初三中考二次函数专题复习

合集下载

中考数学复习《二次函数》专题训练-附带有参考答案

中考数学复习《二次函数》专题训练-附带有参考答案

中考数学复习《二次函数》专题训练-附带有参考答案一、选择题1.下列函数中,是二次函数的是()A.y=x2+1x B.y=12x(x-1) C.y=-2x-1 D.y=x(x2+1).2.抛物线y=(x−2)2−3的顶点坐标是()A.(2,−3)B.(−2,3)C.(2,3)D.(−2,−3)3.把抛物线y=5x2向左平移2个单位,再向上平移3个单位,得到的抛物线是()A.y=5(x−2)2+3B.y=5(x+2)2−3C.y=5(x+2)2+3D.y=5(x−2)2−34.函数y=ax2与y=﹣ax+b的图象可能是()A. B. C. D.5.函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3 B.k<3且k≠0 C.k≤3且k≠0 D.k≤36.若A(−5,y1),B(1,y2),C(2,y3)为二次函数y=x2+2x+m的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y1<y27.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①b>0;②当x>0,y随着x 的增大而增大;③(a+c)2﹣b2<0;④a+b≥m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个8.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时,平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为()A.21元B.22元C.23元D.24元二、填空题9.将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为10.若抛物线y=ax2+bx+c与x轴的两个交点坐标是(-1,0),(3,0),则此抛物线的对称轴是直线.11.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.12.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数解析式是y=60t-65t2,从飞机着陆至停下来共滑行米.13.已知如图:抛物线y=ax2+bx+c与直线y=kx+n相交于点A(−52,74)、B(0,3)两点,则关于x的不等式ax2+bx+c<kx+n的解集是三、解答题14.如图,在平面直角坐标系中,一次函数y1=kx−7的图象与二次函数y2=2x2+bx+c的图象交于A(1,−5)、B(3,t)两点.(1)求y1与y2的函数关系式;(2)直接写出当y1<y2时,x的取值范围;(3)点C为一次函数y1图象上一点,点C的横坐标为n,若将点C向右平移2个单位,再向上平移4个单位后刚好落在二次函数y2的图象上,求n的值.15.某品牌服装公司新设计了一款服装,其成本价为60(元/件).在大规模上市前,为了摸清款式受欢迎状况以及日销售量y(件)与销售价格x(元/件)之间的关系,进行了市场调查,部分信息如表:销售价格x(元/件)80 90 100 110日销售量y(件)240 220 200 180(1)若y与x之间满足一次函数关系,请直接写出函数的解析式(不用写自变量x的取值范围);(2)若该公司想每天获利8000元,并尽可能让利给顾客,则应如何定价?(3)为了帮助贫困山区的小朋友,公司决定每卖出一件服装向希望小学捐款10元,该公司应该如何定价,才能使每天获利最大?(利润用w表示)16.如图,抛物线y=−x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线:l:y=−x−1与y轴交于点C,与抛物线y=−x2+bx+c的另一个交点为D(5,−6),已知P点为抛物线y=−x2+bx+c上一动.点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的动点,以NC为一边且顶点为N,C,M,P的四边形是平行四边形,直接写出所有符合条件的M点坐标.17.如图是北京冬奥会举办前张家口某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=−18x2+32x+32近似表示滑雪场地上的一座小山坡,某滑雪爱好者小张从点O正上方A点滑出,滑出后沿一段抛物线C2:y=−14x2+bx+c 运动.