】(理科17)2020年高考全国Ⅲ卷数列题的研究

【全国1卷】【个题分析】(理科17)2020年高考全国Ⅲ卷数列题的研究

不仅仅只有错位相减法, 还有裂项相消法和待定系数法等方
法, 这体现了数学问题和方法的多样性, 掌握多种方法为我
们解题拓宽了新的思路, 也对培养和提高数学思维能力和数
学素养有很大的帮助.
(3) 近几年全国卷高考的解答题中, 数列大多以基础题
的形式出现. 主要是对基础知识, 基本技能, 基本思想和基本
活动经验的考查, 对这类问题我们要做到不丢分. 所以在平时
能够记住差比数列的前项和的形式才能够进行求解, 体现了
函数与方程的思想在解题中的应用. 而且此公式在教材中没有
给出, 所以不建议考生在解答题中直接应用, 但是可以借助
这个形式对自己的求解的结果做一个检验. 本题也可以由 SnSn-1=(2n+1)2n 列出方程组进行求解.
四、 归纳总结
(1) 数列通项公式是数列的核心内容之一, 构造法是求数
f(n+1)与 f(n)的差的形式的数列求和问题都可以用裂项相消
法. 用裂项相消法求差比数列的和时, 只需要用待定系数法把
通项公式裂成 f(n+1)-f(n)的形式即可 (其中 f(n)=(kn+b)qn).
此解法的优点在于运算量小, 准确率高, 但是需要考生能够
掌握差比数列通项公式裂项的技巧, 这个需要经过一定训练
(2) 数列求和的常用方法有公式求和法, 分组求和法, 裂
项相消法, 错位相减法, 并项求和法, 倒序相加法, 待定系
数法等. 在平时的学习中, 对数列求和的这些方法, 我们不仅
要知道它们适用的范围, 更应该知道这些方法所蕴含的数学
思想方法, 学法而不拘泥于法, 才能够在解题过程中做到融
会贯通, 得心应手. 从上述例题我们发现差比数列的求和问题

成人高考数学真题与详细答案

成人高考数学真题与详细答案

成人高考数学真题与详细答案成人高考作为许多成年人提升学历的重要途径,数学科目一直是考生们关注的重点。

以下为大家带来一套成人高考数学真题,并附上详细答案及解析。

一、选择题(本大题共 17 小题,每小题 5 分,共 85 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1、设集合 A ={1, 2, 3},B ={2, 3, 4},则 A ∪ B =()A {1, 2, 3, 4}B {2, 3}C {1, 4}D {1}答案:A解析:A ∪ B 表示集合 A 和集合 B 中所有元素组成的集合,所以A ∪B ={1, 2, 3, 4}。

2、函数 y =√(x 1) 的定义域是()A (∞, 1B 1, +∞)C (∞,+∞)D (-1, +∞)答案:B解析:要使函数有意义,根号下的数必须大于等于 0,即x 1 ≥ 0,解得x ≥ 1,所以定义域为 1, +∞)。

3、若函数 f(x) = 2x + 1,则 f(2) =()A 5B 4C 3D 2答案:A解析:将 x = 2 代入函数 f(x) = 2x + 1 中,得到 f(2) = 2×2 + 1 = 5。

4、已知直线的斜率为 2,且过点(1, 3),则该直线的方程为()A y = 2x + 1B y = 2x 1C y = 2x + 5D y = 2x 5答案:A解析:直线的点斜式方程为 y y₁= k(x x₁),其中 k 为斜率,(x₁, y₁)为直线上一点。

将 k = 2,x₁= 1,y₁= 3 代入,得到 y 3 = 2(x 1),化简得 y = 2x + 1。

5、不等式 x² 3x + 2 < 0 的解集是()A (1, 2)B (∞, 1)∪(2, +∞)C (∞, 1∪2, +∞)D (-1, -2)答案:A解析:x² 3x + 2 < 0 可化为(x 1)(x 2) < 0,解得 1 < x < 2,所以解集为(1, 2)。

数列解答题【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

数列解答题【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)
所以 .
【题目栏目】数列\数列的综合应用\数列的综合问题
【题目来源】2020年新高考I卷(山东卷)·第18题
7.(2020新高考II卷(海南卷)·第18题)已知公比大于 的等比数列 满足 .
(1)求 通项公式;
(2)求 .
【答案】(1) ;(2)
解析:(1)设等比数列 的公比为q(q>1),则 ,
整理可得: ,
解析:(1)由已知 得 ,且 , ,
取 ,由 得 ,
由于 为数列 的前n项积,
所以 ,

