高中物理模型24 活塞封闭气缸模型(解析版)
2023高考物理热学专题冲刺训练--气体实验定律的综合应用(二)--气缸模型:活塞封闭气体类问题

确定研究对象 三种变化等圧変化:2211T V T V =气缸模型(活塞封闭气体类问题)一、解题思路与技巧1.2.常见类型(1)气体系统处于平衡状态,需要综合应用气体实验定律和物体的平衡条件解题。
(2)气体系统处于力学非平衡状态,需要综合应用气体实验定律和牛顿运动定律解题。
(3)两个或多个汽缸封闭着几部分气体,并且汽缸之间相互关联的问题,解答时应分别研究各部分气体,找出它们各自遵循的规律,并写出相应的方程,还要写出各部分气体之间压强或体积的关系式,最后联立求解。
二、针对练习1、[2021·全国甲卷]如图,一汽缸中由活塞封闭有一定量的理想气体,中间的隔板将气体分为A 、B 两部分;初始时,A 、B 的体积均为V ,压强均等于大气压p 0。
隔板上装有压力传感器和控制装置,当隔板两边压强差超过0.5p 0时隔板就会滑动,否则隔板停止运动。
气体温度始终保持不变。
向右缓慢推动活塞,使B 的体积减小为V2。
(1)求A 的体积和B 的压强;(2)再使活塞向左缓慢回到初始位置,求此时A 的体积和B 的压强。
热学对象(气体) 确定初、末状态参量(温度、压强、体积)等温变化:2211V p V p =等容变化:2211T p T p =力学对象(活塞、缸体或系统)处于平衡状态:根据平衡条件列式(技巧1)处于非平衡状态:根据牛顿第二定律列式(技巧2)2、如图所示,在固定的汽缸A 和B 中分别用活塞封闭一定质量的理想气体,活塞面积之比为S A ∶S B =1∶2,两活塞与穿过B 汽缸底部的刚性细杆相连,活塞与汽缸、细杆与汽缸间摩擦不计且不漏气.初始时,A 、B 中气体的体积皆为V 0,A 中气体压强p A =1.5p 0,p 0是汽缸外的大气压强(保持不变).现对A 中气体缓慢加热,并保持B 中气体的温度不变,当A 中气体的压强增大到p A ′=2p 0时,求B 中气体的体积V B .3、(2019年全国∶卷)如图,一容器由横截面积分别为S 2和S 的两个汽缸连通而成,容器平放在水平地面上,汽缸内壁光滑.整个容器被通过刚性杆连接的两活塞分隔成三部分,分别充有氢气、空气和氮气.平衡时,氮气的压强和体积分别为0p 和0V ,氢气的体积为02V ,空气的压强为p . 现缓慢地将中部的空气全部抽出,抽气过程中氢气和氮气的温度保持不变,活塞没有到达两汽缸的连接处,求: (1)抽气前氢气的压强;(2)抽气后氢气的压强和体积。
高中物理气缸活塞模型总结

高中物理气缸活塞模型总结
高中物理中,气缸活塞模型是一个很重要的模型。
这个模型通常用于解释气体容积和压力的关系。
下面是一些关于气缸活塞模型的总结:
1. 气缸活塞模型可以用来解释气体容积和压力的关系。
当气缸内的活塞上移,气体的容积会减少,压力会增加。
反之,当活塞下移,气体的容积会增加,压力会减少。
2. 活塞上下运动的力量来自于外部压力或者自身质量。
当外部压力施加在活塞上方时,活塞会向下移动;反之,当外部压力施加在活塞下方时,活塞会向上移动。
3. 无论活塞的运动方向如何,从做功的角度来看,气体压力和容积的变化都代表了做功。
当气体扩张时(即容积增加),气体对外部做功;当气体压缩时(即容积减小),外部对气体做功。
4. 气缸活塞模型还可以用于解释热力学系统中的各种现象,例如等温、等压和等容过程。
在等温过程中,气体的温度不变,因此气体压力和容积成反比例变化。
在等压过程中,气体的压力不变,因此气体的容积和温度成正比例变化。
在等容过程中,气体的容积不变,因此气体的压力和温度成正比例变化。
5. 当气体受到恒定外部压力时,气体的压强和密度成正比例变化,而温度不变。
这被称为泊松定律,它对于理解气体力学和热力学非常重要。
