人教版九年级数学上册 第24章 圆小结与复习 精品导学案 新人教版
人教版九年级数学上册第24章《圆》知识小结与复习

A
A.140°B.135°C.130°D.125°
DF
∠BOC=90°+ 1∠A 2
R
E
BM
Q
O
G
P
NC
3、边长分别为3,4,5的三角形的内切圆半径与外 接圆半径的比为( )
A.1∶5 B.2∶5 C.3∶5 D.4∶5
4.已知△ABC,AC=12,BC=5,AB=13。则 △ABC的外接圆半径为 。内切圆半径____ 5. 正三角形的边长为a,它的内切圆和外接圆的半 径分别是______, ____
O1
AM
O
B
如图,在矩形ABCD中,AB=20cm,BC=4cm,点 ⊙p从A开始折线A—B—C—D以4cm/秒的速度 移动,点⊙Q从C开始沿CD边以1cm/秒的速度移 动,如果点⊙P, ⊙Q分别从A,C同时出发,当其中一 点到达D时,另一点也随之停止运动,设运动的时 间t(秒) 如果⊙P和⊙Q的半径都是2cm,那么t 为何值时, ⊙P和⊙Q外切?
(2)若C△ABC= 36, S△ABC=18,则r内=_1____; (3)若BE=3,CE=2, △ABC的周长为18,则AB=_7___;
A
D
8
F
4
o
B
6E
C
1 S △ABC= 2 C △ABC·r内
2.△ABC中, ∠A=70°,⊙O截△ABC三条边所得的
弦长相等.则 ∠BOC=__D__.
3.两圆相切,圆心距为10cm,其中一个圆的半径为 6cm,则另一个圆的半径为_____.
4. 已知圆O1与圆O 2的半径分别为12和2,圆心O1的 坐标为(0,8),圆心O2 的坐标为(-6,0),则两圆的位置 关系是______.
中学人教版九年级上册数学24章圆的专题复习 导学案

学习目标:1、系统熟悉圆的有关概念。
2、巩固有关圆的一些性质和定理。
3、进一步掌握用圆的有关知识解决某些数学问题。
教学重点:有关圆的计算;教学难点:应用圆的有关知识分析问题。
教学方法:采取学生小组合作为主的教学方法,激发学生思维的积极性,充分展现学生的主体作用。
教学过程:一、本章知识结构图二、新课讲解以4人小组为单位,完成以下练习题的讲解:1.⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,则AB和CD的距离为( )A.2cm B.14cmC.2cm或14cm D.10cm或20cm2.如图23-14,⊙O的直径为10,弦AB=8,P是弦AB上一个动点,那么OP的长的取值范围是_________.3.如图23-15,AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论不正确的是( )A.CE=DE B. C.∠BAC=∠BAD D.AC>AD4.如图23-10,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么AE的长为( )A. 2 B.3 C.4 D.55.在直径为52cm的圆柱形油桶内装入一些油后,截面如图23-16所示,如果油的最大深度为16cm,那么油面宽度为_________cm.6.如图23-17,点A是半圆上一个三等分点,B点是的中点,P为直径AMN上一动点,⊙O的半径为1,则AP+BP的最小值为( )A.1 B. C.D.7.如图23-11,CA为⊙O的切线,切点为A,点B在⊙O上,如果∠CAB=55°,那么∠AOB等于( )A.35° B.90° C.110°D.120°8.如图23-19,在△ABC中,∠C=90°,AC=3,BC=4,若以C为圆心,R为半径的圆与斜边AB有两个公共点,则R的取值范围是________.9.如图23-20,C是⊙O的直径AB延长线上一点,过C作⊙O的切线CD,D为切点,连结AD、OD、BD.请根据图中所给出的已知条件(不再标注或使用其他字母,不再添加任何辅助线),写出两个你认为正确的结论_________________.10.圆内接四边形ABCD中,∠A︰∠C=1︰3,则∠C=_________.11.如图23-22,⊙O、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径都是1,顺次连结5个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和为( )A.1πB.1.5πC.2πD.2.5π12.如图23-23,施工工地的水平地面上,有三根外径都是1米的水泥管,两两相切地堆放地一起,则其最高点到地面的距离是___________.13.如果圆柱的底面半径为4cm,母线长为5cm,那么侧面积等于( )A. B. C. D.14.一个扇形的弧长为20πcm,面积为,则该扇形的圆心角为__________.15.已知圆锥的底面直径为4,母线长为6,则它的侧面积为_________.二、课堂小结三、教学反思今天的这节圆的复习课我的预设目标是让学生在月考前,对圆的知识有了一个系统的认识和巩固练习,通过小组合作交流学习,让较好的学生带动中差的学生完成习题的讲解,让中差的学生在这节课上有所收获。
九年级数学上册24圆复习导学案新人教版(1)

第24章圆单元复习一、知识梳理1、圆的有关概念:2、圆的对称性:(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线。