所以数列 是以 为首项,以 为公差等差数列;
(2)由(1)可得,数列 是以 为首项,以 为公差的等差数列,
,
,
当n=1时, ,
当n≥2时, ,显然对于n=1不成立,
∴ .
【点睛】本题考查等差数列的证明,考查数列的前n项和与项的关系,数列的前n项积与项的关系,其中由 ,得到 ,进而得到 是关键一步;要熟练掌握前n项和,积与数列的项的关系,消和(积)得到项(或项的递推关系),或者消项得到和(积)的递推关系是常用的重要的思想方法.

数列的通项公式为: .
(2)由于: ,故:

【题目栏目】数列\数列的综合应用\数列的综合问题
【题目来源】2020新高考II卷(海南卷)·第18题
8.(2021年高考全国乙卷理科·第19题)记 为数列 的前n项和, 为数列 的前n项积,已知 .
(1)证明:数列 是等差数列;
(2)求 的通项公式.
【答案】(1)证明见解析;(2) .
当 时, ,当 时, 满足等差数列的定义,此时 为等差数列;
当 时, , 不合题意,舍去.
综上可知 为等差数列.
【点睛】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,等差数列的证明通常采用定义法或者等差中项法.

【高考数学】高考解析几何解答题题型分析及解答策略(学生).doc

【高考数学】高考解析几何解答题题型分析及解答策略(学生).doc

高考解析几何解答题题型分析及解答策略。

©归纳・・1.定点问题(1)解析几何中直线过定点或曲线过定点问题是指不论直线或曲线中的参数如何变化,直线或曲线都经过某一个定点.(2)定点问题是在变化中所表现出来的不变的点,那么就可以用变量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变量所影响的某个点,就是要求的定点.2.定值问题解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不随参数的变化而变化,而始终是一个确定的值.3.最值问题圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何方法, 即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数,然后利用函数方法、不等式方法等进行求解.4.圆锥曲线中的范围问题(1)解决这类问题的基本思想是建立目标函数和不等关系.(2)建立目标函数的关键是选用一个合适的变量,其原则是这个变量能够表达要解决的问题;建立不等关系的关键是运用圆锥曲线的几何特征、判别式法或基本不等式等灵活处理.5.圆锥曲线中的存在性问题(1)所谓存在性问题,就是判断满足某个(某些)条件的点、直线、曲线(或参数)等几何元素是否存在的问题.(2)这类问题通常以开放性的设问方式给出,若存在符合条件的几何元素或参数值,就求出这些几何元素或参数值;若不存在,则要求说明理由.6.圆锥曲线中的证明问题圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等).7.圆锥曲线与三角、向量的交汇问题8.圆锥曲线与数列、不等式的交汇问题9.圆锥曲线与函数、导数的交汇问题.(1)求椭圆E的方程;(2)过椭圆E的左顶点A作两条互相垂直的直线分别与椭圆E交.于(不同于点A的)M, N两点,试判断直线与x轴的交点是否为定点,若是,求出定点坐标;若不是,请说明理由.[例2].已知椭圆C:务+相=1(泓>0)的离心率e=斗,左、右焦点分别为Fi,F2,点F(2, 茶),点%在线段PF1的中垂线上.(1)求椭圆。

十年真题(2010_2019)高考数学真题分类汇编专题17不等式选讲(理)(含解析)

十年真题(2010_2019)高考数学真题分类汇编专题17不等式选讲(理)(含解析)