总之,气缸活塞模型是高中物理中一个非常重要和基本的模型,它对于理解气体力学和热力学都有很大帮助。
了解和理解气缸活塞模型的原理和应用可以帮助我们更好地掌握这些知识。
高二物理气体的状态方程试题答案及解析

高二物理气体的状态方程试题答案及解析1.如图(a)所示,一导热性能良好、内壁光滑的气缸水平放置,横截面积为S=2×10-3m2、质量为m=4kg厚度不计的活塞与气缸底部之间封闭了一部分气体,此时活塞与气缸底部之间的距离为24cm,在活塞的右侧12cm处有一对与气缸固定连接的卡环,气体的温度为300K,大气压=1.0×105Pa。
现将气缸竖直放置,如图(b)所示,取g=10m/s2。
求:强P(1)活塞与气缸底部之间的距离;(2)加热到675K时封闭气体的压强。
【答案】(1)(2)【解析】(1)气缸水平放置时,封闭气体的压强:,温度:,体积:当气缸竖直放置时,封闭气体的压强:,温度,体积:.根据理想气体状态方程有:,代入数据可得(2)假设活塞能到达卡环,由题意有:根据理想气体状态方程有:代入数据可得:,故假设成立,活塞能达到卡环,气体压强为【考点】考查气体状态方程2.为了将空气装入气瓶内,现将一定质量的空气等温压缩,空气可视为理想气体。
下列图象能正确表示该过程中空气的压强p和体积V关系的是()【答案】B【解析】根据理想气体状态方程,空气等温压缩,有PV=C,知P与成正比,在图象中为过原点的直线,所以该过程中空气的压强P和体积的关系图是图B,故ACD错误,B正确.【考点】本题考查了理想气体状态方程.3.一定质量的理想气体处于某一初始状态,若要使它经历两个状态变化过程,压强仍回到初始的数值,则下列过程中,可以采用( )A.先经等容降温,再经等温压缩B.先经等容降温,再经等温膨胀C.先经等容升温,再经等温膨胀D.先经等温膨胀,再经等容升温【答案】ACD【解析】据PV/T=K可知,先等容降温,导致压强减小,然后等温压缩导致压强增大,所以A选项可以采用;先等容降温,导致压强减小,然后等温膨胀导致压强减小,B选项不可采用;先等容升温,导致压强增大,然后等温膨胀导致压强减小,C选项可以采用;先等温膨胀,导致压强减小,然后等容升温导致压强增大,可以采用。
专题27 有关理想气体实验定律的玻璃管类和气缸类模型(解析版)

2023年高三物理二轮常见模型与方法强化专训专练专题27 有关理想气体实验定律的玻璃管类和气缸类模型一、高考真题1.足够长的玻璃管水平放置,用长19cm 的水银封闭一段长为25cm 的空气柱,大气压强为76cmHg ,环境温度为300K ,将玻璃管缓慢顺时针旋转到竖直,则:①空气柱是吸热还是放热②空气柱长度变为多少③当气体温度变为360K 时,空气柱长度又是多少?【答案】①放热;②20cm ;③24cm【详解】①②以封闭气体为研究对象,气体做等温变化,设玻璃管横截面积为S ,玻璃管水平时176cmHg p =;125V S =玻璃管竖起来后219cmHg 76cmHg 95cmHg p =+=;2V LS =根据1122pV p V =解得20cm L =气体体积减小,外界对气体做功,但其温度不变,内能不变,根据热力学第一定律可知气体向外放热;③空气柱长度为20cm ;由等压变化得2312V V T T =其中1300K T =;220V S =;'3V LS =解得'24cm L = 2.水平放置的气体阻尼器模型截面如图所示,汽缸中间有一固定隔板,将汽缸内一定质量的某种理想气体分为两部分,“H”型连杆活塞的刚性连杆从隔板中央圆孔穿过,连杆与隔板之间密封良好。
设汽缸内、外压强均为大气压强0p 。
活塞面积为S ,隔板两侧气体体积均为0SL ,各接触面光滑。
连杆的截面积忽略不计。
现将整个装置缓慢旋转至竖直方向,稳定后,上部气体的体积为原来的12,设整个过程温度保持不变,求:(i )此时上、下部分气体的压强;(ii )“H”型连杆活塞的质量(重力加速度大小为g )。
