七年级数学上册1-2-4绝对值教案新人教版

合集下载

七年级数学上册 1.2.4 绝对值教案 (新版)新人教版

七年级数学上册 1.2.4 绝对值教案 (新版)新人教版
学生活动
教师活动
设计意图
一、激情导入(3分钟)
两辆汽车从同一处O出发, 分别向东、西方向行驶10千米,第一辆沿公路向东行驶了10千米,第二辆向西行驶了10千米.为了表示行驶的方向(规定向东为正)和所在位置,分别记作10千米和-10千米.这样, 利用有理数就可以明确表示每辆汽车在公路上的位置了,如图所示.
培养学生总结归纳的能力
七、作业布置
1、教材14页习题1.2第5、6题
2、练习册9-12页
教学反思
此资源为word格式,您下载后可以自由编辑,让智慧点亮人生,用爱心播种未来。感谢您的选用。
独立完成
出示探究,提出问题.
订正结果
培养学生自主学习能力
四、小组合作(15分钟)1、结合上面口答结果,请你观察原数和所得结果 之间的关系,你有哪些发现?
2、我们用a表示任意一个有理数,上述式子可以表示为?
3、出示某一天我国5个城市的最低气温,比较大小.
4、思考正数、0、负数的大小如何比较?总结方法.
三、自主学习(10分钟)
( 1)什么叫做绝对值?怎么用语言表达?其关键词是什么?
(2)绝对值用符号怎样 表示?
(3 )绝对值里面的数都可以是哪些数?
归纳:绝对值:数 轴上表示数a 的点到原点的距离,叫做数a的绝对值。记作:|a|。a可以是正 数,可以是负数,也可以是0。
及时巩固(见课件)
学生独立思考,尝试回答问题.
(1)它们的行驶路线相同吗?
(2)它们的行驶路程相等吗引出本节内容。
二、学习目标(2 分钟)
1、 知道绝对值的意 义,会求一个数的绝对值;
2、知 道绝对值的非负性,会利用绝对值比较有理数的大小
齐读学习目标。

新人教版 数学 七年级数学上册 1.2.4 绝对值教案1

新人教版 数学 七年级数学上册 1.2.4 绝对值教案1

绝对值(第一课时)教学目标:1、知识目标:①能根据一个数的绝对值表示“距离”,初步理解绝对值的概念,能求一个数的绝对值.②通过应用绝对值解决实际问题,体会绝对值的意义和作用.2、过程与方法目标:经历绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力3、知识与情感目标:①通过解释绝对值的几何意义,渗透数形结合的思想.②体验运用直观知识解决数学问题的成功.教学重点:给出一个数,会求它的绝对值.教学难点:绝对值的几何意义、代数定义的导出.教学过程:一 温故互查(二人小组完成)1.复述相反数的定义.2.如何求一个数的相反数?3.先画一个数轴,并在数轴上分别表示下列各数:3,-3,0,521,-521. 这些数有什么关系?它们到原点的距离分别是多少?二 设问导读阅读教材P 1211 完成下列各题:1.绝对值的定义:一般地在数轴上___________________叫做数a 的绝对值.记作_________.2.在数轴上,3与原点的距离是________,所以3的绝对值是_________,记作_________,-3与原点的距离是________,所以-3的绝对值是_________,记作_________;+521与原点的距离是________,所以+521的绝对值是_________,记作_________;-521与原点的距离是________,所以-521的绝对值是_________,记作_________;可以得出:3和-3与原点的距离是________,所以3和-3的绝对值是_________,记作∣_________∣=∣_________∣; +521和-521与原点的距离是________,所以+521和-521的绝对值是_________,记作∣_________∣=∣_________∣.结论:互为相反数的两个数的绝对值____________________.3.由绝对值的定义你发现什么?(1)正数的绝对值是_____________;(2)负数的绝对值是_____________;(3)0的绝对值是_______________;4.当a 是正数时,∣a ∣=__________;当a 是负数数时,∣a ∣=__________;当a 是0时,∣a ∣=__________;三 自我检测1.求下列各数的绝对值:-23,+32,0,-15.4.2.(1)绝对值等于2.3的数是______.(2)∣-(+1)∣=______.(3)∣a ∣=5,则a=______.四 巩固训练1.判断:(1)绝对值最小的数是0( )(2)一个数的绝对值一定是正数( )(3)一个数的绝对值不可能是负数( )(4)互为相反数的两个数,它们的绝对值一定相等( )(5)一个数的绝对值越大,表示它的点在数轴上离原点越近() 2.任何一个有理数的绝对值一定( )0 C3.绝对值小于3的正数有( )4.简化;-∣-5∣=________;∣-(-5)∣=________;∣-(+21)∣=________; 5.在数轴上表示下列各数,并求出它们的绝对值: -121,-3,0,5,-6.5. 6.有没有一个数的绝对值等于-2?为什么?你得到的结论是:五 拓展训练1.(1)若∣a ∣=a ,则a 与0的大小关系是a___0;(2)若∣a ∣=-a ,则a 与0的大小关系是a___0.∣x-2∣+∣y+2∣=0,求x ,y 的值.3.正式排球比赛对所用排球的质量有严格的规定,现检查5个排球的质量检测结果如下(用正数记超过规定质量的克数,用负数记不足规定质量的克数);请指出哪个排球的质量好一些,并用绝对值的知识加以说明.六、教学反思。

