高中物理模型组合讲解 水平方向上的碰撞+弹簧模型 专题辅导

合集下载

高中物理二轮专题——弹簧模型(解析版)

高中物理二轮专题——弹簧模型(解析版)

高中物理第二轮专题——弹簧模型高考分析:轻弹簧就就是一种理想化得物理模型,以轻质弹簧为载体,设置复杂得物理情景,考查力得概念,物体得平衡,牛顿定律得应用及能得转化与守恒,就就是高考命题得重点,此类命题几乎每年高考卷面均有所见、由于弹簧弹力就就是变力,学生往往对弹力大小与方向得变化过程缺乏清晰得认识,不能建立与之相关得物理模型并进行分类,导致解题思路不清、效率低下、错误率较高、在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统得运动状态具有很强得综合性与隐蔽性,加之弹簧在伸缩过程中涉及力与加速度、功与能等多个物理概念与规律,所以弹簧类问题也就成为高考中得重、难、热点、我们应引起足够重视、弹簧类命题突破要点:1、弹簧得弹力就就是一种由形变而决定大小与方向得力、当题目中出现弹簧时,要注意弹力得大小与方向时刻要与当时得形变相对应、在题目中一般应从弹簧得形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化得几何关系,分析形变所对应得弹力大小、方向,以此来分析计算物体运动状态得可能变化、2、因弹簧(尤其就就是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变、因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧得弹力不突变、3、在求弹簧得弹力做功时,因该变力为线性变化,可以先求平均力,再用功得定义进行计算,也可据动能定理与功能关系:能量转化与守恒定律求解、同时要注意弹力做功得特点:W=-(kx22-kx12),弹力得功等于弹性势能增量得负值或弹力得功等于弹性势能得减少、弹性势k能得公式Ep=kx2,高考不作定量要求,该公式通常不能直接用来求弹簧得弹性势能,只可作定性讨论、因此,在求弹力得功或弹性势能得改变时,一般以能量得转化与守恒得角度来求解、一、“轻弹簧”类问题在中学阶段,凡涉及得弹簧都不考虑其质量,称之为“轻弹簧”,就就是一种常见得理想化物理模型、由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧得加速度会无限大、故簧轻弹簧中各部分间得张力处处相等,均等于弹簧两端得受力、弹一端受力为,另一端受力一定也为。

专题强化十一 碰撞中的三类拓展模型-2024届物理一轮复习讲义

专题强化十一 碰撞中的三类拓展模型-2024届物理一轮复习讲义

专题强化十一碰撞中的三类拓展模型学习目标会分析“滑块—弹簧”“滑块—斜(曲)面”“滑块—木板”与碰撞的相似性,并会用碰撞的相关知识解决实际问题。

模型一“滑块—弹簧”模型1.模型图示2.模型特点(1)两个或两个以上的物体与弹簧相互作用的过程中,若系统所受外力的矢量和为零,则系统动量守恒,类似弹性碰撞。

(2)在能量方面,由于弹簧形变会使弹性势能发生变化,系统的总动能将发生变化;若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒。

(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动能通常最小(完全非弹性碰撞拓展模型)。

(4)弹簧恢复原长时,弹性势能为零,系统动能最大(完全弹性碰撞拓展模型,相当于碰撞结束时)。

例1(2023·辽宁沈阳市联考)如图1甲所示,物体A、B的质量分别是m1=4kg 和m2=4kg,用轻弹簧相连后放在光滑的水平面上,物体B左侧与竖直墙相接触但不粘连。

另有一个物体C从t=0时刻起,以一定的速度向左运动,在t=5s 时刻与物体A相碰,碰后立即与A粘在一起,此后A、C不再分开。

物体C在前15s内的v-t图像如图乙所示。

求:图1(1)物体C的质量m3;(2)B离开墙壁后所能获得的最大速度大小。

答案(1)2kg(2)2.4m/s解析(1)以水平向左的方向为正方向,A、C碰撞过程中动量守恒,则有m3v C=(m1+m3)v共1代入v-t图像中的数据解得m3=2kg。

