第6章凸轮机构的运动设计

合集下载

机械原理:第6章 凸轮机构

机械原理:第6章 凸轮机构
试求: 1.标出基圆半径r0? 2.标出图示位置从动件位移s 和机构
的压力角α ? 3.求出r0 、s 和α之间的关系式?
本题目主要考察对基圆、压力角及位移等 基本概念的理解和压力角的计算方法。 解
(1)图示位置的r0 、s 和α如图。
(2)r0 、s 与α之间的关系式为:
tan
v e
lOP e 1
r02 e2 s s r02 e2
例3 图示为摆动滚子从动件盘形凸轮机构,凸轮为偏心圆盘, 且以角速度ω逆时针方向回转。
试在图上标出: 1. 凸轮基圆;
2. 升程运动角和回程运动角;
3. 图示位置时从动件的初始位置角
0和角位移 ;
4. 图示位置从动件的压力角α;
5. 从动件的最大角位移max 。
r0min
( d s)2 e2 tan[ ]
直动滚子从动件盘 形凸轮机构
凸轮基圆半径
r0
m in
s
d2s
d 2
式中
([ dx )2 ( dy )2 ]3/ 2
d
dx
d
.
d2 y
d 2
d
dy
d
.
d2x
d 2
条件 min
直动平底从动件盘 形凸轮机构
滚子半径的设计
考虑运动失真: rr 0.8min 考虑强度要求: rr (0.1 ~ 0.5)r0
以凸轮转动中心为圆心,以凸轮理论轮廓曲线上的 最小半径为半径所画的圆。半径用r0表示。 从动件从距凸轮转动中心的最近点向最远点的运动过程。 从动件从距凸轮转动中心的最远点向最近点的运动过程。 从动件的最大运动距离。常用 h 表示行程。
基本名词术语
(5)推程角 从动件从距凸轮转动中心的最近点运动到最远点时, 凸轮所转过的角度。用Φ表示。

机械原理凸轮机构设计

机械原理凸轮机构设计

凸轮机构的设计一、简介凸轮机构是由凸轮,从动件和机架三个基本构件组成的高副机构。

凸轮是一个具有曲线轮廓或凹槽的构件,一般为主动件,作等速回转运动或往复直线运动。

与凸轮轮廓接触,并传递动力和实现预定的运动规律的构件,一般做往复直线运动或摆动,称为从动件。

凸轮机构在应用中的基本特点在于能使从动件获得较复杂的运动规律。

因为从动件的运动规律取决于凸轮轮廓曲线,所以在应用时,只要根据从动件的运动规律来设计凸轮的轮廓曲线就可以了。

凸轮机构广泛应用于各种自动机械、仪器和操纵控制装置。

凸轮机构之所以得到如此广泛的应用,主要是由于凸轮机构可以实现各种复杂的运动要求,而且结构简单、紧凑。

二、凸轮机构的工作原理由凸轮的回转运动或往复运动推动从动件作规定往复移动或摆动的机构。

凸轮具有曲线轮廓或凹槽,有盘形凸轮、圆柱凸轮和移动凸轮等,其中圆柱凸轮的凹槽曲线是空间曲线,因而属于空间凸轮。

从动件与凸轮作点接触或线接触,有滚子从动件、平底从动件和尖端从动件等。

尖端从动件能与任意复杂的凸轮轮廓保持接触,可实现任意运动,但尖端容易磨损,适用于传力较小的低速机构中。

为了使从动件与凸轮始终保持接触,可采用弹簧或施加重力。

具有凹槽的凸轮可使从动件传递确定的运动,为确动凸轮的一种。

一般情况下凸轮是主动的,但也有从动或固定的凸轮。

多数凸轮是单自由度的,但也有双自由度的劈锥凸轮。

凸轮机构结构紧凑,最适用于要求从动件作间歇运动的场合。

它与液压和气动的类似机构比较,运动可靠,因此在自动机床、内燃机、印刷机和纺织机中得到广泛应用。

但凸轮机构易磨损,有噪声,高速凸轮的设计比较复杂,制造要求较高。

一、工作过程和参数在凸轮机构中最常见的运动形式为凸轮机构作等速回转运动,从动件往复移动。

以图6-8为例(对心外轮廓盘形凸轮机构)。

首先介绍一下本图中各构件的名称。

1,运动分析:停CA4ϕ2、参数①推程(升程)-- 从动件自最低位置升到最高位置的过程 ②推程角(升程角)--推动从动件实现推程时的凸轮转角(ϕ1) ③回程 -- 从动件自最高位置升到最低位置的过程 ④回程角 --从动件从最高位置回到最低位置时的 凸轮转角(ϕ3)⑤远停角(远休止角)从动件在最高位置停止不动,与此对应的凸轮转角。