(1)当小张滑到离A处的水平距离为8米时,其滑行高度为10米,求出b,c的值;(2)在(1)的条件下,当小张滑出后离的水平距离为多少米时,他滑行高度与小山坡的竖直距离为是5米?2(3)若小张滑行到坡顶正上方,且与坡顶距离不低于4米,求b的取值范围.18.如图,在平面直角坐标系中,抛物线y=ax2+bx−4与x轴交于A(4,0)、B(−3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D 为顶点的四边形面积为S,求S与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.参考答案 1.B 2.A 3.C 4.B 5.D 6.B 7.B 8.B9.y =(x −1)2−1 10.x =1 11.a <5 12.75013.x <−52或x >014.(1)解:把点A(1,−5)代入y 1=kx −7得−5=k −7 ∴y 1=2x −7;把点B(3,t)代入y 1=2x −7中,得t =−1 ∴A(1,−5)把点A 、B 分别代入y 2=2x 2+bx +c 中,得{−2=2+b +c−1=18+3b +c 解得{b =−6c =−1∴y 2=2x 2−6x −1; (2)x <1或x >3(3)解:∵点C 为一次函数y 1图象上一点,∴C(n ,2n −7)将点C 向右平移2个单位,再向上平移4个单位后得到点C ′(n +2,2n −3) 把C ′代入y 2=2x 2−6x −1,得2n −3=2(n +2)2−6(n +2)−1 解得n =±1 所以n 的值为1或-1 15.(1)y=-2x+400(2)解:由题意,得:(x −60)(−2x +400)=8000解得x 1=100,x 2=160 ∵公司尽可能多让利给顾客 ∴应定价100元(3)解:由题意,得w =(x −60−10)(−2x +400)=−2x 2+540x −28000 =−2(x −135)2+8450∵−2<0∴当x =135时,w 有最大值,最大值为8450. 答:当一件衣服定为135元时,才能使每天获利最大. 16.(1)解:∵直线l :y =−x −1过点A∴A(−1,0)又∵D(5,−6)将点A ,D 的坐标代入抛物线表达式可得:{−1−b +c =0−25+5b +c =−6 解得{b =3c =4.∴抛物线的解析式为:y =−x 2+3x +4. (2)解:如图设点P(x ,−x 2+3x +4) ∵PE ∥x 轴,PF ∥y 轴则E(x 2−3x −5,−x 2+3x +4),F(x ,−x −1) ∵点P 在直线l 上方的抛物线上∴−1<x <5∴PE =|x −(x 2−3x −5)|=−x 2+4x +5,PF =|−x 2+3x +4−(−x −1)|=−x 2+4x +5 ∴PE +PF =2(−x 2+4x +5)=−2(x −2)2+18. ∴当x =2时,PE +PF 取得最大值,最大值为18.(3)符合条件的M 点有三个:M 1(4,−5),M 2(2+√14,−3−√14), M 3(2−√14,−3+√14). 17.(1)解:由题意可知抛物线C 2:y=−14x 2+bx+c 过点(0, 4)和(8, 10) 将其代入得:{4=c10=−14×82+8b +c解得 ∴b=114,c=4(2)解:由(1)可得抛物线Cq 解析式为: y=−14x 2+114x+4设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为52米,依题意得: −14m 2+114m +4−(−18m 2+32m +32)=52解得: m 1=10,m 2=0(舍)故运动员运动的水平距离为10米时,运动员与小山坡的竖直距离为为52米. (3)解:∵抛物线C 2经过点(0, 4) ∴c=4抛物线C 1: y=−18x 2+32x +32=−18(x −6)2+6 当x=6时,运动员到达坡项 即−14×62+6b+4≥4+6. ∴b ≥15618.(1)解:把A(4,0)、B(−3,0)代入y =ax 2+bx −4中 得{16a +4b −4=09a −3b −4=0解得{a =13b =−13∴这条抛物线所对应的函数表达式为y =13x 2−13x −4. (2)解:当x =0时y =−4∴C(0,−4)当−3<m <0时S =S △ODC +S △OAC =12×4×(−m)+12×4×4=−2m +8当0<m <4时S =S △ODC +S △OAD =12×4×m +12×4×(−13m 2+13m +4)=−23m 2+83m +8. (3)解:n =52,n =2511,n =3011.。