人教版七年级数学上册1.2.4《绝对值》教学设计

人教版七年级数学上册1.2.4《绝对值》教学设计

人教版七年级数学上册1.2.4《绝对值》教学设计一. 教材分析绝对值是初中数学中的一个重要概念,它在解决实际问题和进一步学习数学中起着关键的作用。

人教版七年级数学上册1.2.4节主要介绍绝对值的概念、性质及其应用。

本节内容通过具体的例子让学生理解绝对值的含义,并通过练习让学生掌握绝对值的性质和运用。

二. 学情分析七年级的学生已经具备了一定的抽象思维能力,但对于绝对值这一概念可能还比较陌生。

因此,在教学过程中,需要通过具体的例子和实际应用,让学生逐步理解绝对值的含义,并能够运用绝对值解决实际问题。

三. 教学目标1.了解绝对值的概念,掌握绝对值的性质。

2.能够运用绝对值解决实际问题。

3.培养学生的抽象思维能力和解决问题的能力。

四. 教学重难点1.绝对值的概念和性质。

2.运用绝对值解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过具体的例子和实际应用,引导学生主动探索、讨论和总结绝对值的含义和性质。

同时,通过小组合作,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.准备相关的例子和实际应用问题。

2.准备课件和教学素材。

七. 教学过程1.导入(5分钟)通过一个实际问题引出绝对值的概念,例如:“小明的家距离学校3公里,请问小明从学校走到家的距离是多少?”让学生思考并回答,从而引出绝对值的概念。

2.呈现(10分钟)通过PPT展示绝对值的定义和性质,让学生直观地理解绝对值的概念。

同时,给出一些例子,让学生观察和总结绝对值的性质。

3.操练(10分钟)让学生分组讨论,每组选取一个例子,运用绝对值的性质解决问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生独立完成,检验学生对绝对值概念和性质的掌握程度。

同时,教师选取部分学生的作业进行点评和讲解。

5.拓展(10分钟)出示一些综合性的实际问题,让学生运用绝对值的知识解决问题。

例如:“一辆汽车从A地出发,以60公里/小时的速度向B地行驶,行驶了3小时后,汽车距离A地有多远?”让学生分组讨论并解答。

七年级数学上册 1.2.4 绝对值教案 (新版)新人教版

七年级数学上册 1.2.4 绝对值教案 (新版)新人教版
︱+8.2︱=;
(2)︱-3︱=,︱-0.2︱=,
︱-8.2︱=;
(3)︱0︱=
思考:你能从中发现什么规律?(小组讨论,合作学习).
引导学生得出:
性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
如果用字母a表示有理数,上述性质可表述为:
当a是正数时,︱a︱=a;
当a是负数时,︱a︱=-a;
教师指出:A、B两点到原点O的距离,就是我们这节课要学习的A、B两点所表示的有理数的绝对值。
因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.
合作交流
探究新知
数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关.
绝对值的概念及有理数的大小比较
教学难点
两个负数大小的比较
教学过程(师生活动)
设计理念
设置情境
引入课题
问题1.检查5个排球的重量(单位:克),其中超过标准重量的数量记为正数,不足的数量记为负数,结果如下:
一3.5,+0.7,一2.5,一0.6.
其中哪个球的重量最接近标准?
问题2:两辆汽车从同一处O出发,分别向东、向西方向行驶10千米,到达A、B两处(如图),它们行驶的路线相同吗?它们行驶路程的远近(线段OA、OB的长度)相同吗?
当a=0时,︱a︱=0。
巩固练习:
教科书第12页练习.
教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则
对学生的分析、判断能力有较高要பைடு நூலகம்,要注意思考的周密性,要让学生体会出不同说法之间的区别.