(2)圆是中心对称图形,对称中心为圆心.3、垂径定理及其推论:定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
(2)弦的垂直垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
(4)圆的两条平行弦所夹的弧相等。
4、圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等。
5、圆周角:(1)定义:顶点在圆上,并且两边都和圆相交的角叫圆周角。
(2)定理:一条弧所对的圆周角等于它所对的圆心角的一半.(3)推论:①圆周角的度数等于它所对弧的度数的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等。
③直径所对的圆周角是直角;90的圆周角所对的弦是直径。
④如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形.6、圆内接四边形的性质:圆内接四边形的对角互补,并且任意一个外角都等于它的内对角。
圆内接平行四边形是矩形,圆内接菱形是正方形.圆内接梯形是等腰梯形.定义、性质、推论及应用。
求角度、用四点共圆解决问题(到某点等远的四点共圆对角互补的四边形四个顶点共圆线段所对的两个张角相等的四点共圆)另外:三角形的垂心恰好是它的垂足三角形的内心、三角形一个顶点到其垂心的距离是外心到对边中点距离的2倍、三角形的外接圆;圆内接三角形.经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形。
注意:(1)三角形的外心是三角形三边的垂直平分线的交点;三角形的外心到三角形三个顶点的距离相等,任何三角形有且只有一个外接圆,任何一个圆有无数个内接三角形;(2)锐角三角形的外心在三角形的内部;直角三角形的外心是斜边的中点,外接圆的半径等于斜边的一半;钝角三角形的外心在三角形的外部。
九年级数学上册第二十四章圆章末复习导学案新版新人教版

第二十四章圆一、复习导入1.导入课题:本节课对全章的知识作一回顾,梳理其知识脉络,熟悉其知识构架,进一步澄清那些易混点,易错点,同时对本章中的一些常用辅助线和常见分类作一整理.2.复习目标:(1)梳理全章知识点,能画出它的知识结构框图.(2)总结解题方法,提升解题能力.3.复习重、难点:重点:圆的有关性质和直线与圆的位置关系.难点:综合应用知识解决问题的能力.二、分层复习1.复习指导:(1)复习内容:教材第78页到第122页的内容.(2)复习时间:10分钟.(3)复习方法:翻阅教材,分类归纳、整理.(4)复习参考提纲:②常规辅助线.a.与弦有关:垂直于弦的直径.b.已知直径:垂直于直径的弦.c.证切线:有明确公共点,连接圆心与公共点;无明确公共点,过圆心作切线的垂线段.d.已知切线:垂直于切线且过切点的半径.③圆中的分类讨论(各举一例和同桌交流).a.点和圆的位置关系:点到圆的最近距离和最远距离问题.b.圆的轴对称性:求圆的两平行弦的距离;求有公共端点的两弦夹角.c.弦所对的圆周角.d.与三角形的外心有关的计算.2.自主复习:学生结合复习指导进行复习.3.互助复习:(1)师助生:①明了学情:关注学生提纲中三个方面的整理情况.②差异指导:根据学情进行分类指导.(2)生助生:小组内相互交流、研讨、改正.4.强化:小组展示复习成果,教师总结归纳.1.复习指导:(1)复习内容:典例剖析,考点跟踪.(2)复习时间:10分钟.(3)复习方法:相互交流研讨.(4)复习参考提纲:①如图,⊙O 的直径CD =10cm,AB 是⊙O 的弦,AB ⊥CD,垂足为M,OM ∶OC =3∶5,则AB 的长为(A )A.8cmB. 91 cmC.6cmD.2cm②如图,AB 与⊙O 相切于点C,OA =OB,⊙O 的直径为8cm,AB =10cm,求OA 的长.连接OC. ∵AB 与⊙O 相切于点C,∴∠ACO=90°.又∵OA=OB,∴AC=CB=12AB=5cm. 在Rt △AOC 中,OA OC AC =+=+=22162541(cm ).③如图,在足球比赛中,甲带球向对方球门PQ 进攻,当他带球冲到A 点时,同伴乙已经助攻冲到B 点,此时甲是直接射门好,还是将球传给乙,让乙射门好?(仅从射门角度考虑)∵A 在圆外,B 在圆上,∴∠PAQ<∠PBQ.∴让乙射门好.④如图,⊙O 的直径AB =12cm,AM 和BN 是它的两条切线,DE 切⊙O 于点E,交AM 于点D,交BN 于点C.设AD =x ,BC =y,求y 与x 的函数关系式.∵AD 、BC 与⊙O 相切.∴AD ⊥AB,BC ⊥AB.∴AD ∥BC.过D 作DF ⊥BC 于点F,则四边形ABFD 为矩形.∴DF=AB=12cm.FC=BC-AD=y-x .又∵DC 与⊙O 相切,∴AD=DE,BC=CE.∴CD=DE+CE=AD+BC=y+x .在Rt △DFC 中,DF FC DC +=222.即()()y x y x +-=+22212. 得x y=36. ∴y .x =36 2.自主复习:学生结合复习提纲进行复习.3.互助复习:(1)师助生:①明了学情:观察学生如何分析找思路.②差异指导:根据学情适时点拨、引导.(2)生助生:相互交流沟通.4.强化:单元典型例题与对应练习题.三、评价1.学生的自我评价(围绕三维目标):这节课你有何新的感知?掌握了哪些解题技能和方法?还有哪些疑惑?