凸轮机构

凸轮机构

凹 槽 凸 轮
等 宽 凸 轮
W
等 径 凸 轮 r1+r2 =const
r1 r2
主 回 凸 轮
作者:潘存云教授
它的缺点是:凸轮轮廓与从动件的接触为点或者线的接触,易于磨损,所以通常用于 凸轮机构的特点是:只需恰当的设计出凸轮轮廓曲线,便可使从动件得到任意的预期 传递不大的控制机构中。 运动规律,而且结构简单、紧凑,设计方便。
§六、 凸轮机构的应用和类型
平面连杆机构是一种低副机构,一般只能近似地实现给定的运动规律, 而且其设计也较为复杂。当从动件的位移、速度和加速度必须严格的按照 结构:三个构件、盘(柱)状曲线轮廓、从动件呈杆状。 预定规律变化时,尤其是当原动件作连续运动而从动件必须作周期性件间 歇运动时,则采用凸轮机构最为简便。
2)按推杆形状分(从动件类型):尖顶、 滚子、 平底从动件。
特点: (1)尖顶从动件 尖顶能与复杂形状的凸轮轮廓保持接触,因而能实现任 尖顶--构造简单、易磨损、用于仪表机构;
意预期的运动规律。但尖顶与凸轮是点接触,磨损快,所以只宜用于受力不大 的低速凸轮机构。 滚子――磨损小,应用广; (2)滚子从动件 如图3—3和图3—4所示,为了克服尖顶从动件的缺点, 在从动件的尖顶处安装一个滚子,即成为滚子从动件。滚子和凸轮轮廓之间为 平底――受力好、润滑好,用于高速传动。 滚动摩擦,耐磨损,可以承受较大载荷,所以是从动件中最常用的一种型式。 (1)盘形凸轮 盘形凸轮是一个绕固定轴转动并且轮廓向径变化的盘形零件,如 (3)平底从动件 如图3—1所示,这种从动件与凸轮轮廓表面接触的端面 (2)移动凸轮 当盘形凸轮的回转中心趋于无穷远时,凸轮相对机架作直线运动 为一平面。显然,平底不能与凹陷的凸轮轮廓相接触。这种从动件的优点是: (3)圆柱凸轮 将移动凸轮卷成圆柱体即成为圆柱凸轮,如图3—4所示。 当不考虑摩擦时,凸轮与从动件之间的作用力始终与从动件的平底相垂直。传 动效率较高,且接触面间易于形成油膜,利于润滑,故常用于高速凸轮机构。

机械设计教案:凸轮机构的认识与盘形凸轮轮廓的设计

机械设计教案:凸轮机构的认识与盘形凸轮轮廓的设计

授课教案No任务3.1 凸轮机构的认识一、复习10分钟复习上次课学习内容二、教师导课与课程学习:(1)学习提示,教师介绍本任务的学习内容。

15分钟本项目以直动从动件的盘形凸轮机构为例,在从动件等速运动、等加速等减速运动、余弦加速度运动(简谐运动)规律条件下,分析了凸轮机构中存在的柔性冲击与刚性冲击。

教师介绍本任务的学习内容:凸轮机构的分类;常用术语;从动件的运动规律;凸轮机构的结构形式;常用材料及热处理(2)分小组学习: 40分钟3.1.1常用设备中的凸轮机构1. 凸轮机构的组成如图所示的凸轮机构是由凸轮、从动件和机架等三个基本构件组成的机构。

2.凸轮机构应用实例自动钻床进给机构、冲床凸轮机构等。

3.1.2凸轮机构的分类凸轮机构的类型很多,按凸轮和从动件的形状及其运动形式的不同,凸轮机构的分类方法有以下几种:1.按凸轮形状分类(1)盘形凸轮(2)移动凸轮。

