振动与波动习题与答案
大学物理振动与波练习题与答案

【解】:(1) y 5cos(20 4x) 厘米
(2) y 5cos(3t 11) 厘米
(3) y 5cos3(t 4 x 5) , c 3 (cm/ s)
33
4
(4) y 5cos(3t 9) , yI 15 sin(3t 9) 0
23、一平面简谐波沿 x 轴正方向传播,波速 c=8 m/s, 若 t=0 时的波形曲线如图 2-23 所示 (1)写出波动方程 (2)画出 t=1.25 s 时的波形曲线 【解】:
t=0 时,y=0, v>0 cm T=5s
所以 2 。 波长= 40
y 4.0 cos[0.4t ] (cm) 2
B 点的振动方程
yA
(t)
5 c os [10
(t
20) 300
2
]
5 c os (10t
7 6
)cm
(2)
A,B 相位相同
(3) 或 O 点的振动方程
yo
(t)
5
cos(10t
2
)
(cm)
O 点相位
o
2
OB,OA 间的相位差
oA
oB
2 3
O 比 A 超前
oA
o
A
2 3
A
7 6
同时 B 点
13、已知一个谐振动的振幅 A 0.02 米,园频率 4 弧度/秒,初相 / 2 。 (1)
写出谐振动方程; (2) 以位移为纵坐标,时间为横坐标,画出谐振动曲线。
【解】: x 0.02cos(4 t 2) (m) ,
T
2
1 2
大学物理复习题答案(振动与波动)

大学物理1复习题答案一、单选题(在本题的每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号内)1.一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为'T 1和'T 2。
则有 ( B )A .'T T >11且 'T T >22B .'T T =11且 'T T >22C .'T T <11且 'T T <22D .'T T =11且 'T T =222.一物体作简谐振动,振动方程为cos 4x A t ⎛⎫=+⎪⎝⎭πω,在4Tt =(T 为周期)时刻,物体的加速度为 ( B )A. 2ω B 。
2ω C 。
2ω D2ω3.一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A -,且向x 轴的正方向 运动,代表此简谐振动的旋转矢量图为 ( D )AAAAAAC)AxxAAxA B C D4。
两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为)cos(1αω+=t A x .当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为 ( B )A. )π21cos(2++=αωt A x B. )π21cos(2-+=αωt A x . C 。
)π23cos(2-+=αωt A x D. )cos(2π++=αωt A x . 5.波源作简谐运动,其运动方程为t y π240cos 100.43-⨯=,式中y 的单位为m ,t 的单位为s ,它所形成的波形以s m /30的速度沿一直线传播,则该波的波长为 ( A )A .m 25.0B .m 60.0C .m 50.0D .m 32.06.已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为: ( B )A .cos x t ππ⎛⎫=+ ⎪⎝⎭22233B .cos x t ππ⎛⎫=+ ⎪⎝⎭42233C .cos x t ππ⎛⎫=- ⎪⎝⎭22233D .cos x t ππ⎛⎫=- ⎪⎝⎭42233二. 填空题(每空2分)1. 简谐运动方程为)420cos(1.0ππ+=t y (t 以s 计,y 以m 计),则其振幅为 0.1 m ,周期为 0。
第5章振动和波动习题解答

第5章 振动和波动5-1 一个弹簧振子 m=:0.5kg , k=50N ;'m ,振幅 A = 0.04m ,求 (1) 振动的角频率、最大速度和最大加速度;(2) 振子对平衡位置的位移为 x = 0.02m 时的瞬时速度、加速度和回复力; (3) 以速度具有正的最大值的时刻为计时起点,写出振动方程。
频率、周期和初相。