专题17不等式选讲历年考题细目表题型年份考点试题位置解答题2019 不等式选讲2019年新课标1理科23解答题2018 综合测试题2018年新课标1理科23解答题2017 综合测试题2017年新课标1理科23解答题2016 综合测试题2016年新课标1理科24解答题2014 综合测试题2014年新课标1理科24解答题2013 综合测试题2013年新课标1理科24解答题2012 综合测试题2012年新课标1理科24解答题2011 综合测试题2011年新课标1理科24解答题2010 综合测试题2010年新课标1理科24历年高考真题汇编1.【2019年新课标1理科23】已知a,b,c为正数,且满足abc=1.证明:(1)a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.【解答】证明:(1)分析法:已知a,b,c为正数,且满足abc=1.要证(1)a2+b2+c2;因为abc=1.就要证:a2+b2+c2;即证:bc+ac+ab≤a2+b2+c2;即:2bc+2ac+2ab≤2a2+2b2+2c2;2a2+2b2+2c2﹣2bc﹣2ac﹣2ab≥0(a﹣b)2+(a﹣c)2+(b﹣c)2≥0;∵a,b,c为正数,且满足abc=1.∴(a﹣b)2≥0;(a﹣c)2≥0;(b﹣c)2≥0恒成立;当且仅当:a=b=c=1时取等号.即(a﹣b)2+(a﹣c)2+(b﹣c)2≥0得证.故a2+b2+c2得证.(2)证(a+b)3+(b+c)3+(c+a)3≥24成立;即:已知a,b,c为正数,且满足abc=1.(a+b)为正数;(b+c)为正数;(c+a)为正数;(a+b)3+(b+c)3+(c+a)3≥3(a+b)•(b+c)•(c+a);当且仅当(a+b)=(b+c)=(c+a)时取等号;即:a=b=c=1时取等号;∵a,b,c为正数,且满足abc=1.(a+b)≥2;(b+c)≥2;(c+a)≥2;当且仅当a=b,b=c;c=a时取等号;即:a=b=c=1时取等号;∴(a+b)3+(b+c)3+(c+a)3≥3(a+b)•(b+c)•(c+a)≥3×8••24abc=24;当且仅当a=b=c=1时取等号;故(a+b)3+(b+c)3+(c+a)3≥24.得证.故得证.2.【2018年新课标1理科23】已知f(x)=|x+1|﹣|ax﹣1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.【解答】解:(1)当a=1时,f(x)=|x+1|﹣|x﹣1|,由f(x)>1,∴或,解得x,故不等式f(x)>1的解集为(,+∞),(2)当x∈(0,1)时不等式f(x)>x成立,∴|x+1|﹣|ax﹣1|﹣x>0,即x+1﹣|ax﹣1|﹣x>0,即|ax﹣1|<1,∴﹣1<ax﹣1<1,∴0<ax<2,∵x∈(0,1),∴a>0,∴0<x,∴a∵2,∴0<a≤2,故a的取值范围为(0,2].3.【2017年新课标1理科23】已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.【解答】解:(1)当a=1时,f(x)=﹣x2+x+4,是开口向下,对称轴为x的二次函数,g(x)=|x+1|+|x﹣1|,当x∈(1,+∞)时,令﹣x2+x+4=2x,解得x,g(x)在(1,+∞)上单调递增,f(x)在(1,+∞)上单调递减,∴此时f(x)≥g(x)的解集为(1,];当x∈[﹣1,1]时,g(x)=2,f(x)≥f(﹣1)=2.当x∈(﹣∞,﹣1)时,g(x)单调递减,f(x)单调递增,且g(﹣1)=f(﹣1)=2.综上所述,f(x)≥g(x)的解集为[﹣1,];(2)依题意得:﹣x2+ax+4≥2在[﹣1,1]恒成立,即x2﹣ax﹣2≤0在[﹣1,1]恒成立,则只需,解得﹣1≤a≤1,故a的取值范围是[﹣1,1].4.【2016年新课标1理科24】已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【解答】解:(Ⅰ)f(x),由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x时,|3x﹣2|>1,解得x>1或x,即有﹣1<x或1<x;当x时,|4﹣x|>1,解得x>5或x<3,即有x>5或x<3.综上可得,x或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).5.【2014年新课标1理科24】若a>0,b>0,且.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【解答】解:(Ⅰ)∵a>0,b>0,且,∴2,∴ab≥2,当且仅当a=b时取等号.∵a3+b3 ≥224,当且仅当a=b时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥22,当且仅当2a=3b时,取等号.而由(1)可知,2246,故不存在a,b,使得2a+3b=6成立.6.【2013年新课标1理科24】已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[,]时,f(x)≤g(x),求a的取值范围.