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、积极性、小组协作状况,学习的方法及效果等.(2)纸笔评价:课题评价检测.3.教师的自我评价(教学反思):本节课通过学习归纳本章内容,以垂径定理、内切圆、两圆相交作公共弦等知识点为支撑,力求以点带面,查漏补缺,让学生对本章知识了然于胸,此外,又通过两个有关切线的例题,加强对重点知识的训练,使学生能在全面掌握知识点前提下,又能抓住重点.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)如图,在⊙O中,弦AB,CD相交于点P,∠A=40°,∠APD=75°,则∠B等于(D)A.15°B.40°C.75°D.35°2.(10分)如图,PA,PB分别切⊙O于点A,B,∠P=70°,则∠C=(B)A.70°B.55°C.110°D.140°3.(10分)以半径为1的圆内接正三角形、正方形、正六边形的边心距为三边作三角形,则(C)A. 不能构成三角形B. 这个三角形是等腰三角形C. 这个三角形是直角三角形D. 这个三角形是钝角三角形4.(10分)一个圆锥的侧面积是底面积的32倍,则圆锥侧面展开图的扇形的圆心角是(C)A.120°B.180°C.240°D.300°5.(10分)如图所示,P是⊙O外一点,PA、PB分别和⊙O切于点A、B,点C是AB上任意一点,过点C作⊙O的切线分别交PA、PB于点D、E,若△PDE的周长为12,则PA的长为 6 .=,D,E分别是半径OA,OB的中点.求6.(10分) 如图,AC CB证:CD=CE.=,∴∠COD=∠COE.证明:连接OC.∵AC CB∵D、E分别是半径OA、OB的中点,∴OD=OE=12OA=12OB.又OC=OC,∴△COD≌△COE.∴CD=CE.7.(10分)在直径为650mm的圆柱形油槽内装入一些油以后,截面如图所示,若油面宽AB=600mm,求油的最大深度.解:过O作OD⊥AB,交AB于点C,交⊙O于点D,则AC=12AB=300mm.连接OA.设CD=x mm,则OC=(325-x)mm.在Rt△AOC中,OC2+AC2=OA2,即(325-x)2+3002=3252.解得x=200.即CD=200mm.答:油的最大深度为125mm.二、综合应用(20分)8.(10分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,求证:AC平分∠DAB.证明:连接OC.∵OA=OC,∴∠OAC=∠OCA.又∵DC是⊙O的切线,∴OC⊥CD.又AD⊥CD,∴AD∥CO.∴∠DAC=∠OCA,∴∠DAC=∠OAC.∴AC平分∠DAB.9.(10分)如图,在等腰三角形ABC中,AB=AC,以AC为直径作⊙O,与BC交于点E,过点E 作ED⊥AB,垂足为D.求证:DE为⊙O的切线.证明:连接OE,AE.∵AC是⊙O的直径,∴∠AEC=90°.又∵AB=AC,∴∠B=∠C.∵∠B=90°-∠DAE=∠DEA.∴∠DEA=∠C,又∵OE=OA,∴∠EAO=∠AEO∴∠DEO=∠DEA+∠AEO=∠C+∠EAO=90°.又DE过点E,∴DE为⊙O的切线.三、拓展延伸(10分)10.(10分) 如图,大半圆O与小半圆O1相切于点C,大半圆的弦AB与小半圆相切于点F,且AB∥CD,AB=4 cm,求阴影部分的面积.解:连接FO 1、FO.过O 作OM ⊥AB 于点M. ∴AB 与⊙O 相切,∴O 1F ⊥CD. 又AB ∥CD,∴O 1F ⊥CD.∴四边形FO 1OM 是矩形.∴O 1F=OM.又∵OM ⊥AB,∴MB=12AB=2cm.连接OB,在Rt △BMO 中,OM 2+MB 2=OB 2, 即O 1F 2+MB 2=OB 2.∴()()阴影S OB O F OB O F MB cm ππππππ=-=-==⨯=22221122111222114222.。
2019-2020学年九年级数学上册 第24章 圆复习教案 (新版)新人教版.doc

2019-2020学年九年级数学上册第24章圆复习教案(新版)新人教版教学目标(一)教学知识点1.了解点与圆,直线与圆以及圆和圆的位置关系.2.了解切线的概念,切线的性质及判定.3.会过圆上一点画圆的切线.(二)能力训练要求1.通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.2.通过探索弧长、扇形的面积、圆锥的侧面积和全面积的计算公式,发展学生的探索能力.3.通过画圆的切线,训练学生的作图能力.4.通过全章内容的归纳总结,训练学生各方面的能力.(三)情感与价值观要求1.通过探索有关公式,让学生懂得数学活动充满探索与创造,感受数学的严谨性以及数学结论的确定性.2.经历观察、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.教学重点1.探索并了解点与圆、直线与圆、圆与圆的位置关系.2.探索切线的性质;能判断一条直线是否为圆的切线;会过圆上一点画圆的切线.教学难点:探索各种位置关系及切线的性质.教学方法:学生自己交流总结法.教具准备投影片五张:第一张:(记作A) 第二张:(记作B) 第三张:(记作C) 第四张:(记作D) 第五张:(记作E)教学过程Ⅰ.回顾本章内容[师]上节课我们对本章的所有知识进行了回顾,并讨论了这些知识间的关系,绘制了本章知识结构图,还对一部分内容进行了回顾,本节课继续进行有关知识的巩固.