【答案】(1)02p ,023p ;(2)043p S g 【详解】(1)旋转前后,上部分气体发生等温变化,根据玻意尔定律可知001012p SL p SL ⋅=⋅解得旋转后上部分气体压强为102p p =旋转前后,下部分气体发生等温变化,下部分气体体积增大为0001322SL SL SL +=,则 002032p SL p SL ⋅=⋅解得旋转后下部分气体压强为2023p p = (2)对“H”型连杆活塞整体受力分析,活塞的重力mg 竖直向下,上部分气体对活塞的作用力竖直向上,下部分气体对活塞的作用力竖直向下,大气压力上下部分抵消,根据平衡条件可知12p S mg p S =+解得活塞的质量为043p S m g= 3.定高气球是种气象气球,充气完成后,其容积变化可以忽略。
活塞+汽缸模型(原卷版)—2024学年高二物理同步模型易点通(人教版2019选择性必修第三册)

竖直悬挂,缸内气体温度仍为T1,求此时缸内气体体积V2;所示,将汽缸水平放置,稳定后对汽缸缓慢加热,当缸内气体体积为V【模型演练2】测量仪。
如图所示为气压体积测量仪的原理图,横截面积10cmS=m=的活塞从气压筒2kgA .034V 2.(23-24高三下成A 、B 、C 三部分,与大气连通,则下列说法中正确的是( )A.只打开隔板1K,B中气体对外做功,内能减少B.只打开隔板1K,B中气体不做功,内能不变C.只打开隔板1K,B中气体压强不变D.只打开卡销2K,让活塞移动,3.(2024·云南·模拟预测)一定质量的理想气体被活塞封闭在气缸中,气缸和活塞的绝热性、密封性良好,A.气体压强不变B.气体中每个分子热运动的动能都增加C.电热丝产生的热量小于气体对活塞做的功D.在单位时间内,气体分子与单位面积活塞碰撞的次数增加4.(2024·云南·A.压强变小B.体积变小A.加热前封闭气体的压强等于大气压强B.加热过程中封闭气体分子的平均动能增大C.加热过程中气体吸收的热量等于弹簧弹性势能的增加量与活塞重力势能的增加量之和D.加热过程中气体对活塞做的功大于弹簧弹性势能的增加量与活塞重力势能的增加量之和7.(2024·湖南衡阳·模拟预测)如图所示,一水平放置的汽缸由横截面积不同的两圆筒连接而成,活塞B 用原长为3L 、劲度系数00P S k L=的轻弹簧连接,活塞整体可以在筒内无摩擦地沿水平方向滑动。
间封闭着一定质量的理想气体,设活塞A 、B 横截面积的关系为50110Pa p =⨯,温度为0125K T =。
初始时活塞B 与大圆筒底部(大、小圆筒连接处)相距温度为1500K T =。
求:(1)缸内气体的温度缓慢降低至380K 时,活塞移动的位移;8.(2024·陕西宝鸡·二模)如图所示,一水平放置导热汽缸,由截面积不同的两个圆筒连接而成,轻质活塞A 、B 用一长度为330cm L =刚性轻杆连接成整体,它们可以在筒内无摩擦地左右滑动且不漏气。
【高中物理】专题封闭气体的压强和气体变质量问题 高中物理同步备课(人教版2019选择性必修第三册)

例题分析
例:如图所示,长50 cm的玻璃管开口向上竖直放置,用15 cm长的水银柱封闭了一
段20 cm长的空气柱,外界大气压强相当于75 cm水银柱产生的压强。现让玻璃管自
由下落。不计空气阻力,求稳定时气柱的长。(可以认为气柱温度没有变化)
解析:假设自由下落过程中,水银没有溢出。根据玻意耳定律得
p1l1S=p2l2S
为p0=76 cmHg.如果使玻璃管绕底端在竖直平面内缓慢地转动一周,求在开口向下和转回到原
来位置时管中空气柱的长度(在转动过程中没有发生漏气,气体状态变化可视为等温变化)。
法二:在气体与水银相接触处,水银柱上取一液片为研
究对象,其处于静止状态,根据受力平衡确定气体各状
态的压强。
解析:
玻璃管开口向上时
知识点拨
1.一只手握住玻璃管中部,在管内灌满水银,排出空气,用另一只手指紧紧堵住