【解答】解:(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x﹣3<0.设y=|2x﹣1|+|2x﹣2|﹣x﹣3,则y,它的图象如图所示:结合图象可得,y<0的解集为(0,2),故原不等式的解集为(0,2).(Ⅱ)设a>﹣1,且当x∈[,]时,f(x)=1+a,不等式化为1+a≤x+3,故x≥a﹣2对x∈[,]都成立.故a﹣2,解得a,故a的取值范围为(﹣1,].7.【2012年新课标1理科24】已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即,可得x≤1;,可得x∈∅;,可得x≥4.取并集可得不等式的解集为 {x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当 1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].8.【2011年新课标1理科24】设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.【解答】解:(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.由此可得x≥3或x≤﹣1.故不等式f(x)≥3x+2的解集为{x|x≥3或x≤﹣1}.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0此不等式化为不等式组或即或因为a>0,所以不等式组的解集为{x|x}由题设可得1,故a=29.【2010年新课标1理科24】设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f (x )≤ax 的解集非空,求a 的取值范围. 【解答】解:(Ⅰ)由于f (x ),函数y =f (x )的图象如图所示.(Ⅱ)由函数y =f (x )与函数y =ax 的图象可知,极小值在点(2,1)当且仅当a <﹣2或a 时,函数y =f (x )与函数y =ax 的图象有交点.故不等式f (x )≤ax 的解集非空时,a 的取值范围为(﹣∞,﹣2)∪[,+∞).考题分析与复习建议本专题考查的知识点为:解绝对值不等式、证明不等式、利用不等式恒成立求参数的值或范围,求含有绝对值的函数最值也是考查的热点.求解的一般方法是去掉绝对值,也可以借助数形结合求解.历年考题主要以解答题题型出现,重点考查的知识点为解绝对值不等式、证明不等式、利用不等式恒成立求参数的值或范围,求含有绝对值的函数最值也是考查的热点.预测明年本考点题目会比较稳定,备考方向以知识点解绝对值不等式、利用不等式恒成立求参数的值或范围,证明不等式为重点较佳.最新高考模拟试题1.已知函数()22()f x x a x a R =-+-∈. (1)当2a =时,求不等式()2f x >的解集;(2)若[2,1]x ∈-时不等式()32f x x ≤-成立,求实数a 的取值范围. 【答案】(1)2{|3x x <或()4cos(2)6f x x π=-;(2)空集. 【解析】解:(1)不等式()2f x >,即2222x x -+->.可得22222x x x ≥⎧⎨-+->⎩,或122222x x x <<⎧⎨-+->⎩或12222x x x ≤⎧⎨--+>⎩,解得23x <或2x >,所以不等式的解集为2{|2}3x x x <>或.(2)当[2,1]x ∈-时,220x -<,所以()22f x x a x =-+-, 由()32f x x ≤-得1x a -≤,即11a x a -≤≤+,则1211a a -≤-⎧⎨+≥⎩,该不等式无解,所以实数a 的取值范围是空集(或者∅). 2.已知()221f x x x =-++. (1)求不等式()6f x <的解集;(2)设m 、n 、p 为正实数,且()3m n p f ++=,求证:12mn np pm ++≤. 【答案】(1) ()1,3- (2)见证明 【解析】(1)①2x ≥时,()24133f x x x x =-++=-, 由()6f x <,∴336x -<,∴3x <,即23x ≤<,②12x -<<时,()4215f x x x x =-++=-,由()6f x <,∴56x -<,∴1x >-,即12x -<<, ③1x ≤-时,()42133f x x x x =---=-,由()6f x <,∴336x -<,∴1x >-,可知无解, 综上,不等式()6f x <的解集为()1,3-; (2)∵()221f x x x =-++,∴()36f =,∴()36m n p f ++==,且,,m n p 为正实数∴()222222236m n p m n p mn mp np ++=+++++=, ∵222m n mn +≥,222m p mp +≥,222n p np +≥, ∴222m n p mn mp np ++≥++,∴()()2222222363m n p m n p mn mp np mn mp np ++=+++++=≥++ 又,,m n p 为正实数,∴可以解得12mn np pm ++≤. 3.[选修4—5:不等式选讲]已知函数()|||2|(0)f x x m x m m =--+>. (1)当1m =,求不等式()1f x ≥的解集;(2)对于任意实数,x t ,不等式()21f x t t <++-恒成立,求实数m 的取值范围. 