(2)从B开始离开墙面到B速度最大的过程,相当于B与AC整体完成了一次弹性碰撞,以水平向右为正方向,则有(m1+m3)v共1′=(m1+m3)v共2+m2v21 2(m1+m3)v共1′2=12(m1+m3)v2共2+12m2v22由v-t图像可得v共1′大小为2m/s,方向水平向右解得B的最大速度为v2=2.4m/s。

跟踪训练1.(多选)如图2所示,光滑水平面上放置着总质量为2m、右端带有固定挡板的长木板。

高中物理二轮专题——弹簧模型(解析版)

高中物理二轮专题——弹簧模型(解析版)

高中物理第二轮专题——弹簧模型高考分析:轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见。

由于弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的认识,不能建立与之相关的物理模型并进行分类,导致解题思路不清、效率低下、错误率较高。

在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统的运动状态具有很强的综合性和隐蔽性,加之弹簧在伸缩过程中涉及力和加速度、功和能等多个物理概念和规律,所以弹簧类问题也就成为高考中的重、难、热点.我们应引起足够重视。

弹簧类命题突破要点:1。

弹簧的弹力是一种由形变而决定大小和方向的力。

当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k=-(kx22-kx12),弹力的功等于弹性势能增量的负值或弹力的功等于弹性势能的减少。

弹性势能的公式E p=kx2,高考不作定量要求,该公式通常不能直接用来求弹簧的弹性势能,只可作定性讨论。

因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。

一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型。

由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大。

高考物理弹簧模型知识点

高考物理弹簧模型知识点

2019高考物理弹簧模型学问点2019高考物理弹簧模型学问点弹簧模型是以轻质弹簧为载体,与详细实际问题相结合,考查运动学、动力学、能量守恒、动量守恒、振动问题、功能关系、物体的平衡等相关问题。

有关弹簧的学问,是高考考查的重点,同时也是高考的难点,几乎每年的高考都会考查该内容,所以备考时要引起足够的重视.轻弹簧是一种志向化的物理模型,分析问题时不须要考虑弹簧本身的质量和重力.处理弹簧模型时,须要驾驭以下学问点:1.弹簧弹力的计算弹簧弹力的大小可以由胡克定律来计算,即弹簧发生形变时,在弹性限度内,弹力的大小与弹簧伸长(或缩短)的长度成正比,数学表达式为,其中是一个比例系数,叫弹簧的劲度系数.弹簧的弹力不是一个恒定的力,而是一个变力,其大小随着弹簧形变量的变更而变更,同时还与弹簧的劲度系数有关。

2.弹簧弹力的特点(1)弹簧弹力的大小与弹簧的形变量有关,当弹簧的劲度系数保持不变时,弹簧的形变量,弹簧的形变量发生变更,弹簧的弹力相应地发生变更;形变量不变,弹力也力也就保持不变,由于弹簧的形变不能发生突变,故弹簧的弹力也不能瞬间发生变更,这与绳子的受力状况不同.(2)当轻弹簧受到外力的作用时,无论弹簧是处于平衡状态还是处于加速运动状态,弹簧各个部分所受的力的大小是相同的.(3)弹簧弹力的方向与弹簧的形变有关,在拉伸和压缩两种状况下,弹力的方向相反.在分析弹簧弹力的方向时,肯定要全面考虑,假如题目没有说明是哪种形变,那么就须要考虑两种状况.(4)依据胡克定律可知,弹力的大小与形变量成正比,方向与形变的方向相反,可以将胡克定律的表达式写成F=kx,即弹簧弹力是一个线性回复力,故在弹力的作用下,物体会做简谐运动.3.弹性势能与弹力的功弹簧能够存储弹性势能,其大小为Ep=kx2/2,在中学阶段不须要驾驭该公式,但要知道形变量越大,弹性势能就越大,在形变量相同的状况下,弹性势能是相等的;一般状况下,通常利用能量守恒定律来求弹簧的弹性势能,由于弹簧弹力是一个变力,弹力的功就是变力的功,可以用平均力来求功,也可以通过功能关系和能量守恒定律来求解.4.常见的弹簧类问题(l)弹簧的平衡与非平衡问题;(2)弹簧的瞬时性问题;(3)弹簧的碰撞问题;(4)弹簧的简谐运动问题;(5)弹簧的功能关系问题;(6)弹簧的临界问题;(7)弹簧的极值问题;(8)弹簧的动量守恒和能量守恒问题;(9)弹簧的综合性问题.5.处理弹簧模型的策略(l)推断弹簧与连接体的位置,分析物体的受力状况;(2)推断弹簧原长的位置,现长的位置,以确定弹簧是哪种形变以及形变量的大小;(3)分析弹簧弹力的变更状况,弹箦弹力不能发生突变,以此来分析计算物体的运动状态;(4)依据相应的物理规律列方程求解,例如,物体处于平衡时,运用平衡条件和胡克定律求解.模型1 考查弹簧的瞬时性问题弹簧弹力的大小与弹簧形变有关,而弹簧的形变在瞬间是不能突变的,即弹簧形变的变更须要肯定的时间,所以弹簧弹力在瞬间不能够突变,这与绳模型是有区分的,不要混淆两者的区分,否则就会出错.模型2 考查弹簧中的碰撞问题弹簧中的碰撞问题是一类综合性很强的题目,一般综合了动量守恒、机械能守恒、功能关系和能量转化等.假如弹簧作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能,能量相互转化.在运动过程中,动能与势能相互转化。