Ⅱ.具体内容巩固一、确定圆的条件[师]作圆的问题实质上就是圆心和半径的问题,确定了圆心和半径,圆就随之确定.我们在探索这一问题时,与作直线类比,研究了经过一个点、两个点、三个点可以作几个圆,圆心的分布和半径的大小有什么特点.下面请大家自己总结.[生]经过一个点可以作无数个圆.因为以这个点以外的任意一点为圆心,以这两点所连的线段为半径就可以作一个圆.由于圆心是任意的,因此这样的圆有无数个.经过两点也可以作无数个圆.设这两点为A、B,经过A、B两点的圆,其圆心到A、B两点的距离一定相等,所以圆心应在线段AB的垂直平分线上,在AB的垂直平分线上任意取一点为圆心,这一点到A或B的距离为半径都可以作一个经过A、B两点的圆.因此这样的圆也有无数个.经过在同一直线上的三点不能作圆.经过不在同一直线上的三点只能作一个圆.要作一个圆经过A、B、C三点,就要确定一个点作为圆心,使它到三点A、B、C的距离相等,到A、B两点距离相等的点在线段AB的垂直平分线上,到B、C两点距离相等的点应在线段B、C的垂直平分线上,那么同时满足到A、B、C三点距离相等的点应既在AB的垂直平分线上,又在BC的垂直平分线上,既两条直线的交点,因为交点只有一个,即确定了圆心.这个交点到A点的距离为半径,所以这样的圆只能作出一个.[师]经过不在同一条直线上的四个点A、B、C、D能确定一个圆吗?[生]不一定,过不在同一条直线上的三点,我们可以确定一个圆,如果另外一个点到圆心的距离等于半径,则说明四个点在同一个圆上,如果另外一个点到圆心的距离不等于半径,说明四个点不在同一个圆上.例题讲解(投影片A)矩形的四个顶点在以对角线的交点为圆心的同一个圆上吗?为什么?[师]请大家互相交流.[生]解:如图,矩形ABCD 的对角线AC 和BD 相交于点O .∵四边形ABCD 为矩形,∴OA =OC =OB =OD .∴A 、B 、C 、D 四点到定点O 的距离都等于矩形对角线的一半.∴A 、B 、C 、D 四点在以O 为圆心,OA 为半径的圆上.二、三种位置关系[师]我们在本章学习了三种位置关系,即点和圆的位置关系;直线和圆的位置关系;圆和圆的位置关系.下面我们逐一来回顾.1.点和圆的位置关系[生]点和圆的位置关系有三种,即点在圆外;点在圆上;点在圆内.判断一个点是在圆的什么部位,就是看这一点与圆心的距离和半径的大小关系,如果这个距离大于半径,说明这个点在圆外;如果这个距离等于半径,说明这个点在圆上;如果这个距离小于半径,说明这个点在圆内.[师]总结得不错,下面看具体的例子.(投影片B)1.⊙O 的半径r =5cm ,圆心O 到直线l 的 距离d =OD =3 m .在直线l 上有P 、Q 、R 三点,且有PD =4cm ,QD >4cm ,RD <4cm ,P 、Q 、R 三点对于⊙O 的位置各是怎样的?2.菱形各边的中点在同一个圆上吗?分析:要判断某些点是否在圆上,只要看这些点到圆心的距离是否等于半径.[生]1.解:如图(1),在Rt △OPD 中,∵OD =3,PD =4,∴OP =222234OD PD +-+=5=r .所以点P 在圆上.同理可知OR =22OD DR +<5,OQ =22OD DQ +>5. 所以点R 在圆内,点Q 在圆外.2.如图(2),菱形ABCD中,对角线AC和BD相交于点O,E、F、G、H分别是各边的中点.因为菱形的对角线互相垂直,所以△AOB、△BOC、△COD、△DOA都是直角三角形,又由于E、F、G、H分别是各直角三角形斜边上的中点,所以OE、OF、OG、OH分别是各直角三角形斜边上的中线,因此有OE=12AB,OF=12BC,OG=12CD,OH=12AD,而AB=BC=CD=DA.所以OE=OF=OG=OH.即各中点E、F、G、H到对角线的交点O的距离相等,所以菱形各边的中点在同一个圆上.2.直线和圆的位置关系[生]直线和圆的位置关系也有三种,即相离、相切、相交,当直线和圆有两个公共点时,此时直线与圆相交;当直线和圆有且只有一个公共点时,此时直线和圆相切;当直线和圆没有公共点时,此时直线和圆相离.[师]总结得不错,判断一条直线和圆的位置关系有哪些方法呢?[生]有两种方法,一种就是从公共点的个数来判断,上面已知讨论过了,另一种是比较圆心到直线的距离d与半径的大小.当d<r时,直线和圆相交;当d=r时,直线和圆相切;当d>r时,直线和圆相离.[师]很好,下面我们做一个练习.(投影片C)如图,点A的坐标是(-4,3),以点A为圆心,4为半径作圆,则⊙A与x轴、y轴、原点有怎样的位置关系?分析:因为x轴、y轴是直线,所以要判断⊙A与x轴、y轴的位置关系,即是判断直线与圆的位置关系,根据条件需用圆心A到直线的距离d与半径r比较.O是点,⊙A与原点即是求点和圆的位置关系,通过求OA与r作比较即可.[生]解:∵A点的坐标是(-4,3),∴A点到x轴、y轴的距离分别是3和4.又因为⊙A的半径为4,∴A点到x轴的距离小于半径,到y轴的距离等于半径.∴⊙A与x轴、y轴的位置关系分别为相交、相切.由勾股定理可求出OA的距离等于5,因为OA>4,所以点O在圆外.[师]上面我们讨论了直线和圆的三种位置关系,下面我们要对相切这种位置关系进行深层次的研究,即切线的性质和判定.[生]切线的性质是:圆的切线垂直于过切点的直径.切线的判定是:经过直径的一端,并且垂直于这条直径的直线是圆的切线.[师]下面我们看它们的应用.(投影片D)1.