【答案】(1)113x x ⎧⎫-≤≤-⎨⎬⎩⎭;(2)()0,2 【解析】(1)当1m =时,()1f x ≥为:1211x x --+≥当1x ≥时,不等式为:1211x x ---≥,解得:3x ≤-,无解当112x -≤<时,不等式为:1211x x -+--≥,解得:13x ≤-,此时1123x -≤≤- 当12x <-时,不等式为:1211x x -+++≥,解得:1x -≥,此时112x -≤<-综上所述,不等式的解集为113x x ⎧⎫-≤≤-⎨⎬⎩⎭(2)对于任意实数x ,t ,不等式()21f x t t <++-恒成立等价于()()max min |2||1|f x t t <++- 因为|2||1||(2)(1)|3t t t t ++-≥+--=,当且仅当(2)(1)0t t +-≤时等号成立 所以()min |2||1|3t t ++-=因为0m >时,()2f x x m x m =--+=2,23,22,m x m x m x x m x m x m ⎧+<-⎪⎪⎪--≤≤⎨⎪-->⎪⎪⎩,函数()f x 单调递增区间为(,)2m -∞-,单调递减区间为(,)2m-+∞ ∴当2m x =-时,()max 322m mf x f ⎛⎫=-= ⎪⎝⎭332m∴<,又0m >,解得:02m << ∴实数m 的取值范围()0,24.选修4-5不等式选讲已知关于x 的不等式20x m x -+≤的解集为{|2}x x ≤-,其中0m >. (1)求m 的值;(2)若正数a ,b ,c 满足a b c m ++=,求证:2222b c aa b c++≥.【答案】(1)2m =(2)见证明 【解析】(1)由题意知:20x m x -+≤即20x m x m x ≥⎧⎨-+≤⎩或20x mm x x ≤⎧⎨-+≤⎩化简得:3x mm x ≥⎧⎪⎨≤⎪⎩或x m x m ≤⎧⎨≤-⎩ 0m >Q ∴不等式组的解集为{}x x m ≤- 2m ∴-=-,解得:2m =(2)由(1)可知,2a b c ++=由基本不等式有:22b a b a +≥,22c b c b+≥,22a c a c +≥三式相加可得:222222b c a a b c b c a a b c +++++≥++222b c a a b c a b c ∴++≥++,即:2222b c a a b c++≥ 5.选修4-5:不等式选讲 已知函数()13f x x x a =+++ (1)当1a =-时,解不等式()2f x ≥;(2)若存在0x 满足00()211f x x ++<,求实数a 的取值范围. 【答案】(1) 1|02x x x ⎧⎫≤≥⎨⎬⎩⎭或 (2) 24a << 【解析】(1)当1a =-时,()|1||31|f x x x =++-,当13x ≥时,不等式等价于1312x x ++-≥,解得12x ≥,12x ∴≥; 当113x -<<时,不等式等价于1312x x +-+≥,解得0x ≤,10x ∴-<≤;当1x ≤-时,不等式等价于1312x x ---+≥,解得12x ≤-,1x -∴≤.综上所述,原不等式的解集为1|02x x x ⎧⎫≤≥⎨⎬⎩⎭或. (2)由()00211f x x ++<,得003131x x a +++<,而()()000000313333333|3|x x a x x a x x a a +++=+++≥+-+=-, (当且仅当()()003330x x a ++≤时等号成立) 由题可知min (()2|1|)1f x x ++<,即31a -<, 解得实数a 的取值范围是24a <<. 6.已知函数()|2|f x ax =-.(Ⅰ)当4a =时,求不等式()|42|8f x x ++≥的解集;(Ⅱ)若[2,4]x ∈时,不等式()|3|3f x x x +-≤+成立,求a 的取值范围.【答案】(I )(,1][1,)-∞-+∞U ;(II )[1,2]- 【解析】(I )当4a =时,原不等式即|42||42|8x x -++≥,即|21||21|4x x -++≥.当12x ≥时,21214x x -++≥,解得1x ≥,∴1x ≥; 当1122x -≤≤时,12214x x -++≥,无解;当12x ≤-时,12214x x ---≥,解得1x ≤-,∴1x ≤-;综上,原不等式的解集为(,1][1,)-∞-+∞U(II )由()|3|3f x x x +-≤+得|2||3|3ax x x -+-≤+(*) 当[2,3]x ∈时,(*)等价于|2|33|2|2ax x x ax x -+-≤+⇔-≤即22a x -≤,所以2222a x x -+≤≤+恒成立,所以813a -≤≤ 当(3,4]x ∈时,(*)等价于|2|33|2|6ax x x ax -+-≤+⇔-≤ 即48ax -≤≤,所以48a x x-≤≤恒成立,所以12a -≤≤ 综上,a 的取值范围是[1,2]-7.已知函数()21f x x x a =-++,()2g x x =+. (1)当1a =-时,求不等式()()f x g x <的解集;(2)设12a >-,且当1,2x a ⎡⎫∈-⎪⎢⎣⎭,()()f x g x ≤,求a 的取值范围.