七年级数学上册1.2.4绝对值教学设计1新版新人教版

七年级数学上册1.2.4绝对值教学设计1新版新人教版

绝对值【教学习目标】一、知识与技术(1)借助数轴初步明白得绝对值的概念,能求一个数的绝对值.(2)通过应用绝对值解决实际问题,体会绝对值的意义和作用.二、进程与方式通过观看实例及绝对值的几何意义,探讨一个数的绝对值与那个数之间的关系,培育学生语言描述能力.三、情感态度与价值观培育学生踊跃参与探讨活动,体会数形结合的方式.【教学方式】教学法、谈话法、讨论法。

【教学重点】正确明白得绝对值的概念,能求一个数的绝对值.【教学难点】正确明白得绝对值的几何意义和代数意义.【课前预备】教师预备教学用课件。

【教学进程】一、温习提问,新课引入1.什么叫互为相反数?2.在数轴上表示互为相反数的两个点和原点的位置关系如何?二、新授在一些量的计算中,有时并非注意其方向,例如,为了计算汽车行驶所耗的油量,起作用的是汽车行驶的路程而不是行驶的方向.1.观看讲义第11页图1.2-6,回答:(1)两辆汽车行驶的线路相同吗?(2)它们行驶路程的远近相同吗?• •这两辆车行驶的线路不同(方向相反),•但行驶的路程的远近相同,•都是10km.讲义图1.2-6中表示-10的点B和表示10的点A离开原点的距离都是10,•咱们就把那个距离10叫做数-10、10的绝对值.一样地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作│a│.那个地址的数a能够是正数、负数和0.例如上述的10和-10的绝对值记作│10│=10,│-10│=10,•一样在数轴上表示+6和-6的两个点,离开原点的距离都是6,即6和-6的绝对值都是6,记作│6│=6,•│-6│=6.数轴上表示数0的点与原点的距离是0,因此│0│=0.2.试一试:(1)│+2│=______,│15│=_____,│+│=________.(2)│0│=_______.(3)│-12│=_______,││=_______,│-3217│=_______.咱们用a表示任意一个有理数,上述式子能够表示为:①当a是正数时,│a│=_______;②当a是负数时,│a│=_______;③当a=0时,│a│=_______.以上先让学生填空,然后让学生给a•取一些具体数值查验所填写的结果是不是正确.教师问:(1)任何一个有理数都有绝对值吗?一个数的绝对值有几个?(2)有无一个数的绝对值等于-2?任何一个数的绝对值必然是如何的数?(3)绝对值等于2的数有几个?它们是什么?归纳:①任何有理数都有唯一的绝对值,任意一个数的绝对值老是正数或0,•不可能是负数,即对任意有理数a,总有│a│≥0.②两个互为相反数的绝对值相等,即│a│=│-a│.③因为0的绝对值是0,而0的相反数是它本身0,因此可知绝对值等于它本身的数是正数或零,绝对值等于它的相反数的数是负数或零.三、巩固练习讲义第11页练习一、2题.四、课堂小结明白得绝对值的几何意义和代数意义.从几何意义可知,一个数的绝对值是表示该数的点与原点的距离,因为距离老是正数和零,因此有理数的绝对值不可能是负数,从绝对值的代数概念也可进一步明白得这一点.引入绝对值概念后,有理数能够明白得为由性质符号和绝对值两部份组成的,如-5确实是由“-”号和它的绝对值5两部份组成.五、作业布置讲义第14页习题1.2第4、7、10题.六、板书设计:绝对值1①任何有理数都有唯一的绝对值,任意一个数的绝对值老是正数或0,•不可能是负数,即对任意有理数a,总有│a│≥0.②两个互为相反数的绝对值相等,即│a│=│-a│.③0的绝对值是0,0的相反数是它本身0.七、课后反思。

新人教版七年级数学上册 1.2.4《绝对值》(第1课时)教学设计2

新人教版七年级数学上册 1.2.4《绝对值》(第1课时)教学设计2

新人教版七年级数学上册 1.2.4《绝对值》(第1课时)教学设计2一. 教材分析新人教版七年级数学上册 1.2.4《绝对值》(第1课时)是学生在学习了有理数的基础上进一步对实数进行分类和理解。

本节课主要让学生理解绝对值的概念,掌握绝对值的性质,并能够运用绝对值解决一些简单的问题。

二. 学情分析学生在七年级上学期已经学习了有理数,对正数、负数、整数、分数等概念有了一定的理解。

但是,对于绝对值这个概念,他们可能是初次接触,因此需要通过具体的例子和练习来逐步理解和掌握。

三. 教学目标1.理解绝对值的概念,掌握绝对值的性质。

2.能够运用绝对值解决一些简单的问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.绝对值的概念和性质。