如图(1),在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于点E,求AD的长.2.如图(2),AB 是⊙O 的直径,C 是⊙O 上的一点,∠CAE =∠B ,你认为AE 与⊙O 相切吗?为什么?分析:1.由⊙O 与AC 相切可知OE ⊥AC ,又∠C =90°,所以△AOE ∽△ABC ,则对应边成比例,OA OE BA BC=.求出半径和OA 后,由OA -OD =AD ,就求出了AD . 2.根据切线的判定,要求AE 与⊙O 相切,需求∠BAE =90°,由AB 为⊙O 的直径得∠ACB =90°,则∠BAC +∠B =90°,所以∠CAE +∠BAC =90°,即∠BAE =90°.[师]请大家按照我们刚才的分析写出步骤.[生]1.解:∵∠C =90°,AC =12,BC =9,∴由勾股定理得AB =15.∵⊙O 切AC 于点E ,连接OE ,∴OE ⊥AC .∴OE ∥BC .∴△OAE ∽△BAC .∴OA OE AB BC=,即AB OE OE AB BC -=.∴15159OE OE -=.∴OE =458 ∴AD =AB -2OD =AB -2OE =15-458×2=154. 2.解:∵AB 是⊙O 的直径,∴∠ACB =90°.∴∠CAB +∠B =90°.∴∠CAE =∠B ,∴∠CAB +∠CAE =90°,即BA ⊥AE .∵BA 为⊙O 的直径,∴AE 与⊙O 相切.3.圆和圆的位置关系[师]还是请大家先总结内容,再进行练习.[生]圆和圆的位置关系有三大类,即相离、相切、相交,其中相离包括外离和内含,相切包括外切和内切,因此也可以说圆和圆的位置关系有五种,即外离、外切、相交、内切、内含.[师]那么应根据什么条件来判断它们之间的关系呢?[生]判断圆和圆的位置关系;是根据公共点的个数以及一个圆上的点在另一个圆的内部还是外部来判断.当两个圆没有公共点时有两种情况,即外离和内含两种位置关系.当每个圆上的点都在另一个圆的外部时是外离;当其中一个圆上的点都在另一个圆的内部时是内含.当两个圆有唯一公共点时,有外切和内切两种位置关系,当除公共点外,每个圆上的点都在另一个圆的外部时是外切;当除公共点外,其中一个圆上的点都在另一个圆的内部时是内切. 两个圆有两个公共点时,一个圆上的点有的在另一个圆的内部,有的在另一个圆的外部时是相交.两圆相交只要有两个公共点就可判定它们的位置关系是相交.[师]只有这一种判定方法吗?[生]还有用圆心距d 和两圆的半径R 、r 之间的关系能判断外切和内切两种位置关系,当d =R +r 时是外切,当d =R -r (R >r )时是内切.[师]下面我们还可以用d 与R ,r 的关系来讨论出另外三种两圆的位置关系,大家分别画出外离、内含和相交这三种位置关系.探索它们之间的关系,它们的关系可能是存在相等关系,也有可能是存在不等关系.(让学生探索)大家得出结论了吗?是不是这样的.当d >R +r 时,两圆外离;当R -r <d <R +r 时,两圆相交;当d <R -r (R >r )时,两圆内含.(投影片E)设⊙O 1和⊙O 2的半径分别为R 、r ,圆心距为d ,在下列情况下,⊙O 1和⊙O 2的位置关系怎样? ①R =6cm ,r =3cm ,d =4cm ;②R =6cm ,r =3cm ,d =0;③R =3cm ,r =7cm ,d =4cm ;④R =1cm ,r =6cm ,d =7cm ;⑤R =6cm ,r =3cm ,d =10cm ;⑥R =5cm ,r =3cm ,d =3cm ;⑦R =3cm ,r =5cm ,d =1cm .[生](1)∵R -r =3cm <4cm <R +r =9cm ,∴⊙O 1与⊙O 2的位置关系是相交;(2)∵d <R -r ,∴两圆的位置关系是内含;(3)∵d =r -R ,∴两圆的位置关系是内切;(4)∵d =R +r ,∴两圆的位置关系是外切;(5)∵d >R +r ,∴两圆的位置关系是外离;(6)∵R -r <d <R +r ,∴两圆的位置关系是相交;(7)∵d <r -R ,∴两圆的位置关系是内含.三、有关外接圆和内切圆的定义及画法[生]过不在同一条直线上的三个点可以确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心叫三角形的外心,它是三角形三边垂直平分线的交点.因为画圆的关键是确定圆心和半径,所以作三角形的外接圆时,只要找三边垂直平分线的交点,这就是圆心,以这点到三角形任一顶点间的距离为半径就可作出三角形的外接圆. 和三角形三边都相切的圆;叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫三角形的内心.因此,作三角形的内切圆时,只要作两条角平分线就找到了圆心,以这点与任一边之间的距离为半径,就可作出三角形的内切圆.Ⅲ.课堂练习1.画三个半径分别为2cm 、2.5cm 、4cm 的圆,使它他们两两外切.2.两个同心圆中,大圆的弦AB 和AC 分别和小圆相切于点D 和E ,则DE 与BC 的位置关系怎样?DE 与BC 之间有怎样的数量关系?(DE 12BC ) Ⅳ.课时小结本节课巩固了如何确定圆;点和圆、直线和圆、圆和圆之间的位置关系;如何作三角形的外接圆和内切圆.Ⅴ.课后作业复习题 B 组Ⅵ.活动与探究如图,⊙O 是Rt △ABC 的内切圆,∠ACB =90°,AB =13,AC =12,求图中阴影部分的面积.