专题16 类碰撞模型(解析版)

专题16 类碰撞模型(解析版)

2023年高三物理二轮常见模型与方法强化专训专练专题16 类碰撞模型一、与弹簧有关的类碰撞模型1.如图所示,两光滑且平行的固定水平杆位于同一竖直平面内,两静止小球m 1、m 2分别穿在两杆上,两球间连接一个保持原长的竖直轻弹簧,现给小球m 2一个水平向右的初速度v 0.如果两杆足够长,则在此后的运动过程中( )A .m 1、m 2组成的系统动量守恒B .m 1、m 2组成的系统机械能守恒C .弹簧最长时,其弹性势能为12m 2v 02 D .当m 1速度达到最大时,m 2速度最小 【答案】A【详解】由于两球竖直方向上受力平衡,水平方向所受的弹力的弹力大小相等,方向相反,所以两球组成的系统所受的合外力为零,系统的动量守恒,A 正确;对于弹簧、12m m 、组成的系统,只有弹力做功,系统的机械能守恒,由于弹性势能是变化的,所以12m m 、组成的系统机械能不守恒,B 错误;当两球的速度相等时,弹簧最长,弹簧的弹性势能最大,以向右为正方向,由动量守恒定律得()2012m v m m v =+,解得2012m v v m m =+,由系统的机械能守恒得()2220121122P m v m m v E =++,解得()2120122Pm m v E m m =+,C 错误;若12m m >,当弹簧伸长时,1m 一直在加速,当弹簧再次恢复原长时1m 速度达到最大.弹簧伸长时2m 先减速后,速度减至零向左加速,最小速度为零.所以1m 速度达到最大时,2m 速度不是最小,D 错误. 2.如图所示,A 、B 、C 三个半径相同的小球穿在两根平行且光滑的足够长的水平杆上,三个球的质量分别为ma =1kg ,mb =3kg ,mc =1kg , 初始状态三个球均静止,B 、C 球之间连着一根轻质弹簧,弹簧处于原长状态。

现给A 一个向左的初速度v 0= 10m/s ,之后A 与B 发生弹性碰撞。

球A 和B 碰后,下列说法正确的是( )A .球A 的速度变为向右的5m/sB .弹簧恢复原长时球C 的速度为5m/s C .球B 的最小速度为2. 5m/sD .弹簧的最大弹性势能为9. 375J【答案】ACD【详解】A .A 与B 发生弹性碰撞,动量守恒得012A A B m v m v m v =+机械能守恒得222012111222A AB m v m v m v =+ 解得15m/s v =−;25m/s v =,A 正确;D .碰后B 向左运动,因为弹簧弹力的作用,B 向左减速,C 向右加速,当B 、C 速度相等时弹簧最长,弹簧的弹性势能最大,由23()B B C m m m =+v v ;22p 2311()22B BC E m m m =−+v v 解得p 9.375J E =,D 正确;BC .接下来B 继续减速,C 继续加速,C 的速度大于B 的速度,弹簧开始缩短,当弹簧恢复原长时球B 的速度最小,由245B B C m m m =+v v v ;222245111222B BC m m m =+v v v 解得4 2.5m/s =v ;57.5m/s =v ,B 错误C 正确。