(3)圆柱凸轮2.按从动件形式分类(1)尖顶从动件(2)滚子从动件(3)平底从动件从动件的结构形式3.按从动件的运动形式分类学生发言汇报、记录学习笔记学生发言汇报并记录学习笔记阅读教材和PPT、分组讨论、撰写发言提纲、学生发言汇报,课,记录学习笔记No(1)直动从动件直动从动件指相对于机架作直线往复移动的从动件,如图3.1.1中所示。

直动从动件又分为对心直动从动件和偏置直动从动件。

(2)摆动从动件:绕某一固定转动中心摆动的从动件。

4.按凸轮与从动件的锁合方式分类 (1)力锁合利用从动件的重力、弹簧力或其他外力使从动件与凸轮轮廓保持接触,(2)形锁合利用从动件和凸轮特殊的几何形状来维持接触,例如圆柱凸轮机构是利用滚子与凸轮凹槽两侧面的配合来实现形锁合。

3.1.3凸轮机构的常用术语如下:1.凸轮基圆与基圆半径b r2.凸轮的转角δ凸轮相对于某一位置转过的角度,称为凸轮转角δ。

具体包括推程运动角0δ、远停程运动角S δ回程运动角0′δ和近停程运动角Sδ'。

凸轮机构图解法[整理版]

凸轮机构图解法[整理版]

滚子从动件凸轮机构设计当根据使用场合和工作要求选定了凸轮机构的类型和从动件的运动规律后,即可根据选定的基圆半径着手进行凸轮轮廓曲线的设计。

凸轮廓线的设计方法有图解法和解析法,其依据的基本原理相同。

凸轮机构工作时,凸轮和从动件都在运动,为了在图纸上绘制出凸轮的轮廓曲线,可采用反转法。

下面以图示的对心尖端移动从动件盘形凸轮机构为例来说明其原理。

从图中可以看出:凸轮转动时,凸轮机构的真实运动情况:凸轮以等角速度ω绕轴O 逆时针转动,推动从动件在导路中上、下往复移动。

当从动件处于最低位置时,凸轮轮廓曲线与从动件在A点接触,当凸轮转过φ1角时,凸轮的向径OA将转到OA´的位置上,而凸轮轮廓将转到图中兰色虚线所示的位置。

这时从动件尖端从最低位置A上升到B´,上升的距离s1=AB´。

采用反转法,凸轮机构的运动情况:现在设想凸轮固定不动,而让从动件连同导路一起绕O点以角速度(-ω)转过φ1角,此时从动件将一方面随导路一起以角速度(-ω)转动,同时又在导路中作相对移动,运动到图中粉红色虚线所示的位置。

此时从动件向上移动的距离与前相同。

此时从动件尖端所占据的位置 B 一定是凸轮轮廓曲线上的一点。

若继续反转从动件,可得凸轮轮廓曲线上的其它点。

由于这种方法是假定凸轮固定不动而使从动件连同导路一起反转,故称反转法(或运动倒置法)。

凸轮机构的形式多种多样,反转法原理适用于各种凸轮轮廓曲线的设计。

一、直动从动件盘形凸轮廓线的设计(1)尖端从动件以一偏置移动尖端从动件盘形凸轮机构为例。

设已知凸轮的基圆半径为rb,从动件轴线偏于凸轮轴心的左侧,偏距为e,凸轮以等角速度ω顺时针方向转动,从动件的位移曲线如图(b)所示,试设计凸轮的轮廓曲线。

依据反转法原理,具体设计步骤如下:1)选取适当的比例尺,作出从动件的位移线图。

将位移曲线的横坐标分成若干等份,得分点1,2, (12)2)选取同样的比例尺,以O 为圆心,rb为半径作基圆,并根据从动件的偏置方向画出从动件的起始位置线,该位置线与基圆的交点B0,便是从动件尖端的初始位置。

凸轮机构基本参数的设计

凸轮机构基本参数的设计

凸轮机构基本参数的设计前节所先容的几何法和解析法设计凸轮轮廓曲线,其基圆半径r0、直动从动件的偏距e或摆动从动件与凸轮的中心距a、滚子半径rT等基本参数都是预先给定的。