分析:根据图形,阴影部分的面积等于三角形ABC 的面积与⊙O 的面积差,由勾股定理可求出直角边BC 的长度,则能求出S △ABC ,要求圆的面积,则需求⊙O 的半径OD 或OE 、OF .连接OA 、OB 、OC ,则把△ABC 分成三个三角形,即△OAB ,△OBC 、△OCA ,则有S △ABC =S △OAB +S △OBC +S △OCA ,从中可求出半径.解:如图连接OA 、OB 、OC ,则△ABC 分成三个三角形,△OAB 、△OBC 、△OCA ,OE 、OF 、OD 分别是三角形各边上过切点的半径.∴S △OAB =12AB ·OF ,S △OBC =12BC ·OD ,S △OCA =12CA ·OE . ∵S △ABC =S △OAB +S △OBC +S △OCA ,∴12AC·BC=12AB·OF+12BC·OD+12CA·OE.∵OD=OE=OF,∴AC·BC=(AB+BC+CA)·OD.在Rt△ABC中,AB=13,AC=12,由勾股定理得BC=5.∴12×5=(12+13+5)·OD.∴OD=2.∴S阴影=S△ABC-S⊙O=12×12×5-π·22=30-4π.。
九年级数学上册第24章圆24.2.1点和圆的位置关系导学案(新人教版)

24.2.1 点和圆的位置关系一、学习目标:①知道点与圆的三种位置关系及其相关性质;②知道不在同一条直线上的三个点确定一个圆及其三角形外接圆的相关概念。
重点:理解并掌握点与圆的位置关系;难点:能熟练地作三角形的外接圆。
爱好运动的小华、小强、小兵三人相邀搞一次掷飞镖比赛。
他们把靶子钉在一面土墙上,规则是谁掷出落点离红心越近,谁就胜。
如图中A、B、C三点分别是他们三人某一轮掷镖的落点,你认为这一轮中谁的成绩好?这一现象体现了平面内______与______的位置关系,如何判断点与圆的位置关系呢?这就是本节课研究的课题。
二、自主学习:1、探究点与圆的位置关系阅读课本第90页至第91页的内容,完成下表:圆的的2、确定圆的条件,根据以下要求作图:(1)如图,经过点A画出4个圆;(2)如图,经过点A、B两点画出4个圆。
(先作线段AB的垂直平分线)·A·B·O ·C·A(3)如上图所示,在平面内经过点A 能否作出第5个、6个、7个……圆吗?得出结论:经过平面内一点,可作出 个圆。
(4)如上图所示,在平面内经过A 、B 两点,可作出 个圆;这些圆的圆心都在线段AB 的 上。
(5)如图1所示,经过在同一直线上三点时,是否能作出圆?为什么?(6)如图2所示,经过不在同一直线上三点时,是否能作出圆?能作出几个圆呢?为什么?(7)如图2所示,圆与△ABC 有什么关系?此时的圆心是三角形的什么?归纳: ①确定圆的条件:___________________________________________________________②三角形的外接圆: ___________________________________________________________③三角形的外心:_______________________________________________________3、阅读课本92页,自学、了解“反证法”的证明思路,一般步骤为:假设,归谬,结论。
部编版人教初中数学九年级上册《第24章 圆 小结与复习 教学设计》最新精品优秀完美教案

前言:
该教学设计(教案)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的教学设计(教案)是高效课堂的前提和保障。
(最新精品教学设计)
第二十四章《圆》小结
一、本章知识结构框图
二、本章知识点概括
(一)圆的有关概念
1、圆(两种定义)、圆心、半径;
2、圆的确定条件:
①圆心确定圆的位置,半径确定圆的大小;
②不在同一直线上的三个点确定一个圆。
3、弦、直径;
4、圆弧(弧)、半圆、优弧、劣弧;
5、等圆、等弧,同心圆;
6、圆心角、圆周角;
7、圆内接多边形、多边形的外接圆;
- 1 -。
2016年秋九年级数学上册 第二十四章 圆小结与复习学案 (新版)新人教版

⎪ 点与圆的位置关系——三角形外接圆 ⎨与圆有关的位置关系 直线与圆的位置关系——切线——三角形内切圆 ⎪ ⎪⎩扇形的面积 圆【学习目标】1.正确理解圆的定义、 弧、弦、圆心角、圆周角概念、三角形的外接圆和三角形外心的概念、切线、切线长的 概念、三角形的内切圆和三角形的内心的概念,圆内接多边形、多边形的外接圆等概念、正多边形的中心、半 径、中心角 、边心距的概念及有关计算.2.通过对圆的有关性质定理与判定定理的复习,熟练掌握圆的有关性质定理与判定定理的综合运用.【学习重点】垂径定理、圆周角定理、切 线的判定及性质的有关运用.【学习难点】圆的有关性质与判定的综合运用.教学建议:建议本课时分成 2 个课时,第一课时复习情景导入(一)~(三)内容,自学互研并交流展示知识模块 一~三,当堂演练中相应的题目;第 2 课时复习情景导入(四)~(七)内容,自学互研并交流展示知识模决三~ 四,当堂演练中相应的题目.情景导入 生成问题1.知识结构我能建:圆 ⎧ ⎧⎪圆的对称性 ⎪圆的基本性质⎨弧、弦、圆心角之间的关系 ⎩同弧上的圆周角与圆心角的关系 ⎧⎪ ⎨ ⎪⎩ ⎪ 正多边形与圆——等分圆周⎪ ⎧⎪弧长 ⎩有关圆的计算⎨圆锥的侧面积和全面积2.