(完整word版)九年级二次函数常考题型复习

(完整word版)九年级二次函数常考题型复习

九年级数学二次函数常考题型常考知识点总结:1、二次函数的看法:一般地,形如y ax2bx c 〔 a ,b,c 是常数,a 0〕的函数,叫做二次函数。

注:和一元二次方程近似,二次项系数 a 0 ,而b,c能够为零.二次函数的定义域是全体实数.2、二次函数 y ax2bx c的结构特点:⑴ 等号左侧是函数,右侧是关于自变量x 的二次式, x 的最高次数是2.⑵ a ,b ,c 是常数, a 是二次项系数, b 是一次项系数,c是常数项3、 y a x h2k 的性质:a 的符号张口方向极点坐标对称轴性质a0向上h,k X=h x h 时, y 随x的增大而增大;x h 时, y 随x 的增大而减小;x h 时, y 有最小值 k .a0向下h,k X=h x h 时, y 随x的增大而减小;x h 时, y 随x 的增大而增大;x h 时, y 有最大值 k .4、二次函数 y ax2bx c的性质:〔 1〕当a0时,抛物线张口向上,对称轴为xb ,极点坐标为 b ,4ac b2;当 x b时, y2a 2 a4a2a随 x 的增大而减小;当xb时, y 随x的增大而增大;当x b时, y 有最小值4ac b2.2a2a4a〔 2〕当a0时,抛物线张口向下,对称轴为xb ,极点坐标为 b ,4ac b2;当 x b时, y2a 2 a4a2a随 x 的增大而增大;当xb时, y 随x的增大而减小;当x b时, y 有最大值4ac b2。

2a2a4a5、二次函数剖析式确实定:依照条件确定二次函数剖析式,平时利用待定系数法.用待定系数法求二次函数的剖析式必定依照题目的特点,选择合适的形式,才能使解题简略.一般来说,有以下几种情况:(1〕抛物线上三点的坐标,一般采纳一般式;(2〕抛物线极点或对称轴或最大〔小〕值,一般采纳极点式;(3〕抛物线与 x 轴的两个交点的横坐标,一般采纳两根式;6、二次函数、二次三项式和一元二次方程之间的内在联系〔 a 0 时〕:0抛物线与x 轴有二次三项式的值可正、一元二次方程有两个不相等实根两个交点可零、可负0抛物线与x 轴只二次三项式的值为非负一元二次方程有两个相等的实数根有一个交点0抛物线与x 轴无二次三项式的值恒为正一元二次方程无实数根 .交点题型 :依照图像,判断 a 、 b 、c 的关系问题。

中考数学二次函数专题复习超强整理

中考数学二次函数专题复习超强整理

中考数学二次函数专题复习超强整理初三——二次函数归类复一、二次函数与面积面积的求法:1.公式法:S=1/2*底*高2.分割法/拼凑法1.如何表示各图中阴影部分的面积?插入图一至图六)2.抛物线y=-x^2-2x+3与x轴交于A、B(点A在B右侧),与y轴交于点C,D为抛物线的顶点,连接BD,CD。

1)求四边形BOCD的面积。

2)求△BCD的面积。

(提示:本题中的三角形没有横向或纵向的边,可以通过添加辅助线进行转化,把你想到的思路在图中画出来,并选择其中的一种写出详细的解答过程)3.已知抛物线y=(1/2)x^2-x-4与x轴交于A、C两点,与y 轴交于点B。

1)求抛物线的顶点M的坐标和对称轴;2)求四边形ABMC的面积.4.已二次函数y=x^2-2x-3与x轴交于A、B两点(A在B 的左边),与y轴交于点C,顶点为P。

1)结合图形,提出几个面积问题,并思考解法;2)求A、B、C、P的坐标,并求出一个刚刚提出的图形面积;3)在抛物线上(除点C外),是否存在点N,使得△NAB的面积=S△ABC,若存在,请写出点N的坐标;若不存在,请说明理由。