【答案】(1)()0,2;(2)11,23⎛⎤- ⎥⎝⎦ 【解析】(1)当1a =-时,不等式()()f x g x <化为:21120x x x -+---<当12x ≤时,不等式化为12120x x x -+---<,解得:102x <≤当112x <≤时,不等式化为21120x x x -+---<,解得:112x <≤当1x >时,不等式化为21120x x x -+---<,解得:12x << 综上,原不等式的解集为()0,2 (2)由12a x -≤<,得221a x -≤<,21210a x --≤-< 又102x a a ≤+<+ 则()()211f x x x a x a =--++=-++∴不等式()()f x g x ≤化为:12x a x -++≤+得21a x ≤+对1,2x a ⎡⎫∈-⎪⎢⎣⎭都成立 21a a ∴≤-+,解得:13a ≤又12a >-,故a 的取值范围是11,23⎛⎤- ⎥⎝⎦8.已知函数()|2|f x x =-.(Ⅰ)求不等式()|1|f x x x <++的解集;(Ⅱ)若函数5log [(3)()3]y f x f x a =++-的定义域为R ,求实数a 的取值范围.【答案】(I )1,3⎛⎫+∞ ⎪⎝⎭(II )(,1)-∞【解析】解:(I )由已知不等式()|1|f x x x <++,得|2||1|x x x -<++, 当2x ≥时,不等式为21x x x -<++,解得3x >-,所以2x ≥; 当12x -<<时,不等式为21x x x -<++,解得13x >,所以123x <<; 当1x ≤-时,不等式为21x x x -<--,解得3x >,此时无解. 综上:不等式的解集为1,3⎛⎫+∞ ⎪⎝⎭.(II )若5log [(3)()3]y f x f x a =++-的定义域为R ,则(3)()30f x f x a ++->恒成立. ∵|1||2|3|12|333x x a x x a a ++--≥+-+-=-,当且仅当[1,2]x ∈-时取等号. ∴330a ->,即1a <.所以实数a 的取值范围是(,1)-∞. 9.已知函数()123f x x x =-+-. (Ⅰ)解关于x 的不等式()4f x ≤;(Ⅱ)若()20f x m m -->恒成立,求实数m 的取值范围.【答案】(Ⅰ)111,3⎡⎤⎢⎥⎣⎦;(Ⅱ)()2,1-.【解析】解:(I )当1x ≤时,不等式为:()1234x x -+-≤,解得1x ≥,故1x =. 当13x <<时,不等式为:()1234x x -+-≤,解得1x ≥,故13x <<1<x <3, 当3x ≥时,不等式为:()1234x x -+-≤,解得113x ≤,故1133x ≤≤. 综上,不等式()4f x ≤的解集为111,3⎡⎤⎢⎥⎣⎦.(II )由()20f x m m -->恒成立可得()2m m f x +<恒成立.又()37,35,1337,1x x f x x x x x -≥⎧⎪=-+<<⎨⎪-+≤⎩,故()f x 在(],1-∞上单调递减,在()1,3上单调递减,在[)3,+∞上单调递增,∴()f x 的最小值为()32f =. ∴22m m +<,解得21m -<<. 即m 的最值范围是()2,1-.10.已知函数()211f x x x =-++. (Ⅰ)解不等式()3f x ≥;(Ⅱ)记函数()f x 的最小值为m ,若,,a b c 均为正实数,且232a b c m ++=,求222a b c ++的最小值. 【答案】(Ⅰ){}11x x x ≤-≥或;(Ⅱ)914. 【解析】(Ⅰ)由题意, 3,11()2,1213,2x x f x x x x x ⎧⎪-≤-⎪⎪=--<<⎨⎪⎪≥⎪⎩,所以()3f x ≥等价于133x x ≤-⎧⎨-≥⎩或11223x x ⎧-<<⎪⎨⎪-≥⎩或1233x x ⎧≥⎪⎨⎪≥⎩.解得:1x ≤-或1x ≥,所以不等式的解集为{}11x x x ≤-≥或; (Ⅱ)由(1)可知,当12x =时, ()f x 取得最小值32,所以32m =,即233a b c ++=, 由柯西不等式得2222222()(123)(23)9a b c a b c ++++≥++=, 整理得222914a b c ++≥, 当且仅当123a b c ==时, 即369,,141414a b c ===时等号成立.所以222a b c ++的最小值为914.11.已知函数()12f x x a x =+++. (Ⅰ)求1a =时,()3f x ≤的解集;(Ⅱ)若()f x 有最小值,求a 的取值范围,并写出相应的最小值. 【答案】(Ⅰ)[3,0]-; (Ⅱ)见解析. 【解析】(Ⅰ)当1a =时,232()12121231x x f x x x x x x --≤-⎧⎪=+++=-<<-⎨⎪+≥-⎩∵()3f x ≤当2x -≤时()233f x x =--≤解得32x -≤≤-当21x -<<-时()13f x =≤恒成立当1x -≥时()233f x x =+≤解得10x -≤≤ 综上可得解集[3,0]-.