玻璃管开口端并把玻璃管小心地倒插在盛有水银的槽里,待开口端全部浸入水银槽
内时放开手指,将管子竖直固定,当管内水银液面停止下降时,读出此时水银液柱
与水槽中水平液面的竖直高度差,约为760mm。
2.逐渐倾斜玻璃管,发现管内水银柱的竖直高度不变。
析,列平衡方程求气体压强。
(2)①pA=p0-ph=71 cmHg
②pA=p0-ph=66 cmHg
③pA=p0+ph=(76+10×sin30°)cmHg=81 cmHg
④pA=p0-ph=71 cmHg pB=pA-ph=66 cmHg
例题分析
例:如图所示,在长为57 cm的一端封闭、另一端开口向上的竖直玻璃管内,用4 cm高
(1)玻璃管水平放置时,管内气体的长度。
(2)玻璃管开口竖直向下时,管内气体的长度。(假设水银没有流出)
气缸模型高中物理

气缸模型高中物理气缸模型,这个名字听起来是不是有点高大上?一听就觉得很复杂对吧?其实不然。
咱们今天就来“刮刮油”,把这个气缸模型的知识给扒一扒,看看它到底有啥神奇之处。
你可能会觉得,哎,这不就是一根管子吗,里头装个气体,空气进去挤一挤就出来了呗,跟咱平常吹气球差不多。
但说实话,这气缸可不仅仅是个吹气球的简单工具,它可在物理学的世界里掀起了不小的波澜。
气缸模型的核心原理就是气体在密闭容器中如何“表现”。
就像我们小时候吹泡泡,嘴巴一鼓,泡泡就出来了。
但要是把空气关在一个固定的空间里,空气就会急着想要“跑出来”。
在气缸模型里,空气被“困住”了,压力开始增加,空气就会推着气缸的活塞动。
这就跟咱们平时看到的汽车引擎差不多。
汽车发动机其实也是靠气缸原理工作,空气和燃料在气缸里“爆炸”,然后推动活塞,转动曲轴,发动机就转起来了。
怎么样,想想是不是有点牛?但说真的,搞清楚这些原理并不难,想象一下,把气体看成一个个“调皮的孩子”,它们被关在一个小小的房间里,开始“打架”时就会产生压力。
这压力越大,气缸内的活塞就被推得越厉害。
你说,这是不是就跟我们在人群中站得太挤,越来越难受一样?就是这种“拥挤”的效果,最终才带来动力。
说到气缸的“秘密”,你可得留心了。
气缸里最关键的部分就是“活塞”,也就是那个可以上下移动的部件。
活塞一动,气缸里的气体就会压缩或者膨胀,压力就随之变化。
这时候,如果你能想象成一个弹簧压缩的过程,就好理解多了。
当你压缩弹簧,弹簧的力会越来越大,直到你松开它,弹簧一下子弹回去。
所以,气缸模型也有类似的原理。
你压缩空气,气体压力变大,气体想反抗,活塞就被推出来,完成一个循环。
这个过程可以产生动力,驱动各种机械装置,甚至是咱们开车的时候,汽车的动力就是靠类似的气缸原理产生的。
不过啊,咱们说回气缸模型,这个东西可不仅仅用来做动力的哦。
你看,气缸模型还可以用来帮助咱们理解一些看似复杂的物理现象。
比如热力学定律就是从气体在封闭空间内的行为得来的。
专题18 热学中的气缸问题(解析版)-2023年高考物理计算题专项突破

专题18 热学中的气缸问题①热力学温度与摄氏温度的关系:K t T 15.273+=;②玻意耳定律:1C pV =;(1C 是常量)或2211V p V p =③盖—吕萨克定律:T C V 2=(2C 是常量);或2211T V T V =或2121T T p p =; ④查理定律:T C p 3=(3C 是常量);或2211T p T p =或2121T T p p =; ⑤理想气体状态方程:222111T V p T V p =或C TpV =; ⑥热力学第一定律:W Q U +=∆;在解决热力学中的汽缸问题题时,首先要确定力学和热学的研究对象:①力学对象一般为汽缸、活塞、连杆、液柱等,确定研究对象后,要对其进行受力分析;②热学对象一般是封闭气团,要分析其初、末状态参量值及其变化过程。
第二步列出方程:①根据牛顿运动定律或平衡条件列出力学方程;②根据理想气体状态方程或气体实验室定律方程列出热学方程;③进一步挖掘题目中的隐含条件或集合关系。