A=0.04(m) 二 0.7(rad/s) 二-0.3(rad)⑷10.11(Hz) T 8.98(s)2 n、5-3证明:如图所示的振动系统的振动频率为1 R +k 2式中k 1,k 2分别为两个弹簧的劲度系数,m 为物体的质量V max 二 A =10 0.04 = 0.4(m/s) a max 二 2A =102 0.04 =4(m/s 2) ⑵设 x =Acos(,t :;;■『),贝Ud x vA sin(,t 「)dtd 2xa一 dt 2--2Acos(「t 亠 ^ ) - - 2x当 x=0.02m 时,COS (;:, t :忙)=1/ 2, sin( t 「)= _、一3/2,所以 v ==0.2、.3 ==0.346(m/s) 2a = -2(m/s )F 二 ma = -1(N)n(3)作旋转矢量图,可知:2x =0. 0 4 c o st(1 0)25-2弹簧振子的运动方程为 x =0.04cos(0.7t -0.3)(SI),写出此简谐振动的振幅、角频率、严...U ・」|1岛解:以平衡位置为坐标原点,水平向右为 x 轴正方向。
设物体处在平衡位置时,弹簧 1的伸长量为Xg ,弹簧2的伸长量为x 20,则应有_ k ] X ]0 ■木2乂20 = 0当物体运动到平衡位置的位移为 X 处时,弹簧1的伸长量就为x 10 X ,弹簧2的伸长量就为X 20 -X ,所以物体所受的合外力为F - -k i (X io X )k 2(X 20 -x)- -(匕 k 2)x2d x (k i k 2)dt 2 m上式表明此振动系统的振动为简谐振动,且振动的圆频率为5-4如图所示,U 形管直径为d ,管内水银质量为 m ,密度为p 现使水银面作无阻尼 自由振动,求振动周期。
波动与振动-答案和解析

1. 一简谐振动的表达式为)3cos(ϕ+=t A x ,已知0=t 时的初位移为, 初速度为s -1,则振幅A = ,初相位 =解:已知初始条件,则振幅为:(m )05.0)309.0(04.0)(222020=-+=-+=ωv x A 初相: 1.1439.36)04.0309.0(tg )(tg 1001或-=⨯-=-=--x v ωϕ因为x 0 > 0, 所以 9.36-=ϕ2. 两个弹簧振子的的周期都是, 设开始时第一个振子从平衡位置向负方向运动,经过后,第二个振子才从正方向的端点开始运动,则这两振动的相位差为 。
解:从旋转矢量图可见,t = s 时,1A 与2A反相,即相位差为。
3. 一物块悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,其动能是总能量的 (设平衡位置处势能为零)。
当这物块在平衡位置时,弹簧的长度比原长长l ∆,这一振动系统的周期为 解:谐振动总能量221kA E E E p k =+=,当A x 21=时4)2(212122EA k kx E p ===,所以动能E E E E p k 43=-=。
物块在平衡位置时, 弹簧伸长l ∆,则l k mg ∆=,lmgk ∆=,振动周期gl km T ∆==ππ224. 上面放有物体的平台,以每秒5周的频率沿竖直方向作简谐振动,若平台振幅超过 ,物体将会脱离平台(设2s m 8.9-⋅=g )。
解:在平台最高点时,若加速度大于g ,则物体会脱离平台,由最大加速度g A v A a m ===22)2(πω 得最大振幅为1A 1A 2Ax=t .0=t 5.0=t(m)100.11093.9548.94232222--⨯≈⨯=⨯==ππv g A 5. 一水平弹簧简谐振子的振动曲线如图所示,振子处在位移零、速度为A ω-、加速度为零和弹性力为零的状态,对应于曲线上的 点。
振子处在位移的绝对值为A 、速度为零、加速度为-2A 和弹性力-kA 的状态,对应于曲线的 点。
第5章 振动和波动课后答案

第5章振动和波动5-1一个弹簧振子0.5kg m =,50N m k =,振幅0.04m A =,求 (1)振动的角频率、最大速度和最大加速度;(2)振子对平衡位置的位移为x =0.02m 时的瞬时速度、加速度和回复力; (3)以速度具有正的最大值的时刻为计时起点,写出振动方程。
解:(1))s rad (105.050===m kω(2) 设当(3) 5-2解:ν=5-3式中1,k10x ,弹簧2所受的合外力为由牛顿第二定律得2122d ()d xm k k x t =-+即有2122()d 0d k k x x t m++= 上式表明此振动系统的振动为简谐振动,且振动的圆频率为振动的频率为2πων==5-4如图所示,U 形管直径为d ,管内水银质量为m ,密度为ρ,现使水银面作无阻尼自由振动,求振动周期。