(Ⅱ)(1)212()12(1)2121(1)211a x a x f x x a x a x a x a x a x -+--≤-⎧⎪=+++=-+--<<-⎨⎪+++≥-⎩当(1)0a -+>,即1a <-时,()f x 无最小值; 当(1)0a -+=,即1a =-时,()f x 有最小值1-;当(1)0a -+<且10a -≤,即11a -<≤时, min ()(1)f x f a =-= 当(1)0a -+<且10a ->,即1a >时, min ()(2)1f x f =-= 综上:当1a <-时,()f x 无最小值; 当1a =-时,()f x 有最小值1-;当11a -<≤时, min ()(1)f x f a =-= ; 当1a >时, min ()(2)1f x f =-=; 12.选修4-5:不等式选讲 已知函数()|23||1|f x x x =--+. (1)求不等式()6f x ≤的解集;(2)设集合M 满足:当且仅当x M ∈时,()|32|f x x =-,若,a b M ∈,求证:228223a b a b -++≤. 【答案】(1) {}210x x -≤≤;(2)见解析. 【解析】(1)()4,1323132,1234,2x x f x x x x x x x ⎧⎪-+<-⎪⎪=--+=-+-≤≤⎨⎪⎪->⎪⎩当1x <- 时,46x -+≤ ,得2x -≥ ,故21x -≤<-; 当312x -≤≤时,326x -+≤ ,得43x ≥- ,故312x -≤<;当32x >时,46x -≤ ,得10x ≤ ,故3102x <≤; 综上,不等式()6f x ≤的解集为{}210x x -≤≤(2)由绝对值不等式的性质可知()231(23)(1)32f x x x x x x =--+≤-++=- 等价于23(1)32x x x -≤-++-,当且仅当(23)(1)0x x -+≤,即213x -≤≤时等号成立,故21,3M ⎡⎤=-⎢⎥⎣⎦所以221,133a b -≤≤-≤≤, 所以222510(1),4(1)99a b ≤-≤-≤--≤-, 即228(1)(1)3a b ---≤.13.[选修4—5:不等式选讲] 已知函数()31f x x m x m =---- (1)若1m =,求不等式()1f x <的解集.(2)对任意的x R ∈,有()(2)f x f ≤,求实数m 的取值范围. 【答案】(1)(,3)-∞;(2)1123m -≤≤ 【解析】(1)()141f x x x =---<,所以11441(4)11(4)1141x x x x x x x x x <≤≤>⎧⎧⎧⎨⎨⎨---<---<--+<⎩⎩⎩或或解之得不等式()1f x <的解集为(,3)-∞. (2)当131,2m m m +>>-时,由题得2必须在3m+1的右边或者与3m+1重合, 所以1231,3m m ≥+∴≤,所以1123m -<≤,当131,2m m m +==-时,不等式恒成立,当131,2m m m +<<-时,由题得2必须在3m+1的左边或者与3m+1重合,由题得1231,3m m ≤+≥,所以m 没有解.综上,1123m -≤≤. 14.已知()21f x x x =+-. (1)证明()1f x x +≥; (2)若,,a b c +∈R ,记33311134abc a b c +++的最小值为m ,解关于x 的不等式()f x m <. 【答案】(1)见证明;(2) 2433x x ⎧⎫-<<⎨⎬⎩⎭【解析】(1)()2212211f x x x x x x +=+-≥-+=.当且仅当()2x 2x 10-≤,等号成立(2)∵333333311131333333234444abc abc abc abc m a b c a b c abc abc +++≥+=+≥⋅==,当且仅当a=b=c 等号成立由不等式()3f x <即()213f x x x =+-<.由()31,01211,02131,2x x f x x x x x x x ⎧⎪-+≤⎪⎪=+-=-<<⎨⎪⎪-≥⎪⎩得:不等式()3f x <的解集为2433x x ⎧⎫-<<⎨⎬⎩⎭.15.选修4—5:不等式选讲已知函数()11f x x mx =++-,m R ∈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学解答题17题常见类型
1.【优质试题高考湖南,文17】设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =. (I )证明:sin cos B A =;(II) 若3
sin sin cos 4
C A B -=,且B 为钝角,求,,A B C .
2.【优质试题山东,文17】 ABC ∆中,角A B C ,,所对的边分别为,,a b c .
已知
cos ()B A B ac =
+==求sin A 和c 的值.
3.【优质试题高考陕西,文17】ABC ∆的内角,,A B C 所对的边分别为,,a b c
,向量()m a =与
(cos ,sin )n A B =平行.
(I)求A ;(II)
若2a b ==求ABC ∆的面积.
4.【优质试题高考四川,文19】已知A 、B 、C 为△ABC 的内角,tanA 、tanB 是关于方程x 2
px -p +1=0(p ∈R )两个实根.
(Ⅰ)求C 的大小(Ⅱ)若AB =1,AC
,求p 的值
5.【优质试题高考天津,文16】△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的
面积为,1
2,cos ,4
b c A -==-
(I )求a 和sin C 的值;(II )求πcos 26A ⎛⎫
+ ⎪⎝