最后对所列的多个方程联立求解,检验结果的合理性。
常考的关联气体汽缸模型 模型一(如图):上图模型中,A 、B 两部分气体在状态变化过程中的体积之和不变。
模型二(如图):上图模型中,压缩气体,使隔板缓慢移动的过程中,A 、B 两侧的压强差恒定。
模型三(如图):上图模型中,连杆活塞移动相同距离,A 、B 两部分气体体积的变化量之比等于活塞面积之比,即BA B A S S V V =∆∆。
典例1:(2022·河北·高考真题)水平放置的气体阻尼器模型截面如图所示,汽缸中间有一固定隔板,将汽缸内一定质量的某种理想气体分为两部分,“H”型连杆活塞的刚性连杆从隔板中央圆孔穿过,连杆与隔板之间密封良好。
设汽缸内、外压强均为大气压强0p 。
活塞面积为S ,隔板两侧气体体积均为0SL ,各接触面光滑。
连杆的截面积忽略不计。
现将整个装置缓慢旋转至竖直方向,稳定后,上部气体的体积为原来的12,设整个过程温度保持不变,求:(i )此时上、下部分气体的压强;(ii )“H”型连杆活塞的质量(重力加速度大小为g )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理模型24 活塞封闭气缸(原卷版)1.常见类型(1)气体系统处于平衡状态,需综合应用气体实验定律和物体的平衡条件解题。
(2)气体系统处于力学非平衡状态,需要综合应用气体实验定律和牛顿运动定律解题。
(3)封闭气体的容器(如汽缸、活塞)与气体发生相互作用的过程中,如果满足守恒定律的适用条件,可根据相应的守恒定律解题。
(4)两个或多个汽缸封闭着几部分气体,并且汽缸之间相互关联的问题,解答时应分别研究各部分气体,找出它们各自遵循的规律,并写出相应的方程,还要写出各部分气体之间压强或体积的关系式,最后联立求解。
2.解题思路(1)弄清题意,确定研究对象,一般地说,研究对象分两类:一类是热学研究对象(一定质量的理想气体);另一类是力学研究对象(汽缸、活塞或某系统)。
(2)分析清楚题目所述的物理过程,对热学研究对象分析清楚初、末状态及状态变化过程,依据气体实验定律列出方程;对力学研究对象要正确地进行受力分析,依据力学规律列出方程。
(3)注意挖掘题目的隐含条件,如几何关系等,列出辅助方程。
(4)多个方程联立求解。
对求解的结果应注意检验它们的合理性。
多个系统相互联系的一定质量气体问题,往往以压强建立起系统间的关系,各系统独立进行状态分析,要确定每个研究对象的变化性质,分别应用相应的实验定律,并充分应用各研究对象之间的压强、体积、温度等量的有效关联,若活塞可自由移动,一般要根据活塞平衡确定两部分气体的压强关系。
【典例1】如图所示,足够长的圆柱形汽缸竖直放置,其横截面积为1×10-3m2,汽缸内有质量m=2 kg的活塞,活塞与汽缸壁封闭良好,不计摩擦。
开始时活塞被销子K销于如图所示位置,离缸底12 cm,此时汽缸内被封闭气体的压强为1.5×105 Pa,温度为300 K。
外界大气压强p0=1.0×105 Pa,g=10 m/s2。
(1)现对密闭气体加热,当温度升到400 K时,其压强为多大?(2)若在(1)的条件下拔去销子K,活塞开始向上运动,当它最后静止在某一位置时,汽缸内气体的温度为360 K,则这时活塞离缸底的距离为多少?【变式训练1】如图,柱形容器内用不漏气的轻质绝热活塞封闭一定量的理想气体,容器外包裹保温材料。
开始时活塞至容器底部的高度为H1,容器内气体温度与外界温度相等。
在活塞上逐步加上多个砝码后,活塞下降到距容器底部H2处,气体温度升高了△T;然后取走容器外的保温材料,活塞位置继续下降,最后静止于距容器底部H3处:已知大气压强为p0。
求:气体最后的压强与温度。
【典例2】如图,在水平放置的刚性气缸内用活塞封闭两部分气体A和B,质量一定的两活塞用杆连接。