振动周期5-55-6如图所示,轻弹簧的劲度系数为k ,定滑轮的半径为R 、转动惯量为J ,物体质量为m ,将物体托起后突然放手,整个系统将进入振动状态,用能量法求其固有周期。
习题解:设任意时刻t ,物体m 离平衡位置的位移为x ,速率为v ,则振动系统的总机械能 式中于是5-7已知5-8平衡位置距O '点为:000l x l k+=+以平衡位置为坐标原点,如图建立坐标轴Ox ,当物体运动到离开平衡位置的位移为x 处时,弹簧的伸长量就是x x +0,所以物体所受的合外力为物体受力与位移成正比而反向,即可知物体做简谐振动国,此简谐振动的周期为5-9两质点分别作简谐振动,其频率、振幅均相等,振动方向平行。
在每次振动过程中,它们在经过振幅的一半的地方时相遇,而运动方向相反。
求它们相差,并用旋转矢量图表示出来。
习题5-6图解:根据题意,两质点分别在2A x =和2Ax -=处相向通过,由此可以画出相应的旋转矢量图,从旋转矢量图可得两个简谐振动的相位差为π34π或32==ϕϕ∆∆5-10一简谐振动的振幅A =24c m、周期T =3s ,以振子位移x =12cm 、并向负方向运动时为计时起点,作出振5-11(1)x (2)x当以(1)x 轴正向向上时:πϕ=-=)(01.00m x振动方程为))(1010cos(01.0m t x π+= (2)x 轴正向向下时:0)(01.00==ϕm x振动方程为))(1010cos(01.0m t x =5-12劲度系数为k 的轻弹簧,上端与质量为m 的平板相联,下端与地面相联。
振动、波动练习题及答案

振动、波动练习题及答案振动、波动练习题⼀.选择题1.⼀质点在X 轴上作简谐振动,振幅A=4cm。
周期T=2s。
其平衡位置取作坐标原点。
若t=0 时刻质点第⼀次通过x= -2cm 处,且向X 轴负⽅向运动,则质点第⼆次通过x= -2cm 处的时刻为()。
A 1sB 2sC 4sD 2s332.⼀圆频率为ω的简谐波沿X 轴的正⽅向传播,t=0 时刻的波形如图所⽰,则t=0 的波形t=0 时刻,X 轴上各点的振动速度υ与X轴上坐标的关系图应()3.图⽰⼀简谐波在 t=0 时刻的波形图,波速υ =200m/s ,则图中O 点的振动加速度的表达式为()2A a 0.4 2 cos( t ) 2 23B a 0.4 2 cos( t )22C a 0.4 2cos(2 t ) 4.频率为 100Hz ,传播速度为 300m/s 的平⾯简谐波,波线上两点振动的相位差为 3 ,则这两点相距()A 2mB 2.19mC 0.5mD 28.6m5.⼀平⾯简谐波在弹性媒质中传播,媒质质元从平衡位置运动到最⼤位置处的过程中,()。
A 它的动能转换成势能它的势能转换成动C 它从相邻的⼀段质元获得能量其能量逐渐增⼤Da20.4 2 cos(2 t2)υ (m/s)Bυ (m/s)DX(m)D 它把⾃⼰的能量传给相邻的⼀段质元,其能量逐渐减⼩6.在下⾯⼏种说法中,正确的说法是:()。
A 波源不动时,波源的振动周期与波动的周期在数值上是不同的B 波源振动的速度与波速相同C 在波传播⽅向上的任⼀质点振动位相总是⽐波源的位相滞后D 在波传播⽅向上的任⼀质点振动位相总是⽐波源的位相超前7.⼀质点作简谐振动,周期为T,当它由平衡位置向X 轴正⽅向运动时,从⼆分之⼀最⼤位移处到最⼤位移处这段路程所需要的时间为()。
A TBTCTDT4 12 6 88.在波长为λ的驻波中两个相邻波节之间的距离为()。
A λB 3 λ/4C λ/2D λ /49.在同⼀媒质中两列相⼲的平⾯简谐波的强度之⽐I1I 4是,则两列波的振幅之⽐是:()A A1 4 B1 2 CA1 16 DA11A2 A2 A2 A2 410.有⼆个弹簧振⼦系统,都在作振幅相同的简谐振动,⼆个轻质弹簧的劲度系数K 相同,但振⼦的质量不同。
大学物理学振动与波动习题答案