2020高三物理模型组合讲解——水平方向上的碰撞+弹簧模型

2020高三物理模型组合讲解——水平方向上的碰撞+弹簧模型

2020高三物理模型组合讲解——水平方向上的碰撞+弹簧模型车晓红[模型概述]在应用动量守恒、机械能守恒、功能关系和能量转化等规律考查学生的综合应用能力时,常有一类模型,确实是有弹簧参与,因弹力做功的过程中弹力是个变力,并与动量、能量联系,因此分析解决这类咨询题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。

[模型讲解]一、光滑水平面上的碰撞咨询题例1. 在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m ,现B 球静止,A 球向B 球运动,发生正碰。

碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,那么碰前A 球的速度等于〔 〕A.mE PB.mE P2 C. mE P2D. mE P22解析:设碰前A 球的速度为v 0,两球压缩最紧时的速度为v ,依照动量守恒定律得出mv mv 20=,由能量守恒定律得220)2(2121v m E mv P +=,联立解得m E v P 20=,因此正确选项为C 。

二、光滑水平面上有阻挡板参与的碰撞咨询题例2. 在原子核物理中,研究核子与核子关联的最有效途径是〝双电荷交换反应〞。

这类反应的前半部分过程和下述力学模型类似,两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图1所示,C 与B 发生碰撞并赶忙结成一个整体D ,在它们连续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连,过一段时刻,突然解除锁定〔锁定及解除锁定均无机械能缺失〕,A 、B 、C 三球的质量均为m 。

图1〔1〕求弹簧长度刚被锁定后A 球的速度。

〔2〕求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能。

解析:〔1〕设C 球与B 球粘结成D 时,D 的速度为v 1,由动量守恒得10)(v m m mv +=当弹簧压至最短时,D 与A 的速度相等,设此速度为v 2,由动量守恒得2132mv mv =,由以上两式求得A 的速度0231v v =。

经典高三物理模型水平方向上的碰撞及弹簧模型 知识点分析

经典高三物理模型水平方向上的碰撞及弹簧模型 知识点分析

水平方向上的碰撞及弹簧模型[模型概述]在应用动量守恒、机械能守恒、功能关系和能量转化等规律考查学生的综合应用能力时,常有一类模型,就是有弹簧参与,因弹力做功的过程中弹力是个变力,并与动量、能量联系,所以分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。

[模型讲解]一、光滑水平面上的碰撞问题例1. 在光滑水平地面上有两个相同的弹性小球A、B,质量都为m,现B球静止,A球向B球运动,发生正碰。

已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为EP,则碰前A球的速度等于()A.B.C.D.解析:设碰前A球的速度为v0,两球压缩最紧时的速度为v,根据动量守恒定律得出,由能量守恒定律得,联立解得,所以正确选项为C。

二、光滑水平面上有阻挡板参与的碰撞问题例2. 在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。

这类反应的前半部分过程和下述力学模型类似,两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以速度v0射向B球,如图1所示,C与B发生碰撞并立即结成一个整体D,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A球与挡板P 发生碰撞,碰后A、D都静止不动,A与P接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A、B、C三球的质量均为m。

图1(1)求弹簧长度刚被锁定后A球的速度。

(2)求在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能。

解析:(1)设C球与B球粘结成D时,D的速度为v1,由动量守恒得当弹簧压至最短时,D与A的速度相等,设此速度为v2,由动量守恒得,由以上两式求得A的速度。

(2)设弹簧长度被锁定后,贮存在弹簧中的势能为EP,由能量守恒,有撞击P后,A与D的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,势能全部转弯成D的动能,设D的速度为v3,则有以后弹簧伸长,A球离开挡板P,并获得速度,当A、D的速度相等时,弹簧伸至最长,设此时的速度为v4,由动量守恒得当弹簧伸到最长时,其势能最大,设此势能为EP”,由能量守恒,有解以上各式得。

专题10 碰撞与类碰撞模型-2024届新课标高中物理模型与方法(解析版)

专题10 碰撞与类碰撞模型-2024届新课标高中物理模型与方法(解析版)