的值.
6.【优质试题高考新课标1,文17】已知,,a b c 分别是ABC ∆内角,,A B C 的对边,
2sin 2sin sin B A C =.
(I )若a b =,求cos ;B (II )若90B =
,且a = 求ABC ∆的面积.
7.【优质试题高考浙江,文16】在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知
tan(A)24
π
+=. (1)求2sin 2sin 2cos A A A +的值;(2)若B ,34
a π
==,求ABC ∆的面积.
8. 已知在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且()2
2sin 3cos 0A B C ++=.
(1)求角A 的大小;(2)若ABC ∆
的面积S a =求sin sin B C +的值.
9.【优质试题高考四川文科】在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且
cos cos sin A B C
a b c
+=. (I )证明:sin sin sin A B C =;(II )若2226
5
b c a bc +-=,求tan B .
10.【优质试题高考天津文数】在ABC ∆中,内角C B A ,,所对应的边分别为a,b,c
,已知
sin 2sin a B A .
(Ⅰ)求B ;(Ⅱ)若1
cos A 3
=,求sinC 的值.
11.【优质试题高考浙江文数】在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知
b +
c =2a cos B .
(Ⅰ)证明:A =2B ;(Ⅱ)若cos B =2
3
,求cos C 的值.
12.【优质试题高考浙江文数】设数列{n a }的前n 项和为n S .已知2S =4,1n a +=2n S +1,*N n ∈.(I )求通项公式n a ;
13.【优质试题高考四川文科】已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,
11n n S qS +=+ ,其中q >0,*n N ∈ .
(Ⅰ)若2323,,a a a a + 成等差数列,求{}n a 的通项公式;
14.【优质试题高考新课标1文数】(本题满分12分)已知{}n a 是公差为3的等差数列,数列
{}n b 满足12
111
==3
n n n n b b a b b nb +++=1,,,.(I )求{}n a 的通项公式;(II )求{}n b 的前n 项和.
15.[优质试题高考新课标Ⅲ文数]已知各项都为正数的数列{}n a 满足11a =,
211(21)20n n n n a a a a ++---=.
(I )求23,a a ;(II )求{}n a 的通项公式.
16.【优质试题高考北京文数】已知}{n a 是等差数列,}{n b 是等差数列,且32=b ,93=b ,
11b a =,414b a =.
(1)求}{n a 的通项公式;(2)设n n n b a c +=,求数列}{n c 的前n 项和.
17.【优质试题高考山东文数】已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且
1n n n a b b +=+.
(I )求数列{}n b 的通项公式; (II )令1
(1)(2)n n n n
n a c b ++=+.求数列{}n c 的前n 项和n T .
18.【优质试题高考天津文数】已知{}n a 是等比数列,前n 项和为()n S n N ∈*,且
6123
112
,63
S a a a -==. (Ⅰ)求{}n a 的通项公式;(Ⅱ)若对任意的,b n n N ∈*是2log n a 和21log n a +的等差中项,求数列
(){
}
21n
n b -的前2n 项。

相关文档
最新文档