大学物理学(上)第四,第五章习题答案第4章振动P174.4.1 一物体沿x轴做简谐振动,振幅A = 0.12m,周期T = 2s.当t = 0时,物体的位移x= 0.06m,且向x轴正向运动.求:(1)此简谐振动的表达式;(2)t = T/4时物体的位置、速度和加速度;(3)物体从x = -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间.[解答](1)设物体的简谐振动方程为x = A cos(ωt + φ),其中A = 0.12m,角频率ω = 2π/T = π.当t = 0时,x = 0.06m,所以cosφ = 0.5,因此φ = ±π/3.物体的速度为v = d x/d t = -ωA sin(ωt + φ).当t = 0时,v = -ωA sinφ,由于v > 0,所以sinφ < 0,因此φ = -π/3.简谐振动的表达式为x = 0.12cos(πt –π/3).(2)当t = T/4时物体的位置为x = 0.12cos(π/2–π/3)= 0.12cosπ/6 = 0.104(m).速度为v = -πA sin(π/2–π/3)= -0.12πsinπ/6 = -0.188(m·s-1).加速度为a = d v/d t = -ω2A cos(ωt + φ)= -π2A cos(πt - π/3)= -0.12π2cosπ/6 = -1.03(m·s-2).(3)方法一:求时间差.当x= -0.06m 时,可得cos(πt1 - π/3) = -0.5,因此πt1 - π/3 = ±2π/3.由于物体向x轴负方向运动,即v < 0,所以sin(πt1 - π/3) > 0,因此πt1 - π/3 = 2π/3,得t1 = 1s.当物体从x = -0.06m处第一次回到平衡位置时,x = 0,v > 0,因此cos(πt2 - π/3) = 0,可得πt2 - π/3 = -π/2或3π/2等.由于t2 > 0,所以πt2 - π/3 = 3π/2,可得t2 = 11/6 = 1.83(s).所需要的时间为Δt = t2 - t1 = 0.83(s).方法二:反向运动.物体从x= -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间就是它从x = 0.06m,即从起点向x 轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此cos(πt - π/3) = 0,可得πt - π/3 = π/2,解得t = 5/6 = 0.83(s).[注意]根据振动方程x = A cos(ωt + φ),当t = 0时,可得φ = ±arccos(x0/A),(-π < φ≦π),初位相的取值由速度决定.由于v = d x/d t = -ωA sin(ωt + φ),当t = 0时,v = -ωA sinφ,当v > 0时,sinφ < 0,因此φ = -arccos(x0/A);当v < 0时,sinφ > 0,因此φ = arccos(x0/A).可见:当速度大于零时,初位相取负值;当速度小于零时,初位相取正值.如果速度等于零,当初位置x0 = A时,φ = 0;当初位置x0 = -A时,φ = π.4.2 已知一简谐振子的振动曲线如图所示,试由图求:(1)a,b,c,d,e各点的位相,及到达这些状态的时刻t各是多少?已知周期为T;(2)振动表达式;(3)画出旋转矢量图.[解答]方法一:由位相求时间.(1)设曲线方程为x = A cosΦ,其中A表示振幅,Φ = ωt + φ表示相位.由于x a = A,所以cosΦa = 1,因此Φa = 0.由于x b = A/2,所以cosΦb = 0.5,因此Φb = ±π/3;由于位相Φ随时间t增加,b点位相就应该大于a点的位相,因此Φb = π/3.由于x c = 0,所以cosΦc = 0,又由于c点位相大于b位相,因此Φc = π/2.同理可得其他两点位相为Φd = 2π/3,Φe = π.c点和a点的相位之差为π/2,时间之差为T/4,而b点和a点的相位之差为π/3,时间之差应该为T/6.因为b点的位移值与O时刻的位移值相同,所以到达a点的时刻为t a = T/6.到达b点的时刻为t b = 2t a = T/3.到达c点的时刻为t c = t a + T/4 = 5T/12.到达d点的时刻为t d = t c + T/12 = T/2.到达e点的时刻为t e = t a + T/2 = 2T/3.(2)设振动表达式为x = A cos(ωt + φ),当t = 0时,x = A/2时,所以cosφ = 0.5,因此φ =±π/3;由于零时刻的位相小于a点的位相,所以φ = -π/3,因此振动表达式为cos(2)3tx ATπ=π-.