变式一:在抛物线的对称轴上是否存在点N,使得△NAB的面积=S△ABC,若存在直接写出N的坐标;若不存在,请说明理由。

变式二:在双曲线y=3/x上是否存在点N,使得△NAB 的面积=S△ABC,若存在直接写出N的坐标;若不存在,请说明理由。

5.抛物线y=-x^2-2x+3与x轴交于A、B(点A在B右侧),与y轴交于点C,若点E为第二象限抛物线上一动点,点E运动到什么位置时,△XXX的面积最大,并求出此时点E的坐标和△XXX的最大面积.模拟题训练】1.(2015•三亚三模)如图,直线y=-x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B、C和点A(-1,1).1)求B、C两点坐标;2)求该二次函数的关系式;二、二次函数与相似相似知识梳理】在平面直角坐标系中,二次函数常用待定系数法求解析式,解析式中的系数与函数的图像有关。

初三中考二次函数专题复习

初三中考二次函数专题复习

中考二次函数专题复习一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:2. 2y ax c =+的性质: 上加下减。

3.y a x h =-的性质: 左加右减。

4.y a x h k =-+的性质:1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”总结:3. 常数项c ⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k=-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ; 3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系 师生共同学习过程:知识梳理:练习:1.抛物线23(1)2y x =-+的对称轴是( ) A .1x =B .1x =-C . 2x =D .2x =-2.要得到二次函数222y x x =-+-的图象,需将2y x =-的图象( ). A .向左平移2个单位,再向下平移2个单位 B .向右平移2个单位,再向上平移2个单位 C .向左平移1个单位,再向上平移1个单位 D .向右平移1个单位,再向下平移1个单位 最新考题1.(2009年四川省内江市)抛物线3)2(2+-=x y 的顶点坐标是( ) A .(2,3) B .(-2,3) C .(2,-3) D .(-2,-3) 2.(2009年泸州)在平面直角坐标系中,将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为A .222-=x y B .222+=x yC .2)2(2-=x y D .2)2(2+=x y 知识点2:二次函数的图形与性质例1:如图1所示,二次函数y=ax 2+bx+c 的图象开口向上,图象经过点(-1,2)和(1,0)且与y 轴交于负半轴.0∆> 抛物线与x 轴有两个交点 二次三项式的值可正、可零、可负一元二次方程有两个不相等实根0∆= 抛物线与x 轴只有一个交点 二次三项式的值为非负一元二次方程有两个相等的实数根0∆<抛物线与x 轴无交点二次三项式的值恒为正一元二次方程无实数根.第(1)问:给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0,其中正确的结论的序号是 .第(2)问:给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1.其中正确的结论的序号是_______.例2:抛物线y=-x 2+(m -1)x+m 与y 轴交于(0,3)点,(1)求出m 的值并画出这条抛物线;(2)求它与x 轴的交点和抛物线顶点的坐标;(3)x 取什么值时,抛物线在x 轴上方?(4)x 取什么值时,y 的值随x 的增大而减小?思路点拨:由已知点(0,3)代入y=-x 2+(m -1)x+m 即可求得m 的值,即可知道二次函数解析式,并可画出图象,然后根据图象和二次函数性质可得(2)(3)(4). 解:(1)由题意将(0,3)代入解析式可得m=3, ∴ 抛物线为y=-x 2+2x+3. 图象(图2):(2)令y=0,则-x 2+2x+3=0,得x 1=-1,x 2=3; ∴ 抛物线与x 轴的交点为(-1,0),(3,0). ∵ y=-x 2+2x+3=-(x -1)2+4, ∴ 抛物线顶点坐标为(1,4);(3)由图象可知:当-1<x<3时,抛物线在x 轴上方;(4)由图象可知:当x>1时,y 的值随x 值的增大而减小. 练习:1.如图,直角坐标系中,两条抛物线有相同的对称轴,下列关系不正确...的是( ) A .h m =B .k n =C .k n >D .00h k >>,2.函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )最新考题1.(2009深圳)二次函数c bx ax y ++=2的图象如图所示,若点A (1,y 1)、B (2,y 2)是它图象上的两点,则y 1与y 2的大小关系是() A . 21y y < B .21y y = C .21y y > D .不能确定2.(2009北京)如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点,且∠ACD=45°,DF ⊥AB 于点F,EG ⊥AB 于点G,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是( )3.(2009年台州)已知二次函数c bx ax y ++=2的y 与x 的部分对应值如下表:x … 1- 0 1 3 … y … 3- 1 3 1 …A .抛物线开口向上B .抛物线与y 轴交于负半轴C .当x =4时,y >0D .方程02=++c bx ax 的正根在3与4之间 知识点3:二次函数的应用例1:如图,从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是29.8 4.9h t t =-,那么小球运动中的最大高度h =最大 .FG O A C DB C D 1111x o y y o x y o x xo y随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上(如图6所示),则6楼房子的价格为 元/平方米.思路点拨:观察函数图像得:图像关于x 4=对称, 当x 2y=2080=时,元.因为x=2到对称轴的距离 与x=6到对称轴的距离相等。