本节将从凸轮机构的传动效率、运动是否失真、结构是否紧凑等方面讨论上述参数的确定方法。

1 凸轮机构的压力角和自锁图示为偏置尖底直动从动件盘形凸轮机构在推程的一个位置。

Q为从动件上作用的载荷(包括工作阻力、重力、弹簧力和惯性力)。

当不考虑摩擦时,凸轮作用于从动件的驱动力F是沿法线方向传递的。

此力可分解为沿从动件运动方向的有用分力F'和使从动件紧压导路的有害分力F''。

驱动力F与有用分力F'之间的夹角a(或接触点法线与从动件上力作用点速度方向所夹的锐角)称为凸轮机构在图示位置时的压力角。

显然,压力角是衡量有用分力F'与有害分力F''之比的重要参数。

压力角a愈大,有害分力F''愈大,由F''引起的导路中的摩擦阻力也愈大,故凸轮推动从动件所需的驱动力也就愈大。

当a增大到某一数值时,因F''而引起的摩擦阻力将会超过有用分力F',这时无论凸轮给从动件的驱动力多大,都不能推动从动件,这种现象称为机构出现自锁。

机构开始出现自锁的压力角alim称为极限压力角,它的数值与支承间的跨距l2、悬臂长度l1、接触面间的摩擦系数和润滑条件等有关。

实践说明,当a增大到接近alim时,即使尚未发生自锁,也会导致驱动力急剧增大,轮廓严重磨损、效率迅速降低。

因此,实际设计中规定了压力角的许用值[a]。

对摆动从动件,通常取[a]=40~50;对直动从动件通常取[a]=30~40。

滚子接触、润滑良好和支承有较好刚性时取数据的上限;否则取下限。

对于力锁合式凸轮机构,其从动件的回程是由弹簧等外力驱动的,而不是由凸轮驱动的,所以不会出现自锁。

因此,力锁合式凸轮机构的回程压力角可以很大,其许用值可取[a]=70~80。

第6章 凸轮机构 (教案)

第6章  凸轮机构 (教案)

第6章 凸轮机构1.教学目标(1)了解凸轮机构的分类及应用;(2)了解推杆常用运动规律的选择原则;(3)掌握在确定凸轮机构的基本尺寸时应考虑的主要问题;(4)能根据选定的凸轮类型和推杆运动规律设计凸轮的轮廓曲线。

2.教学重点和难点(1)推杆常用运动规律特点及选择原则;(2)盘形凸轮机构凸轮轮廓曲线的设计;(3)凸轮基圆半径与压力角及自锁的关系。

难点:“反转法原理”与压力角的概念。

3.讲授方法多媒体课件4.讲授时数8学时6.1 凸轮机构的应用及分类6.1.1凸轮机构的应用凸轮机构是由凸轮、从动件、机架以及附属装置组成的一种高副机构。

其中凸轮是一个具有曲线轮廓的构件,通常作连续的等速转动、摆动或移动。

从动件在凸轮轮廓的控制下,按预定的运动规律作往复移动或摆动。

在各种机器中,为了实现各种复杂的运动要求,广泛地使用着凸轮机构。

下面我们先看两个凸轮使用的实例。

图6.1所示为内燃机的配气凸轮机构,凸轮1作等速回转,其轮廓将迫使推杆2作往复摆动,从而使气门3开启和关闭(关闭时借助于弹簧4的作用来实现的),以控制可燃物质进入气缸或废气的排出。

图6.2所示为自动机床中用来控制刀具进给运动的凸轮机构。

刀具的一个进给运动循环包括:1)刀具以较快的速度接近工件;2)刀具等速前进来切削工件;3)完成切削动作后,刀具快速退回;4)刀具复位后停留一段时间等待更换工件等动作。

然后重复上述运动循环。

这样一个复杂的运动规律是由一个作等速回转运动的圆柱凸轮通过摆动从动件来控制实现的。

其运动规律完全取决于凸轮凹槽曲线形状。

由上述例子可以看出,从动件的运动规律是由凸轮轮廓曲线决定的,只要凸轮轮廓设计得当,就可以使从动件实现任意给定的运动规律。

同时,凸轮机构的从动件是在凸轮控制下,按预定的运动规律运动的。

这种机构具有结构简单、运动可靠等优点。

但是,由于是高副机构接触应力较大,易于磨损,因此,多用于小载荷的控制或调节机构中。

6.1.2 凸轮机构的分类根据凸轮及从动件的形状和运动形式的不同,凸轮机构的分类方法有以下四种:1.按凸轮的形状分类(1)盘形凸轮:如图6.1所示,这种凸轮是一个具有变化向径的盘形构件,当他绕固定轴转动时,可推动从动件在垂直于凸轮轴的平面内运动。