另外,在O时刻的曲线上作一切线,由于速度是位置对时间的变化率,所以切线代表速度的方向;由于其斜率大于零,所以速度大于零,因此初位相取负值,从而可得运动方程.(3)如图旋转矢量图所示.方法二:由时间求位相.将曲线反方向延长与t轴相交于f点,由于x f = 0,根据运动方程,可得cos(2)03tTππ-=所以232ftTπππ-=±.图6.2显然f 点的速度大于零,所以取负值,解得t f = -T /12.从f 点到达a 点经过的时间为T /4,所以到达a 点的时刻为t a = T /4 + t f = T /6,其位相为203a a t T Φπ=π-=.由图可以确定其他点的时刻,同理可得各点的位相.4.3如图所示,质量为10g 的子弹以速度v = 103m ·s -1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k= 8×103N ·m -1,木块的质量为 4.99kg ,不计桌面摩擦,试求:(1)振动的振幅; (2)振动方程.[解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即mv = (m + M )v 0.解得子弹射入后的速度为v 0 = mv/(m + M ) = 2(m ·s -1),这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得(m + M ) v 02/2 = kA 2/2,所以振幅为A v =×10-2(m). (2)振动的圆频率为ω=·s -1).取木块静止的位置为原点、向右的方向为位移x 的正方向,振动方程可设为x = A cos(ωt + φ).当t = 0时,x = 0,可得φ = ±π/2;由于速度为正,所以取负的初位相,因此振动方程为x = 5×10-2cos(40t - π/2)(m). 4.4 如图所示,在倔强系数为k 的弹簧下,挂一质量为M 的托盘.质量为m 的物体由距盘底高h 处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程.[解答]物体落下后、碰撞前的速度为v =物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为0m v v m M ==+这也是它们振动的初速度. 设振动方程为x = A cos(ωt + φ),其中圆频率为ω=物体没有落下之前,托盘平衡时弹簧伸长为x 1,则x 1 = Mg/k .物体与托盘碰撞之后,在新的平衡位置,弹簧伸长为x 2,则x 2 = (M + m )g/k .取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为x 0 = x 1 - x 2 = -mg/k . 因此振幅为A ==图4.3图4.4= 初位相为00arctanv x ϕω-==4.5重量为P 的物体用两根弹簧竖直悬挂,如图所示,各弹簧的倔强系数标明在图上.试求在图示两种情况下,系统沿竖直方向振动的固有频率.[解答](1)可以证明:当两根弹簧串联时,总倔强系数为k = k 1k 2/(k 1 + k 2),因此固有频率为2πων===.(2)因为当两根弹簧并联时,总倔强系数等于两个弹簧的倔强系数之和,因此固有频率为2πων===4.6 一匀质细圆环质量为m ,半径为R ,绕通过环上一点而与环平面垂直的水平光滑轴在铅垂面内作小幅度摆动,求摆动的周期.[解答]方法一:用转动定理.通过质心垂直环面有一个轴,环绕此轴的转动惯量为 I c = mR 2. 根据平行轴定理,环绕过O点的平行轴的转动惯量为I = I c + mR 2 = 2mR 2.当环偏离平衡位置时,重力的力矩为M = -mgR sin θ,方向与角度θ增加的方向相反.根据转动定理得I β = M ,即 22d sin 0d I mgR tθθ+=,由于环做小幅度摆动,所以sin θ≈θ,可得微分方程22d 0d mgRt Iθθ+=. 摆动的圆频率为ω=周期为2πT ω=22==方法二:用机械能守恒定律.取环的质心在最底点为重力势能零点,当环心转过角度θ时,重力势能为E p = mg (R - R cos θ), 绕O 点的转动动能为212k E I =ω, 总机械能为21(cos )2E I mg R R =+-ωθ. 环在转动时机械能守恒,即E 为常量,将上式对时间求导,利用ω = d θ/d t ,β = d ω/d t ,得0 = I ωβ + mgR (sin θ) ω,由于ω ≠ 0,当θ很小有sin θ≈θ,可得振动的微分方程22d 0d mgRt Iθθ+=, 从而可求角频率和周期.[注意]角速度和圆频率使用同一字母ω,不要将两者混淆.(b)图4.54.7 横截面均匀的光滑的U 型管中有适量液体如图所示,液体的总长度为L ,求液面上下微小起伏的自由振动的频率。