年九年级数学中考专题复习二次函数

年九年级数学中考专题复习二次函数

中考总复习12 二次函数1、定义:一般的,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做二次函数。

其中x是自变量,a、b、c分别是函数解析式的二次项系数、一次项系数、常数项。

2、二次函数的图象是一条抛物线。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

|a|越大,抛物线的开口越小;|a|越小,抛物线的开口越大。

3、二次函数y=ax2+bx+c与一元二次方程ax2+bx+c=0的联系:(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数值是0,因此x=x0是方程ax2+bx+c=0的一个根;(2)抛物线与x轴的交点和一元二次方程的根的关系1、通过对实际问题的分析,体会二次函数的意义。

2、会用描点法画出二次函数的图象,通过图象了解二次函数的性质。

3、会用配方法将数字系数的二次函数的表达式化为y=a (x -h )2+k 的形式,并能由此得到二次函数图象的顶点坐标,说出图象的开口方向,画出图象的对称轴,并能解决简单实际问题。

4、会利用二次函数的图象求一元二次方程的近似解。

1、二次函数的基本概念。

2、结合已知条件确定二次函数的表达式,利用待定系数法求二次函数的解析式。

3、根据二次函数的图象及性质解决相关问题,如不等式、一元二次方程。

4、二次函数图象的平移。

5、二次函数与实际问题,二次函数与综合问题(与几何、函数、方程等的综合)。

1、下列各点中,在函数y =-x 2图象上的点是( )A 、(-2,4)B 、(2,-4)C 、(-4,2)D 、(4,-2) 2、二次函数y =(3m -2)x 2+mx +1的图象开口向上,则m 的取值范围是 。

3、抛物线21(3)52y x =---的开口方向 ,对称轴是 ,顶点坐标是 ,与x 轴的交点个数是 个。

4、二次函数21522y x x =+-的图象的顶点坐标是 。

5、二次函数y =2(x -1)2+5图象的对称轴和顶点P 的坐标分别是( ) A 、直线x =-1,P(-1,5) B 、直线x =-1,P(1,5) C 、直线x =1,P(1,5) D 、直线x =1,P(-1,5)6、把抛物线y =-4x 2向上平移2个单位,再向左平移3个单位,得到的抛物线是( ) A 、y =-4(x +3)2+2 B 、y =-4(x +3)2-2 C 、y =-4(x -3)2+2 D 、y =-4(x -3)2-2 7、在平面直角坐标系中,将二次函数y =-2(x -1)2-2的图象向左平移1个单位,再向上平移1个单位,则其顶点变为( )A 、(0,0)B 、(1,-2)C 、(0,-1)D 、(-2,1) 8、二次函数y =(x -1)2+2的最小值是( )A 、2B 、1C 、-1D 、-2 9、已知二次函数y =3x 2+2x +a 与x 轴没有交点,则a 的取值范围是 。