2.如何运用绝对值解决实际问题。

五. 教学方法采用问题驱动法,通过具体的例子和练习,引导学生逐步理解和掌握绝对值的概念和性质,再通过解决实际问题,巩固所学知识。

六. 教学准备1.PPT课件2.教学视频或图片七. 教学过程1.导入(5分钟)通过一个简单的例子来引入绝对值的概念。

例如,假设有一辆汽车从原点出发,向正方向行驶了5公里,再向负方向行驶了3公里,问汽车现在距离原点多远?引导学生思考并解答这个问题。

2.呈现(15分钟)通过PPT课件,呈现绝对值的定义和性质。

解释绝对值表示一个数与原点的距离,不考虑数的正负号。

引导学生理解和记忆绝对值的性质。

3.操练(15分钟)让学生进行一些有关绝对值的练习题,包括选择题、填空题和解答题。

题目要求逐步增加难度,让学生在实践中掌握绝对值的概念和性质。

4.巩固(10分钟)通过一些实际问题,让学生运用绝对值的知识解决问题。

例如,一个学生在数轴上表示两个数,一个在原点左边,一个在原点右边,问这两个数相加的和是否为正数?引导学生思考并解答这个问题。

5.拓展(10分钟)引导学生思考绝对值在其他数学领域的应用,例如在几何中的线段长度、在物理中的位移等。

人教版数学七年级上册1.2.4《绝对值(第1课时)》教学设计1

人教版数学七年级上册1.2.4《绝对值(第1课时)》教学设计1

人教版数学七年级上册1.2.4《绝对值(第1课时)》教学设计1一. 教材分析《人教版数学七年级上册》第1.2.4节“绝对值(第1课时)”是学生在初中阶段首次接触绝对值概念。

绝对值是数学中的一个基本概念,它表示一个数在数轴上所对应的点与原点的距离。

本节课的内容对于学生理解数的大小关系、解方程、不等式等方面具有重要意义。

二. 学情分析七年级的学生已经具备了一定的数学基础,如实数、有理数等概念。

但他们对绝对值的概念可能还比较陌生,需要通过具体的情境和实例来理解和掌握。

同时,学生可能对数轴有一定的了解,但将绝对值与数轴联系起来可能还需要一些引导。

三. 教学目标1.让学生理解绝对值的概念,掌握绝对值的性质。

2.培养学生运用绝对值来描述和解决问题的能力。

3.引导学生通过数轴来理解绝对值,培养学生的数形结合思想。

四. 教学重难点1.重点:绝对值的概念和性质。

2.难点:绝对值在实际问题中的应用。

五. 教学方法1.情境教学法:通过具体情境引入绝对值的概念,让学生在实际情境中感受绝对值的意义。

2.数形结合法:利用数轴帮助学生理解绝对值,引导学生将绝对值与数轴相结合。

3.实例分析法:通过多个实例让学生掌握绝对值的性质,培养学生的运用能力。

六. 教学准备1.教学课件:制作课件,内容包括绝对值的概念、性质和应用实例等。

2.数轴教具:准备数轴教具,用于引导学生直观地理解绝对值。

3.练习题:准备一些有关绝对值的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用数轴教具,引导学生回顾数轴上的点与原点的关系。