大连工业大学大学物理学振动与波动题库

(C) 周期为1/3 s (D) 波沿x 轴正方向传播 5、 两分振动方程分别为 x1=3cos (50πt+π/4) ㎝ 和 x2=4cos (50πt+3π/4)㎝, 则它们的合振动的振幅为 ( (A) 1 ㎝ (B)3 ㎝ (C)5 ㎝ (D)7 ㎝ 6、一平面简谐波,波速为 =5 cm/s,设t= 3 s时刻的波形 如图所示,则x=0处的质点的振动方程为 ( - (A) y=2×10 2cos (πt/2-π/2) (m) - (B) y=2×10 2cos (πt + π) (m) -2 (C) y=2×10 cos(πt/2+π/2) (m) -2 (D) y=2×10 cos (πt-3π/2) (m) )
y
u
A X -A
17.一平面简谐波,沿 X 轴负方向传播,波长λ=8 m。已知 x=2 m 处质点的振动方程为 y 4 cos(10t
5 x ) ; 8 12 2 (C) y 4 cos(10 t x ); 4 3
(A)
) , 则该波的波动方程为( 6
(B)
20.在驻波中,两个相邻波节间各质点的振动(
1、一个弹簧振子和一个单摆,在地面上的固有振动周期分别为 T1 和 T2,将它们拿到月球上去,相应 的周期分别为 1 和 2 ,则它们之间的关系为 1 T1 且 2 T2 。 。
2、一弹簧振子的周期为T,现将弹簧截去一半,下面仍挂原来的物体,则其振动的周期变为 3、一平面简谐波的波动方程为 y 0.08cos 4 πt 2 πx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10章振动与波动一.基本要求1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。
2. 掌握振幅、周期、频率、相位等概念的物理意义。
3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。
4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。
5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。
6. 理解机械波产生的条件。
7. 掌握描述简谐波的各物理量的物理意义及其相互关系。
8. 了解波的能量传播特征及能流、能流密度等概念。
9. 理解惠更斯原理和波的叠加原理。
掌握波的相干条件。
能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。
10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。
二. 内容提要1. 简谐振动的动力学特征作谐振动的物体所受到的力为线性回复力,即取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为2. 简谐振动的运动学特征作谐振动的物体的位置坐标x与时间t成余弦(或正弦)函数关系,即由它可导出物体的振动速度)=tAv-ω+ωsin(ϕ物体的振动加速度)=tAa2cos(ϕ-+ωω3. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件确定,即4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。
周期与频率互为倒数,即ν=1T 或 T1=ν5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、频率的关系为 ωπ=2T 或 πν=ω26. 相位和初相 谐振动方程中(ϕ+ωt )项称为相位,它决定着作谐振动的物体的状态。