第6章凸轮--习题及答案(全)

第6章凸轮--习题及答案(全)
B’点坐标分别为:
− sin ϕ ⎤ ⎡ x ' ⎤ ⎢ ⎥ cos ϕ ⎥ ⎦ ⎣ y '⎦
⎡ x ' ⎤ ⎡ a − l cos(ψ 0 + ψ ) ⎤ ⎥ ⎢ y '⎥ = ⎢l sin(ψ + ψ ) ⎣ ⎦ 0 ⎣ ⎦ 对于推摆式,图 a) , ⎡ x ' ⎤ ⎡ a − l cos(ψ 0 + ψ ) ⎤ ⎢ y '⎥ = ⎢ −l sin(ψ + ψ ) ⎥ ⎣ ⎦ ⎣ 0 ⎦
o
解:根据题意,做出从动件的位移曲线,如图所示。 其中, µ s = 0.0005m/mm , µϕ = 5.7 /mm
o
凸轮一转所需时间
t = 4.5s
凸轮角速度
ω = 360o /4.5=80deg/s=1.396rad/s
计算 B、C、D、E 点的凸轮转角,B 点处的转角 ϕ B = 360 ×
(2)回程的位移方程式为
⎧ ⎡ ⎛ 2π ⎞ ⎤ T 1 sin ⎜ ' T ⎟ ⎥ Φ 0 + Φ s ≤ ϕ ≤ 360o ⎪ψ = ψ max ⋅ ⎢1 − ' + ⎨ ⎝ Φ0 ⎠⎦ ⎣ Φ 0 2π ⎪ T = ϕ − ( Φ0 + Φs ) ⎩
代入数值得:
⎡ ϕ − 240o 1 ⎤ ⎛ 360o 360o o⎞ ψ = 30 × ⎢1 − + sin ϕ − × 240 ⎥ ⎜ ⎟ o 120o 2π 120o ⎝ 120 ⎠⎦ ⎣ ϕ − 240o 30o = 30o − + sin 3ϕ 240o ≤ ϕ ≤ 360o 4 2π
o
o
r0 =
h = 14.89mm ϕCD tgα max
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

sin1i xB1
c os1i
y
B1
一般方法:
1. 建立坐标系。一般将坐标系的原点取在凸轮 的转动中心上,坐标轴的选取以比较容易地写 出矢量的坐标表达式为原则;
2. 将从动件处于运动过程中的任一位置,写出 从凸轮转动中心到从动件尖底的矢量的坐标;
3. 将矢量沿与凸轮转动方向相反的方向转动 一个对应凸轮的转角,得到新矢量,并利用平 面矢量旋转矩阵得到新矢量的表达式,此式便 为凸轮的廓线方程。
cos(
)
yB'
xC
xB
10
yC yB 10
dyB d
(dyB d )2 (dxB d )2
dxB
d
(dyB d )2 (dxB d )2
B
x
y
30
B' S
尖底从动件 平底从动件
滚子从动件
第六章 凸轮机构的运动设计
例题
例1:尖顶移动从动件盘型凸轮机构
ห้องสมุดไป่ตู้
已知:的转向,ro, e,s=s(δ) 求解:凸轮轮廓曲线上点的坐标值或作出凸轮的轮廓曲线
-
(1)取定xoy坐标,x或y轴平
行于导路线,且使初始位置在
第一象限;
y
B1

(2)写出点B1的坐标;
r0
B0
B
xB1, yB1 T e, (s0 s)T
O e
x
s0 r02 e2
注意:δ逆时针为正。
(3)写出平面旋转矩阵 R ;
-
R
cos( sin(
) )
sin( ) cos
为自动生产线上设计一个凸轮机构。设计要 求将工件移动H=50mm,用时2.0 秒,然后, 迅速返回,用时1.5秒,最后,停留0.75秒等 待下一工件送进。依此循环。
H
工件
工件传送带
Ti T0 T0' Ts' 2 1.5 0.75 4.25(s)
2 2 1.478(rad / s)
δ=δ0时,S=h,v=0,a=0 取n=5时,得
C0=0,C1=0,C2=0,C3=10h/δ03, C4=-15h/δ04,C5=6h/δ05
s h[10( )3 15( )4 6( )5]
0
0
0
其它几种常用的从动件的运动规律
从动件常用运动规律的比较和选用
一般以机构中的冲击情况、从动 件的最大速度和最大加速度三个方面 对各种运动规律特性进行比较。