例如,点A 在数轴上表示2,点B在数轴上表示-2,让学生观察点A和点B与原点的关系。

2.呈现(10分钟)介绍绝对值的概念:数轴上表示一个数的点到原点的距离叫做这个数的绝对值。

并用课件展示绝对值的定义和性质。

3.操练(10分钟)让学生在数轴上找出一些数的绝对值,并说明理由。

例如,找出-3、0、5的绝对值,并解释为什么它们的绝对值分别是3、0、5。

七年级数学上册1-2-4绝对值(第2课时)教案1新人教版

七年级数学上册1-2-4绝对值(第2课时)教案1新人教版
备注(教学目的、时间分配等)
(一)创设情境,导入新课
某一天我国5个城市的最低气温.广州(10℃),上海(0℃),北京(-10℃), 武汉(5℃),哈尔滨 (-20℃)比较这一天下列两个城市间最低气温的高低(填“高于”或“低于”):
广示上述5个城市最低气温的数表示在数轴上. 观察这5个数在数轴上的位置,你发现了什么?温度的高低与相应的数在数轴上的位置有什么关系?.
结合例1,请同学们观察数轴思考一下:正数 、零和负数三者的大小关系如何?正数大于零,负数小于零,正数大于负数.
那么,同号(同正或同负)的两数的大小 关系又如何呢?引导学生归纳得出:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.
(三)应用迁移,巩固提高
例2比较下列每对数的大小,并说明理由:(1)1与-10;(2)-0.001与0;
本题有几层含义,应分几步;
1.画数轴2.描点3.有序排列
4.不等号连接
教师提出问题
若学生有困难,则提示:求例1中同号(同正或同负)各数的绝对值,并比较它们的大小,然后说明它们的大小与它们的绝对值的大小有什么关系?
例2的讲解思路:(1)、(2)两题,要告诉学生,比较两个有理数的大小时可直接运用法则得出;对于第(3)题.先复习小学时所学异分母分数的大小比较,然后指出:要比较的是两个负数大小,应先比较什么? (他们的绝对值);这两个数的绝对值分别等于多少?指定一个学生边回答边 板书(教师在板书时要规范地书写表述过程,并把推理依据注在结论后面的括号内.)
除了0的绝对值是0外.其余有理数的绝对值都是正数,因此绝对值最小的有理数是0,负整数﹣1,﹣2,﹣3„,的绝对值分别是1,2,3„因此绝对值最小的负整数是﹣1.
20分钟
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值
教学目的和要求:
1.使学生初步理解绝对值的概念。

2.明确绝对值的代数定义和几何意义;会求一个已知数的绝对值;会在已知一个数的绝对值条件下求这个数。

3.培养学生用数形结合思想解决问题的能力,渗透分类讨论的数学思想。

教学重点和难点:
重点:让学生掌握求一个已知数的绝对值及正确理解绝对值的概念。

(绝对值的概念)
难点:对绝对值的几何意义、代数定义的导出、对“负数的绝对值是它的相反数”的理解。

(绝对值的几何意义)
教学工具和方法:
工具:应用投影仪,投影片。

方法:分层次教学,讲授、练习相结合。

(通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索)
教学过程:
一、复习引入:
1.在数轴上分别标出–5,3.5,0及它们的相反数所对应的点。

2.在数轴上找出与原点距离等于6的点。

3.相反数是怎样定义的?
引导学生从代数与几何两方面的特点出发回答相反数的定义。

从几何方面可以说在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数;从代数方面说只有符号不同的两个数互为相反数。

那么互为相反数的两个数有什么特征相同呢?由此引入新课,归纳出绝对值的定义。

二、讲授新课:
1.发现、总结绝对值的定义:
我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值( abso lute value )。

记作|a|。

例如,在数轴上表示数―6与表示数6的点与原点的距离都是6,所以―6和6的绝对值都是6,记作|―6|=|6|=6。

同样可知|―4|=4,|+1.7|=1.7。

2.(探索绝对值的性质:)
试一试:你能从中发现什么规律? 由绝对值的意义,我们可以知道:
(1)|+2|=,=,|+8.2|=; (2)|0|=;(3)|―3|=,|―0.2|=,|―8.2|=。

(学生独立完成,再对所得的规律进行小组交流讨论。


概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数(负数)的绝对值又有什么特点?
由学生分类讨论,归纳出数a的绝对值的一般规律:
1.一个正数的绝对值是它本身;
即:①若a>0,则|a|=a;
0的绝对值是0;
②若a=0,则|a|=0
3. 一个负数的绝对值是它的相反数。

③若a<0,则|a|=–a;
或写成:。

(3 把绝对值的代数定义用数学符号表示
①当a>0,则|a|=a;
②当a=0,则|a|=0
③当a<0,则|a|=–a;
或写成:。


4.绝对值的非负性:
由绝对值的定义可知:不论有理数a取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a|≥0。

5.例题;
例1:求下列各数的绝对值:,,―4.75,10.5。

解:=;=;|―4.75|=4.75;|10.5|=10.5。

例2:化简:(1); (2)。

解:(1) ; (2) 。

例3:计算:(1)|0.32|+|0.3|;(2)|–4.2|–|4.2|;(3)|–|–(–)。

分析:求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到。

在(3)中要注意区分绝对值符号与括号的不同含义。

解答:(1)0.62;(2)0;(3)。

(6 五分钟测试:
写出下列各数的相反数与绝对值:
6, —8,—3.9,—,100,0)
三、课堂小结:
1.对绝对值概念的理解可以从其几何意义和代数意义两方面考虑,从几何方面看,一个数a的绝对值就是数轴上表示数a的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。

2.求一个数的绝对值注意先判断这个数是正数还是负数。

(3 本节主要学习绝对值的概念,表示方法及其几何意义,并会求一个数的绝对值;
4 主要用到的思想方法是数形结合;)
四、课堂作业:课本:P11:1,2,3。

板书设计:。

相关文档
最新文档