t=0时的相位称为初相,它由谐振动的初始条件决定,即应该注意,由此式算得的ϕ在0~2π范围内有两个可能取值,须根据t=0时刻的速度方向进行合理取舍。
7. 旋转矢量法 作逆时针匀速率转动的矢量,其长度等于谐振动的振幅A ,其角速度等于谐振动的角频率ω,且t=0时,它与x 轴的夹角为谐振动的初相ϕ,t=t时刻它与x 轴的夹角为谐振动的相位ϕω+t 。
旋转矢量A ϖ的末端在x 轴上的投影点的运动代表着质点的谐振动。
8. 简谐振动的能量 作谐振动的系统具有动能和势能,其 动能 )(sin ϕ+ωω==t A m m E k 22222121v势能 )(cos ϕ+ω==t kA kx E p 2222121机械能 221kA E E E p k =+=9. 两个具有同方向、同频率的简谐振动的合成 其结果仍为一同频率的简谐振动,合振动的振幅初相 22112211ϕ+ϕϕ+ϕ=ϕcos cos sin sin tan A A A A(1)当两个简谐振动的相差),,,( Λ210212±±=π=ϕ-ϕk k 时,合振动振幅最大,为21A A +,合振动的初相为1ϕ或2ϕ。
(2)当两个简谐振动的相差),,,( )(Λ2101212±±=π+=ϕ-ϕk k 时,合振动的振幅最小,为21A A -,合振动的初相与振幅大的相同。
10. 机械波产生的条件 机械波的产生必须同时具备两个条件:第一,要有作机械振动的物体——波源;第二,要有能够传播机械波的载体——弹性媒质。
11. 波长λ 在同一波线上振动状态完全相同的两相邻质点间的距离(一个完整波的长度),它是波的空间周期性的反映。
12. 周期与频率 波前进一个波长的距离所需的时间,它反映了波的时间周期性。
周期的倒数称为频率,波源的振动频率也就是波的频率。
13. 波速u 单位时间里振动状态(或波形)在媒质中传播的距离,它与波源的振动速度是两个不同的概念。
波速u 、波长λ、周期T (频率ν)之间的关系为 uT =λ14. 平面简谐波的波动方程 如果平面波沿x 轴正向传播,则其波动方程为 若波沿x 轴的负向传播,则其波动方程为 其中0ϕ为坐标原点的初相。
15. 波的能量 波动中的动能和势能之和,其特点是同体积元中的动能和势能相等:(1)在平衡位置处,动能最大,势能也最大;(2)在最大位移处,动能最小(为零),势能也最小(为零);(3)当媒质质元从最大位移处回到平衡位置的过程中:它从相邻的一段媒质质元获得能量,其能量逐渐增加。
(4) 当媒质质元从平衡位置运动到最大位移处的过程中:它把自己的能量传给相邻的一段质元,其能量逐渐减小。
16. 波的干涉 满足相干条件(同频率、同振动方向且相位差恒定)的两列波的叠加,其规律是:(1)若两列波的相位差),,,( Λ210221212±±=π=λ-π-ϕ-ϕ=ϕ∆k k r r则合成振动的振幅有极大值:21A A A +=,为干涉加强(相长干涉)。
(2)若两列波的相位差),,,( )(Λ2101221212±±=π+=λ-π-ϕ-ϕ=ϕ∆k k r r合成振动的振幅有极小值:21A A A -=,为干涉减弱,当A 1=A 2时,相消干涉。
17. 驻波 无波形和能量传播的波称为驻波,它由两列同振幅的相干波在同一直线上沿相反方向传播时叠加而成,是波的干涉中的一个特例。
其振幅随x 作周期变化,因而为分段的独立振动,有恒定的波腹和波节出现。
习 题10-1 两倔强系数分别为k 1和k 2的轻弹簧串联在一起,下面接着质量为m 的物体,构成一个竖挂的弹簧谐振子,则该系统的振动周期为(A )21212)(2k k k k m T +=π (B )212k k m T +=π (C )2121)(2k k k k m T +=π(D) 2122k k m T +=π[ ]10-2 一倔强系数为k 的轻弹簧截成三份,取出其中的两根,将它们并联在一起,下面挂一质量为m 的物体,如图所示。
则振动系统的频率为(A)m kπ21(B) mk621π(C)m k321π (D) mk321π[ ]10-4 已知两个简谐振动如图所示。