知识梳理我能行:(略)自学互研 生成能力知识模块一 垂径定理的运用【合作探究】典例 1:如图所示,铁路 MN 和公路 PQ 在点 O 处交汇,∠QON =30°,在点 A 处有一栋居民楼,AO =200m .如果火 车行驶时,周围 200 m 以内会受到噪音影响,那么火车在铁路 MN 上沿 ON 方向行驶时,居民楼是否会受到影响? 如果火车行驶的速度是每小时 72km ,居民楼受噪音影响的时间约为多少秒?(精确到 0.1 秒)解:设⊙A 与 MN 相交于点 D ,连接 AD ,过点 A 作 AB⊥MN,垂足为 B.在 △R t OAB 中,∵∠AOB =30°,OA =200m ,22∵火车行驶的速度为72km/h=20m/s,∴200311∴AB=OA=200×=100<200.∴居民楼会受到噪音的影响.∵AB⊥OD,∴OB=BD.在△R t OAB中,OB=OA2-AB2=2002-1002=1003(m),∴OD=2OB=2003m.20=103≈17.3s.答:居民楼受噪音影响的时间约为17.3秒.知识模块二弧、弦、圆心角之间的关系定理和圆周角定理的运用【合作探究】典例△2:如图,ABC的三个顶点都在⊙O上,AP⊥BC于P,AM为⊙O的直径.求证:∠BAM=∠CAP.证明:连接BM,∵AM为⊙O的直径,∴∠ABM=90°.∴∠M+∠BAM=90°.∵AP⊥BC,∴∠APC=90°.∴∠C+∠CAP=90°.∵∠C=∠M,∴∠BAM=∠CAP.知识模块三弧长及扇形面积综合运用【合作探究】典例3:已知,如图,扇形AOB的圆心角为120°,半径OA为6cm.(1)求扇形AOB的弧长和扇形面积;(2)若把扇形纸片AOB卷成一个圆锥无底纸盒,求这个纸盒的高OH.解:(1)扇形AOB的弧长=4π(cm),扇形AOB的扇形面积=12π(cm2).(2)设圆锥底面圆的半径为r,所以2πr=4π,解得r=2.A . πB .πC .2πD .4π在 △R t OHC 中,HC =2,OC =6,所以 OH = OC 2-HC 2=4 2(cm ).交流展示 生成新知1.各小组共同探讨“自学互研”部分,将疑难问题板演到黑板上.小组间就上述疑难问题相互释疑.2.组长带领组员参照展示方案,分配好展示 任务,同时进行组内小展示,将形成的展示方案在黑板上进行板书 规划.知识模块一 垂径定理的运用知识模块二 弧、弦、圆心角之间的关系定理和圆周角定理的运用知识模块三 弧长及扇形面积综合运用当堂检测 达成目标【当堂检测】1.如图,CD 是⊙O 的直径,A 、B 是⊙O 上的两点,若∠ADC=70°,则∠B 的度数为(A )A .20°B .40°C .70°D .90°(第 1 题图)(第 2 题图) (第 3 题图)2.如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为 5cm ,弧长是 6π cm ,那么围成的圆锥 的高度是( B )A .3cmB .4cmC .5cmD .6cm3.如图, 圆心角都是 90°的扇形 OAB 与扇形 OCD 叠放在一起,OA =3,OC =1,分别连接 A C 、BD ,则图中 阴影部 分的面积为( C )1 2【课后检测】见学生用书课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑: ________________________________________________________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆
课题:第二十四章:小结与复习序号:
学习目标:
1、知识与技能
1、了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、•弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理.
2、探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,•探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.
3、进一步认识和理解正多边形和圆的关系和正多边的有关计算.
4、熟练掌握弧长和扇形面积公式及其它们的应用;•理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.
2、过程与方法
通过小结与复习,使学生对本章的知识条理化.系统化,在复习巩固所学知识的同时,还要查漏补缺。
提高运用知识和技能解决问题的能力,发展应用意识
3、情感.态度与价值观:
学生在应用数学知识解答问题的活动中获取成功的体验,建立学习的信心。
学习过程:
课前预习:
结合课本的本章结构图,全面复习本章所学内容,并回答“回顾与思考中提出的问题
课堂导学:
1.情景导入
数学24章《圆》的学习内容全面结束,这节课我们共同回顾并整理本章学习的内容
2. 出示任务自主学习
(1)在同圆或等圆中的弧、弦、圆心角、有什么关系?一条弧所对的圆周角和它所对的圆心角有什么关系?
(2)垂径定理的内容是什么?推论是什么?
(3)点与圆有怎样的位置关系?直线和圆呢?圆和圆呢?怎样判断这些位置关系?请你举出这些位置关系的实例?
(4)圆的切线有什么性质?如何判断一条直线是圆的切线?
(5)正多边形和圆有什么关系?你能用正多边形和等分圆周设计一些图案吗?
(6)举例说明如何计算弧长、扇形面积、圆锥的侧面积和全面积?