BL
0
O2
O1
a
x
(4)写出凸轮轮廓上点B的坐标
xB yB
cos sin
y B1
B0

(1)取定xoy坐标,x或y轴在O1O2 线上,且使初始位置在第一象限;
ro
BL
0
O2
O1 D a
x
(2)写出点B1的坐标;
xB1, yB1 T a Lcos(0 ),Lsin(0 )T
(3)写出平面旋转矩阵 R ;y B1
R
cos sin
sin
cos
B0 ro
Ti 4.25
0 T0 1.478 2 2.958(rad ) 169.366 S 0 0' T0' 1.4781.5 2.217(rad ) 127.025 S' 2 2.958 2.217 1.108(rad ) 63.609
选择运动规律: 推程:正弦加速度运动规律 回程:等速运动规律
线图之间的关系
v ds ds dt d
2
a
dv dt
dv
d
2
ds
d 2
运动线图
从动件推程的运动规律为多项式运动规律
S C0 C1 C22 ..... Cnn
待定系数C0,C1,…,Cn可利用从动件在某些 位置的位移、速度和加速度等边界条件来确定。
可以设立六个边界条件:
δ=0时,S=0,v=0,a=0,
S (
)
h( 0
)
1
2
2
sin(
0
)
50(
) 2.958
1
2
sin( 22.958)
0 2.958
S (
)
h1
(
2.958)
0'
501
(
2.958) 2.217
2.958 5.175
S( ) 0 5.175 6.283
选择凸轮机构的结构和基本尺寸: 从动件:直动、滚子 凸轮:盘形
a rr
滚子失真
滚子从动件凸轮廓线出现失真
无论从动件属于哪一种类型,凸轮 的轮廓曲线都不能出现尖点和失真现象, 平底从动件凸轮廓线不能出现内凹的现 象。
增大凸轮的基圆半径是解决凸轮轮 廓变尖、失真或内凹等问题的措施之一, 滚子半径也是一个值得认真选择的结构 尺寸 。
平底失真和改进
机构设计赏析 凸轮机构的设计
从动件运动规律的选用通常是由 凸轮的应用场合和具体的加工条件确 定的。
运动规律的组合
6.3凸轮轮廓曲线的设计
凸轮机构的基圆及基圆半径
图解
矢量旋转方程(绕坐标原点)
viy v1y
i
vix
1
v1x
1i
xB1 yB1
e
r02 e2 S( )
xB yB
c os1i
s
in
1i
cos(
)
sin
sin
cos
y
B1
(4)写出凸轮轮廓上点B的坐标。

xB yB
cos sin
sin xB1
c
os
yB1
rb O
B0
B
x e s0 rb2 e2
例2:尖顶摆动从动件盘型凸轮机构
已知:的转向,r0 ,中心距lO1O2=a,摆杆长L , ( )
求解:凸轮轮廓曲线上点的坐标值或作出凸轮的轮廓曲线
注意B1的x坐标为平底直动
图解
OP V2 ds
1
d
滚子从动件
滚子包络
xC
xB
rr
yC yB rr
dyB d
(dyB d)2 (dxB d)2 dxB d
(dyB d)2 (dxB d)2
a rr
有尖点的凸 轮极易磨损、很 快就不能正常工 作了
变尖
平底失真
平底从动件凸轮廓线出现失真
第6章 凸轮机构的运动设计
6.1 凸轮机构的 组成及其应用 凸轮机构主
要由凸轮、从动 件和机架组成
凸轮应用
凸轮、从动件类型选择 从动件运动规律的确定 凸轮基本尺寸 凸轮轮廓曲线的确定
盘形凸轮
移动凸轮
圆柱凸轮
摆动从动件
平底从动件
直动凹槽
等径
等宽
共轭
重力
6.2凸轮机构从动件运动规律的设计
运动线图
凸轮机构:对心直动滚子盘形凸轮机构,凸轮逆 时针匀速转动,初选基圆和滚子半径(可以用9.1 节方法确定) r0 30mm, rr 10mm
B
x
y
30
B' S
xB' yB'
r0
0 S
(
)
30
0 S
(
)
求作凸轮廓线:
xB yB
cos(
sin(
) )
sin( ) xB'
相关文档
最新文档