2024版新课标高中物理模型与方法专题10碰撞与类碰撞模型目录【模型一】弹性碰撞模型....................................................................................................................................1【模型二】非弹性碰撞、完全非弹性碰撞模型..............................................................................................15【模型三】碰撞模型三原则..............................................................................................................................23【模型四】小球—曲面模型............................................................................................................................27【模型五】小球—弹簧模型............................................................................................................................37【模型六】子弹打木块模型............................................................................................................................48【模型七】滑块木板模型.. (57)m +m =m +m 联立()、()解得:v 1ˊ=,=.特殊情况:若m 1=m 2,v 1ˊ=v 2,v 2ˊ=v 12.“动静相碰型”弹性碰撞的结论两球发生弹性碰撞时应满足动量守恒和机械能守恒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理模型组合讲解 水平方向上的碰撞+弹簧模型
车晓红
[模型概述]
在应用动量守恒、机械能守恒、功能关系和能量转化等规律考查学生的综合应用能力时,常有一类模型,就是有弹簧参与,因弹力做功的过程中弹力是个变力,并与动量、能量联系,所以分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。

[模型讲解]
一、光滑水平面上的碰撞问题
例1. 在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m ,现B 球静止,A 球向B 球运动,发生正碰。

已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,则碰前A 球的速度等于( ) A. m E P B. m E P 2 C. m E P 2 D. m
E P 22 解析:设碰前A 球的速度为v 0,两球压缩最紧时的速度为v ,根据动量守恒定律得出
mv mv 20=,由能量守恒定律得220)2(2121v m E mv P +=,联立解得m
E v P 20=,所以正确选项为C 。

二、光滑水平面上有阻挡板参与的碰撞问题
例2. 在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。

这类反应的前半部分过程和下述力学模型类似,两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图1所示,C 与B 发生碰撞并立即结成一个整体D ,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A 、B 、C 三球的质量均为m 。

图1
(1)求弹簧长度刚被锁定后A 球的速度。

(2)求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能。

解析:(1)设C 球与B 球粘结成D 时,D 的速度为v 1,由动量守恒得1
0)(v m m mv +=
当弹簧压至最短时,D 与A 的速度相等,设此速度为v 2,由动量守恒得2132mv mv =,由以上两式求得A 的速度023
1v v =。

(2)设弹簧长度被锁定后,贮存在弹簧中的势能为E P ,由能量守恒,有P E mv mv +⋅=⋅222132
1221撞击P 后,A 与D 的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,势能全部转弯成D 的动能,设D 的速度为v 3,则有23)2(2
1v m E P ⋅= 以后弹簧伸长,A 球离开挡板P ,并获得速度,当A 、D 的速度相等时,弹簧伸至最长,设此时的速度为v 4,由动量守恒得4332mv mv =
当弹簧伸到最长时,其势能最大,设此势能为E P ',由能量守恒,有'3212212423P E mv mv +⋅=⋅解以上各式得2036
1'mv E P =。

说明:对弹簧模型来说“系统具有共同速度之时,恰为系统弹性势能最多”。

三、粗糙水平面上有阻挡板参与的碰撞问题
例3. 图2中,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平直导轨上,弹簧处在原长状态。

另一质量与B 相同滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离l 1时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连。

已知最后A 恰好返回出发点P 并停止,滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为l 2,重力加速度为g ,求A 从P 出发时的初速度v 0。

图2
解析:令A 、B 质量皆为m ,A 刚接触B 时速度为v 1(碰前) 由功能关系,有121202
121mgl mv mv μ=- A 、B 碰撞过程中动量守恒,令碰后A 、B 共同运动的速度为v 2
有212mv mv =
碰后A 、B 先一起向左运动,接着A 、B 一起被弹回,在弹簧恢复到原长时,设A 、B 的共同速度为v 3,在这一过程中,弹簧势能始末状态都为零,利用功能关系,有
)2()2()2(2
1)2(2122322l g m v m v m μ=-
此后A 、B 开始分离,A 单独向右滑到P 点停下,由功能关系有
12321mgl mv μ= 由以上各式,解得)1610(210l l g v +=
μ
四、结论开放性问题 例4. 用轻弹簧相连的质量均为2kg 的A 、B 两物块都以s m v /6=的速度在光滑的水平地面上运动,弹簧处于原长,质量为4kg 的物体C 静止在前方,如图3所示,B 与C 碰撞后二者粘在一起运动。