中考专题复习二次函数知识点总结

中考专题复习二次函数知识点总结

中考专题复习二次函数知识点总结知识点一:二次函数的定义1.二次函数的定义:一般地,形如2=++(a b cy ax bx c,,是常数,0a≠)的函数,叫做二次函数.其中a是二次项系数,b是一次项系数,c是常数项.知识点二:二次函数的图象与性质⇒⇒⇒抛物线的三要素:开口、对称轴、顶点2. 二次函数()2=-+的图象与性质y a x h k(1)二次函数基本形式2=的图象与性质:a的绝对值越大,抛物线的开口越小y ax(2)2=+的图象与性质:上加下减y ax c(3)()2y a x h =-的图象与性质:左加右减(4)二次函数()2y a x h k =-+的图象与性质3. 二次函数c bx ax y ++=2的图像与性质(1)当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-. (2)当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.4. 二次函数常见方法指导(1)二次函数2y ax bx c =++图象的画法 ①画精确图 五点绘图法(列表-描点-连线)利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.②画草图 抓住以下几点:开口方向,对称轴,与y 轴的交点,顶点. (2)二次函数图象的平移 平移步骤:① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 可以由抛物线2ax 经过适当的平移得到具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 2平移规律:概括成八个字“左加右减,上加下减”. (3)用待定系数法求二次函数的解析式 ①一般式:,已知图象上三点或三对、的值,通常选择一般式.②顶点式:,已知图象的顶点或对称轴,通常选择顶点式.③交点式:,已知图象与轴的交点坐标、.(4)求抛物线的顶点、对称轴的方法①公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=. ②配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.③运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. (5)抛物线c bx ax y ++=2中,c b a ,,的作用①a 决定开口方向及开口大小,这与2ax y =中的a 完全一样. ②b 和a 共同决定抛物线对称轴的位置由于抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故 如果0=b 时,对称轴为y 轴;如果0>a b(即a 、b 同号)时,对称轴在y 轴左侧; 如果0<ab(即a 、b 异号)时,对称轴在y 轴右侧.③c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置当0=x 时,c y =,所以抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ),故 如果0=c ,抛物线经过原点; 如果0>c ,与y 轴交于正半轴; 如果0<c ,与y 轴交于负半轴.知识点三:二次函数与一元二次方程的关系5.函数c bx ax y ++=2,当0y =时,得到一元二次方程20ax bx c ++=,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解6.拓展:关于直线与抛物线的交点知识(1)y 轴与抛物线c bx ax y ++=2得交点为(0,)c .(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组 2y kx n y ax bx c=+⎧⎨=++⎩的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点;②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=-+=-=-=444222122122121知识点四:利用二次函数解决实际问题7.利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题。