气缸内两活塞之间保持真空,活塞与气缸璧之间无摩擦,左侧活塞面积较大,A、B的初始温度相同。
略抬高气缸左端使之倾斜,再使A、B升高相同温度,气体最终达到稳定状态。
若始末状态A、B的压强变化量△p A、△p B均大于零,对活塞压力的变化量为△F A、△F B,则(A)A体积增大(B)A体积减小(C) △F A △F B(D)△p A<△p B【变式训练2】如图,绝热气缸A与导热气缸B均固定于地面,由刚性杆连接的绝热活塞与两气缸间均无摩擦。
两气缸内装有处于平衡状态的理想气体,开始时体积均为V、温度均为T。
缓慢加热A中气体,停止加热达到稳定后,A中气体压强为原来的1.2倍。
设环境温度始终保持不变,求气缸A中气体的体积AV和温度AT。
【典例3】(2019南昌二中1月质检)如图所示,两个截面积均为S的圆柱形容器,左右两边容器的高均为H,右边容器上端封闭,左边容器上端是一个可以在容器内无摩擦滑动的轻活塞(重力不计),两容器由装有阀门的极细管道(体积忽略不计)相连通。
开始时阀门关闭,左边容器中装有热力学温度为T0的理想气体,平衡时活塞到容器底的距离为H,右边容器内为真空。
现将阀门缓慢打开,活塞便缓慢下降,直至系统达到平衡,此时被封闭气体的热力学温度为T,且T>T0。
求此过程中外界对气体所做的功。
已知大气压强为p0。
【变式训练3】汽缸由两个横截面不同的圆筒连接而成,活塞A、B被轻质刚性细杆连接在一起,活塞可无摩擦移动,活塞A、B的质量分别为m1=24 kg、m2=16 kg,横截面积分别为S1=6.0×10-2 m2,S2=4.0×10-2 m2,一定质量的理想气体被封闭在两活塞之间,活塞外侧大气压强p0=1.0×105 Pa。
(1)如图甲所示,汽缸水平放置达到平衡状态时,求内部气体的压强。
(2)已知水平放置平衡时气体的体积V=2.0×10-2m3,现保持温度不变将汽缸竖直放置,如图乙所示,取重力加速度g=10 m/s2。
达到平衡后,活塞在汽缸内移动的距离为多少?(活塞A还未到达汽缸连接处)【典例4】(2019四川成都开学模拟)如图所示,竖直放置的导热汽缸,活塞横截面积S=0.01 m2,可在汽缸内无摩擦滑动,汽缸侧壁有一个小孔与装有水银的U形玻璃管相通,汽缸内封闭了一段高H=70 cm的气柱(U形管内的气体体积不计)。
已知活塞质量m=6.8 kg,大气压强p0=1×105 Pa,水银密度ρ=13.6×103 kg/m3,重力加速度g=10 m/s2。
(1)求U形管中左管与右管的水银面的高度差h1。
(2)在活塞上加一竖直向上的拉力使U形管中左管水银面高出右管水银面h2=5 cm,求活塞平衡距汽缸底部的高度H'。
【变式训练4】(2018江西临川一中冲刺)如图所示,一绝缘良好的汽缸固定在水平地面上,通过活塞封闭有一定质量的理想气体,活塞与缸壁的摩擦可忽略不计,活塞的横截面积S=100 cm2。
活塞与水平平台上的物块A用水平轻杆连接,在平台上有另一物块B,A、B的质量均为m=62.5 kg,物块与平台间的动摩擦因数μ=0.8,两物块的间距d=10 cm。
开始时活塞距缸底L1=10 cm,缸内气体压强p1等于外界大气压强p0(p0=1×105Pa),温度t=27 ℃。
现对汽缸内的气体缓慢加热,g取10 m/s2,求:(1)物块A开始移动时,汽缸内的温度。
(2)物块B开始移动时,汽缸内的温度。
【典例5】(2017全国卷Ⅱ,33)(多选)如图所示,用隔板将一绝热汽缸分成两部分,隔板左侧充有理想气体,隔板右侧与绝热活塞之间是真空。
现将隔板抽开,气体会自发扩散至整个汽缸。
待气体达到稳定后,缓慢推压活塞,将气体压回到原来的体积。
假设整个系统不漏气。
下列说法正确的是()。
A.气体自发扩散前后内能相同B.气体在被压缩的过程中内能增大C.在自发扩散过程中,气体对外界做功D.气体在被压缩的过程中,外界对气体做功E.气体在被压缩的过程中,气体分子的平均动能不变【变式训练5】[2018全国卷Ⅰ,33(2)]如图,容积为V的汽缸由导热材料制成,面积为S的活塞将汽缸分成容积相等的上下两部分,汽缸上部通过细管与装有某种液体的容器相连,细管上有一阀门K。