求:在以后的运动中,
图3
(1)当弹簧的弹性势能最大时物体A 的速度多大?
(2)弹性势能的最大值是多大?
(3)A 的速度有可能向左吗?为什么?
解析:(1)当A 、B 、C 三者的速度相等时弹簧的弹性势能最大,由于A 、B 、C 三者组成的系统动量守恒,有
A C
B A B A v )m m m (v )m m (++=+
解得:s m v A /3=
(2)B 、C 碰撞时B 、C 组成的系统动量守恒,设碰后瞬间B 、C 两者速度为'v ,则 s m v v m m v m C B B /2'')(=+=,
设物块A 速度为v A 时弹簧的弹性势能最大为E P ,根据能量守恒
J v m m m v m v m m E A C B A A C B P 12)(2
121')(21222=++-++= (3)由系统动量守恒得
B C B A A B A v m m v m v m v m )(++=+
设A 的速度方向向左,0<A v ,则s m v B /4>
则作用后A 、B 、C 动能之和
J v m m v m E B C B A A k 48)(2
12122>++= 实际上系统的机械能
J v m m m E E A C B A P 48)(2
1'2=+++= 根据能量守恒定律,'E E k >是不可能的。

故A 不可能向左运动。

[模型要点]
系统动量守恒21p p =,如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。

能量守恒P k E E ∆=∆,动能与势能相互转化。

弹簧两端均有物体:弹簧伸长到最长或压缩到最短时,相关联物体的速度一定相等,弹簧具有最大的弹性势能。

当弹簧恢复原长时,相互关联物体的速度相差最大,弹簧对关联物体的作用力为零。

若物体再受阻力时,弹力与阻力相等时,物体速度最大。

[模型演练]
(2006年江苏省前黄高级中学检测题)如图4所示,在光滑水平长直轨道上,A 、B 两小球之间有一处于原长的轻质弹簧,弹簧右端与B 球连接,左端与A 球接触但不粘连,已知m m m m B A 22==,,开始时A 、B 均静止。

在A 球的左边有一质量为m 2
1的小球C 以初速度0v 向右运动,与A 球碰撞后粘连在一起,成为一个复合球D ,碰撞时间极短,接着逐渐压缩弹簧并使B 球运动,经过一段时间后,D 球与弹簧分离(弹簧始终处于弹性限度内)。

图4
(1)上述过程中,弹簧的最大弹性势能是多少?
(2)当弹簧恢复原长时B 球速度是多大?
(3)若开始时在B 球右侧某位置固定一块挡板(图中未画出),在D 球与弹簧分离前使B 球与挡板发生碰撞,并在碰后立即将挡板撤走,设B 球与挡板碰撞时间极短,碰后B 球速度大小不变,但方向相反,试求出此后弹簧的弹性势能最大值的范围。

答案:(1)设C 与A 相碰后速度为v 1,三个球共同速度为v 2时,弹簧的弹性势能最大,由动量守恒,能量守恒有:
202221max 022*******
1321216
123212
1121m v m v m v E v v v m m v v v v m m v p =⋅-==><⋅==><⋅= (2)设弹簧恢复原长时,D 球速度为3v ,B 球速度为4v ><⋅+=>
<+=422
1212132242321431mv mv mv mv mv mv 则有3
32631
014013v v v v v v ==-=-=, (3)设B 球与挡板相碰前瞬间D 、B 两球速度65v v 、 ><+=5221650mv mv mv
与挡板碰后弹性势能最大,D 、B 两球速度相等,设为'v ><=-6'
3265mv mv mv 24
)4(836
)4(238'321)2(21'6
43223232'2
05202
05202
20050550565v v m m v v v m m v v m v m E v v v v v v v v v v P --=-⨯-=⨯⨯-⨯⨯=-=-=+-=-= 当405v v =时,'P E 最大8
'20max mv E P = 605v v -=时,'P E 最小,108
'20min mv E P = 所以8
'1082020mv E mv P ≤≤。

相关文档
最新文档