初三中考二次函数专题复习

第二十六章二次函数【课标要求】【知识梳理】1.定义:一般地,如果y =ax2• bx • c(a,b,c是常数,a = 0),那么y叫做x的二次函数2. 二次函数y = ax2 +bx+c用配方法可化成:y = a(x — h)2+k的形式,其中, b , 4ac—b2 h ,k .2a 4a3. 抛物线的三要素:开口方向、对称轴、顶点①a的符号决定抛物线的开口方向:当 a 0时,开口向上;当a ::: 0时,开口向下;a相等,抛物线的开口大小、形状相同②平行于y轴(或重合)的直线记作x二h.特别地,y轴记作直线x = 0.4. 顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同5. 求抛物线的顶点、对称轴的方法Z -.2 2 2 /八八4,亠2丄|丄f丄b】丄4ac — b 卄「口/ b 4ac—b 、(1 )公式法:y =ax +bx+c = a x+——+ ------------------ ,二顶点是(一一, ---------- ),l 2a 丿4a 2a 4a• 2 •新动力教育数学杨老师对称轴是直线bx .2a2(2)配方法:运用配方的方法,将抛物线的解析式化为y = a(x — h ) + k的形式, 得到顶点为(h , k),对称轴是直线x二h.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点•用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失6.抛物线y=ax2・bx・c中,a,b,c的作用(1) a决定开口方向及开口大小,这与y二ax2中的a完全一样(2) b和a共同决定抛物线对称轴的位置.由于抛物线y = ax2 bx - c的对称轴是直线x -—,故:①b = 0时,对称轴为y轴;②一(即a、b同号)时,对称轴2a aK在y轴左侧;③ 一:::0 (即a、b异号)时,对称轴在y轴右侧•a(3) c的大小决定抛物线y = ax2• bx c与y轴交点的位置.当x=0时,y=c,二抛物线y = ax2• bx • c与y轴有且只有一个交点( 0, c):①c = 0,抛物线经过原点;②c 0,与y轴交于正半轴;③ c ::: 0,与y轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y轴右侧,则::0.7.用待定系数法求二次函数的解析式(1 )一般式:y =ax2 bx c .已知图像上三点或三对(2)顶点式:y二a x - h 2• k.已知图像的顶点或对称轴,通常选择顶点式x、y的值,通常选择一般式新动力教育数学杨老师(3 )交点式:已知图像与x轴的交点坐标X!、x2,通常选用交点式:y^ax-X! x-x2.12.直线与抛物线的交点新动力教育数学杨老师(1) y 轴与抛物线 y = ax 2 bx c 得交点为(0, c ).(2) 与y 轴平行的直线X =h 与抛物线y =ax 2 ・bx ・c 有且只有一个交点(h , ah 2 bh c ). (3) 抛物线与x 轴的交点二次函数y =ax 2 • bx c 的图像与x 轴的两个交点的横坐标X i 、x 2,是对应一元二次方程ax 2 bx ^0的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方 程的根的判别式判定:① 有两个交点 u 厶.0=抛物线与x 轴相交;② 有一个交点(顶点在 x 轴上)=."■: =0=抛物线与x 轴相切; ③ 没有交点 u 厶:::0:二抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3) —样可能有 0个交点、1个交点、2个交点•当有2个交点时,两交点的纵坐标 相等,设纵坐标为k ,则横坐标是 ax 2 bx的两个实数根.(5) —次函数 y = kx • n k = 0的图像I 与二次函数 y = ax 2 • bx • c a = 0的图像G、=kx + n的交点,由方程组2的解的数目来确定: ①方程组有两组不同的解时二Ily = ax +bx+c与G 有两个交点;②方程组只有一组解时:=I 与G 只有一个交点;③方程组无解时:=I 与G 没有交点•(6)抛物线与 x 轴两交点之间的距离:若抛物线y = ax 2 ■ bx c 与x 轴两交点为2由于X 1、X 2是方程ax bx ^0的两个根,故【能力训练】1 .二次函数 y= — x2 + 6x — 5,当x __________ 时, y ::: 0,且y 随x 的增大而减小。