3.合作探究
《导学》难点探究和展题设计
三、展示与反馈
检查自学情况,解决学生疑惑
四、课堂小结
1.圆的有关概念.基本性质和相关的定理及其运用
2.点和圆.直线和圆.圆和圆的位置关系及其所对应的数量关系
3.会进行正多边形.弧长.扇形.圆锥以及简单图形的有关计算。
4.体会并感悟数学思想和方法。
5.养成反思的学习习惯。
五、达标检测:
完成104页《导学案》.自主测评1—9题
课后作业:
教材120页复习题24
板书设计:
第二十四章:小结与复习
1.圆的有关概念.基本性质和相关的定理及其运用
2.点和圆.直线和圆.圆和圆的位置关系及其所对应的数量关系
3.会进行正多边形.弧长.扇形.圆锥以及简单图形的有关计算。
4.体会并感悟数学思想和方法。
5.养成反思的学习习惯。
课后反思:
通过本节课的学习,
教学反思
在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。
所以在学习上级的精神下,本期个人的研修经历如下:
1.自主学习:我积极参加网课和网上直播课程.认真完成网课要求的各项工作.教师根据自己的专业发展阶段和自身面临的专业发展问题,自主选择和确定学习书目和学习内容,认真阅读,记好读书笔记;学校每学期要向教师推荐学习书目或文章,组织教师在自学的基础上开展交流研讨,分享提高。
2.观摩研讨:以年级组、教研组为单位,围绕一定的主题,定期组织教学观摩,开展以课例为载体的“说、做、评”系列校本研修活动。
3.师徒结对:充分挖掘本校优秀教师的示范和带动作用,发挥学校名师工作室的作用,加快新教师、年轻教师向合格教师和骨干教师转化的步伐。
4.实践反思:倡导反思性教学和教育叙事研究,引导教师定期撰写教学反思、教育叙事研究报告,并通过组织论坛、优秀案例评选等活动,分享教育智慧,提升教育境界。
5.课题研究:立足自身发展实际,学校和骨干教师积极申报和参与各级教育科研课题的研究工作,认真落实研究过程,定期总结和交流阶段性研究成果,及时把研究成果转化为教师的教育教学实践,促进教育质量的提高和教师自身的成长。
6.专题讲座:结合教育教学改革的热点问题,针对学校发展中存在的共性问题和方向性问题,进行专题理论讲座。
7.校干引领:从学校领导开始,带头出示公开课、研讨课,参与本校的教学观摩活动,进行教学指导和引领。
8.网络研修:充分发挥现代信息技术,特别是网络技术的独特优势,借助教师教育博客等平台,促进自我反思、同伴互助和专家引领活动的深入、广泛开展。
我们认识到:一个学校的发展,将取决于教师观念的更新,人才的发挥和校本培训功能的提升。
多年来,我们学校始终坚持以全体师生的共同发展为本,走“科研兴校”的道路,坚持把校本培训作为推动学校建设和发展的重要力量,进而使整个学校的教育教学全面、持续、健康发展。
反思本学期的工作,还存在不少问题。
很多工作在程序上、形式上都做到了,但是如何把工作做细、做好,使之的目的性更加明确,是继续努力的方向。
另外,我校的研修工作压力较大,各学科缺少领头羊、研修氛围有待加强、师资缺乏等各类问题摆在我们面前。
缺乏专业人员的引领,各方面的工作开展得还不够规范。
相信随着课程改革的深入开展,在市教育教学研究院的领导和专家的亲临指导下,我校校本研修工作一定能得以规范而全面地展开。
“校本研修”这种可持续的、开放式的继续教育模式,一定能使我校的教育教学工作又上一个台阶。
为了更好地开展以后的工作,现就以下方面做如下总结:
一、不断提高业务水平
我树立优良学风,刻苦钻研业务,不断学习新知识,探索教育教学新规律。
钻研教材,写好每一个教案,上好每一堂课,多听同组同事的课,多学习别人的优点和长处。
另外,为业余时间多学习信息技术,适应现代教学的要求。
二、不断加强学习
只有学习,才能不断进步和成长,让学习成为提高自己的渠道,让学习成为我一生的精神财富,做一名学习型教师。
所以,我就多读书,多学习,多写读书笔记。
三、学习运用科学的教育教学模式
在课改的课堂教学中,不断探索适合学生愉悦学习的好的教学模式,向同组的老师学习先进教学方法。
尤其在阅读教学中,我注意学习其他老师的先进经验,让学生在朗读中感悟,提高阅读能力。
、培养学生课堂上会静下心来思考的能力。
有些同学的特点是比较浮躁,在问题面前不知从哪儿下手回答,甚至没有读清问题的要求,就开始回答。
这学期我在课堂上引导学生在这方面有所提高。
、善于总结自己在教育教学中的点点滴滴,严以律己,从小事做起,当学生的表率。
从小事中总结大道理,不断改进自己的教育方
式。
四、积极参加上级领导组织的各项教育教学学习活动,提高自己的教研能力。
积极订阅教育教学有帮助的刊物,学习其中先进的教育教学经验,不断提高自己的教育教学水平。
、在课改中,多和同组的老师一起备课,一起商量课堂中出现的问题。
尤其在阅读教学中,多向有经验的老师请教,在课堂中怎样激发学生的阅读兴趣,怎样培养学生探究性的阅读能力,最后提高学生的写作水平。
五、勤思考,多动笔
每周坚持写教学心得;可以是备课心得,也可以是教学体会,可以写课堂教学方法实施体会,也可以反思上节课存在的问题,然后找出好的方法解决它。
善于积累总结教育教学中和班级管理中的一些典型的事情。
从这些事情中,不断反思自己的教育教学行为,对于好的做法积累经验,对于不好的做法及时反思及时改正。
以此提高自己的教育教学水平。
在以后的研修中,我会继续努力学习,让我把一生矢志教育的心愿化为热爱学生的一团火,将自己最珍贵的爱奉献给孩子们,相信今日含苞欲放的花蕾,明日一定能盛开绚丽的鲜花。
相信在我的教学生涯中一定能更上一层楼。