开始时,K关闭,汽缸内上下两部分气体的压强均为p0。
现将K打开,容器内的液体缓慢地流入汽缸,当流入的液体体积为时,将K关闭,活塞平衡时其下方气体的体积减小了。
不计活塞的质量和体积,外界温度保持不变,重力加速度大小为g。
求流入汽缸内液体的质量。
【典例6】[2018全国卷Ⅱ,33(2)]如图,一竖直放置的汽缸上端开口,汽缸壁内有卡口a和b,a、b间距为h,a距缸底的高度为H;活塞只能在a、b间移动,其下方密封有一定质量的理想气体。
已知活塞质量为m,面积为S,厚度可忽略;活塞和汽缸壁均绝热,不计它们之间的摩擦。
开始时活塞处于静止状态,上、下方气体压强均为p0,温度均为T0。
现用电热丝缓慢加热汽缸中的气体,直至活塞刚好到达b处。
求此时汽缸内气体的温度以及在此过程中气体对外所做的功。
重力加速度大小为g。
【变式训练6】[2017全国卷Ⅰ,33(2)]如图所示,容积均为V的汽缸A、B下端有细管(容积可忽略)连通,阀门K2位于细管的中部,A、B的顶部各有一阀门K1、K3;B中有一可自由滑动的活塞(质量、体积均可忽略)。
初始时,三个阀门均打开,活塞在B的底部;关闭K2、K3,通过K1给汽缸充气,使A中气体的压强达到大气压p0的3倍后关闭K1。
已知室温为27 ℃,汽缸导热。
(1)打开K2,求稳定时活塞上方气体的体积和压强。
(2)接着打开K3,求稳定时活塞的位置。
(3)再缓慢加热汽缸内气体使其温度升高20 ℃,求此时活塞下方气体的压强。
模型24 活塞封闭气缸(解析版)1.常见类型(1)气体系统处于平衡状态,需综合应用气体实验定律和物体的平衡条件解题。
(2)气体系统处于力学非平衡状态,需要综合应用气体实验定律和牛顿运动定律解题。
(3)封闭气体的容器(如汽缸、活塞)与气体发生相互作用的过程中,如果满足守恒定律的适用条件,可根据相应的守恒定律解题。
(4)两个或多个汽缸封闭着几部分气体,并且汽缸之间相互关联的问题,解答时应分别研究各部分气体,找出它们各自遵循的规律,并写出相应的方程,还要写出各部分气体之间压强或体积的关系式,最后联立求解。
2.解题思路(1)弄清题意,确定研究对象,一般地说,研究对象分两类:一类是热学研究对象(一定质量的理想气体);另一类是力学研究对象(汽缸、活塞或某系统)。
(2)分析清楚题目所述的物理过程,对热学研究对象分析清楚初、末状态及状态变化过程,依据气体实验定律列出方程;对力学研究对象要正确地进行受力分析,依据力学规律列出方程。
(3)注意挖掘题目的隐含条件,如几何关系等,列出辅助方程。
(4)多个方程联立求解。
对求解的结果应注意检验它们的合理性。
多个系统相互联系的一定质量气体问题,往往以压强建立起系统间的关系,各系统独立进行状态分析,要确定每个研究对象的变化性质,分别应用相应的实验定律,并充分应用各研究对象之间的压强、体积、温度等量的有效关联,若活塞可自由移动,一般要根据活塞平衡确定两部分气体的压强关系。
【典例1】如图所示,足够长的圆柱形汽缸竖直放置,其横截面积为1×10-3m2,汽缸内有质量m=2 kg的活塞,活塞与汽缸壁封闭良好,不计摩擦。
开始时活塞被销子K销于如图所示位置,离缸底12 cm,此时汽缸内被封闭气体的压强为1.5×105 Pa,温度为300 K。
外界大气压强p0=1.0×105 Pa,g=10 m/s2。
(1)现对密闭气体加热,当温度升到400 K时,其压强为多大?(2)若在(1)的条件下拔去销子K,活塞开始向上运动,当它最后静止在某一位置时,汽缸内气体的温度为360 K,则这时活塞离缸底的距离为多少?【答案】(1)2×105 Pa(2)18 cm【解析】(1)根据查理定律,得=,解得p2=2×105 Pa。