x 1的位相比x 2的位相 (A) 落后2π (B) 超前2π(C) 落后π (D)超前πk 1 k 2 mkmx x 1x 2[ ]10-5 一质点作简谐振动,周期为T ,当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为:(A )4T(B )12T(C )6T (D )8T[ ]10-7 一简谐振动曲线如图所示,则振动周期是: (A )2.62 s (B )2.40 s (C )2.20 s (D )2.00 s[ ]10-8 一弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为'1T 和'2T ,则有:(A )'1T > T 1 且'2T > T 2 (B) '1T < T 1 且'2T < T 2(C) '1T = T 1 且'2T = T 2 (D) '1T = T 1 且'2T > T 2 [ ] 10-13 一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示,若t = 0时,(1)振子在负的最大位移处,则初位相为 ; (2) 振子在平衡位置向正方向运动,则初位相为 ; (3) 振子在位移为2A处,且向负方向运动,则初位相为 。
10-14 已知两个简谐振动的振动曲线如图所示,x 1的位相比x 2的位相超前 。
10-18 一质点作简谐振动,其振动曲线如图所示。
根据此图,它的周期T= ,用余弦函数描x述时,初位相ϕ= 。
10-19 两个同方向同频率的简谐振动,其振动表达式分别为:)215cos(10621π+⨯=-t x (SI),)5sin(10222t x -⨯=-π(SI)。
它们的合振动的振幅为 ;初位相为 。
10-22 一简谐振动的振动曲线如图所示,求振动方程。
10-25 一质点同时参与两个同方向的简谐振动,其振动方程分别为:)314cos(10521π+⨯=-t x ,)614sin(10322π-⨯=-t x (SI )画出两振动的旋转矢量图,并求合振动的振动方程。
10-26 两个同方向的简谐振动的振动方程分别为:)81(2cos 10421+⨯=-t x π,)41(2cos 10322+⨯=-t x π(SI )求合振动方程。
10-32 一质点按如下规律沿x 轴作简谐振动)328cos(1.0ππ-=t x (SI),求此振动的周期、振幅、初相、速度最大值和加速度最大值。
10-33 如图所示,一质量为m 的滑块,两边分别与倔强系数为k 1和k 2的轻弹簧联接,两弹簧的另外两端分别固定在墙上,滑块m 可在光滑水平面上滑动,O 点为系统平衡位置,将滑块m 向左移动到x 0,自静止释放,并从释放时开始计时,取坐标如图示,则其振动方程为:(A )]cos[210t mk k x x += (B )])(cos[21210π++=t k k m k k x x (C )]cos[210π++=t mk k x x (D )]cos[210π++=t mk k x x [ ]k 1k 2m x 0Ox10-34一弹簧振子,当把它水平放置时,它作谐振动。
若把它竖直放置或放在光滑斜面上,试判断下面那种情况是正确的:(A)竖直放置作谐振动,放在光滑斜面上不作谐振动。
(B)竖直放置不作谐振动,放在光滑斜面上作谐振动。
(C)两种情况都作谐振动。
(D)两种情况都不作谐振动。
[ ] 10-36 两个同方向的谐振动曲线如图所示,合振动的振幅为,合振动的振动方程为。
x(cm)A1 x1(t)A2O t -A2 x2(t)- A110-37有两个相同的弹簧,其倔强系数均为k 。
⑴把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为 ,⑵把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为 。
10-41 已知一平面简谐波的波动方程为)cos(bx at A y -=,(a 、b 为正值),则 (A )波的频率为a 。
(B )波的传播速度为ab。
(C )波长为bπ。
(D )波的周期为a π2。
[ ]10-42 一沿x 轴负方向传播的平面简谐波在t = 2s 时的波形曲线如图所示,则原点O 的振动方程为:(A ))21cos(50.0ππ+=t y (SI ) (B ))2121cos(50.0ππ-=t y (SI )(C ))2121cos(50.0ππ+=t y (SI )(D ))2141cos(50.0ππ+=t y (SI )[ ]10-43 一平面简谐波以速度u 沿x 轴正方向传播,在t t '=时波形曲线如图所示。