中考数学总复习之二次函数专题复习

中考数学总复习之二次函数专题复习一.选择题(共8小题)1.二次函数y=2x2+8x+5的图象的顶点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.把二次函数y=x2+2x﹣6配方成顶点式为()A.y=(x﹣1)2﹣7B.y=(x+1)2﹣7C.y=(x+2)2﹣10D.y=(x﹣3)2+33.已知二次函数y=(a﹣2)x2,当x>0时,y随x的增大而减小,则实数a的取值范围是()A.a>0B.a>2C.a≠2D.a<24.关于抛物线y=(x﹣1)2﹣2,以下说法正确的是()A.抛物线在直线x=﹣1右侧的部分是上升的B.抛物线在直线x=﹣1右侧的部分是下降的C.抛物线在直线x=1右侧的部分是上升的D.抛物线在直线x=1右侧的部分是下降的5.2019年在武汉市举行了军运会,在军运会比赛中,某次羽毛球的运动路线可以看作是抛物线y=x2+x+的一部分(如图),其中出球点B离地面O点的距离是米,球落点的距离是()A.1米B.3米C.5米D.米6.二次函数y=x2﹣3x+1的图象大致是()A.B.C.D.7.无论k为何值,直线y=kx﹣2k+2与抛物线y=ax2﹣2ax﹣3a总有公共点,则a的取值范围是()A.a>0B.C.或a>0D.8.如图,已知开口向上的抛物线y=ax2+bx+c与x轴交于点(﹣1,0),对称轴为直线x=1.下列结论:①abc>0;②2a+b=0;③若关于x的方程ax2+bx+c+1=0一定有两个不相等的实数根;④a>.其中正确的个数有()A.1个B.2个C.3个D.4个二.填空题(共8小题)9.如图,某学校拟建一块矩形花圃,打算一边利用学校现有的墙(墙足够长),其余三边除门外用栅栏围成,栅栏总长度为38m,门宽为2m.这个矩形花圃的最大面积是.10.如图,同学们在操场上玩跳大绳游戏,绳甩到最高处时的形状是抛物线型,摇绳的甲、乙两名同学拿绳的手的间距为6米,到地面的距离AO与BD均为0.9米,绳子甩到最高点C处时,最高点距地面的垂直距离为1.8米.身高为1.4米的小吉站在距点O水平距离为m米处,若他能够正常跳大绳(绳子甩到最高时超过他的头顶),则m的取值范围是.11.二次函数y=2x2的图象如图所示,点O为坐标原点,点A在y轴的正半轴上,点B、C 在函数图象上,四边形OBAC为菱形,且∠AOB=30°,则点C的坐标为.12.二次函数的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A2023在y轴的正半轴上,点B1,B2,B3,…,B2023在二次函数位于第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2022B2023A2023都为等边三角形,则△A2022B2023A2023的边长为.13.已知二次函数y=(x﹣3)2+3,当x=时,y取得最小值.14.已知抛物线y=x2+bx+c的部分图象如图所示,当y>0时,x的取值范围是.15.如图,二次函数y=﹣x2+mx的图象与x轴交于坐标原点和(6,0),若关于x的方程x2﹣mx+t=0(t为实数)在1≤x<5的范围内有解,则t的取值范围是.16.二次函数y=ax2+bx﹣3(a≠0)的图象经过点(1,4),则代数式a+b的值为.三.解答题(共4小题)17.如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A(﹣1,0)和点B,点P是直线BC上方的抛物线上一动点.(1)求二次函数的表达式;(2)求BC所在直线的函数解析式;(3)过点P作PM∥y轴交直线BC于点M,求线段PM长度的最大值.18.如图,直线y=x+2与x轴交于点B,与y轴交于点D.抛物线y=ax2+bx﹣4与x轴交于点A(4,0)和点B,与y轴交于点C.(1)求该抛物线的解析式;(2)如图,点P为抛物线在直线AC下方的一动点,作PH∥y轴,PF⊥AC,分别交AC 于点H、F,求PH+PF的最大值和此时点P的坐标;(3)在(2)的条件下,将抛物线y=ax2+bx﹣4沿射线AC平移个单位长度,得到新抛物线,点R在新抛物线的对称轴上,点S在抛物线y=ax2+bx﹣4上.当以点D、P、R、S为顶点的四边形是平行四边形时,写出所有符合条件的点R的坐标,并写出求解点R的坐标的其中一种情况的过程.19.如图,已知抛物线y=﹣x2+mx+3与x轴交于A、B两点,与y轴交于点C,点B的坐标为(3,0).(1)求m的值及抛物线的顶点坐标;(2)求抛物线与坐标轴的交点所围成的三角形面积;(3)点P是抛物线对称轴l上的一个动点,当P A+PC的值最小时,求点P的坐标.。

中考数学专题复习:二次函数


第三课时 二次函数的综合应用
考点
1.与几何图形有关的线段、周长、面积 的最值问题; 2.特殊三角形、四边形的存在问题; 3.动点产生的角度问题等综合题
教学思路
跨领域复合型综合题涵盖了初中数学几乎所有的数学 思想方法,一般以压轴题的形式出现.在有限的中考复习 时间里,应该做到以下几点,以提升学生的思维高度:
二。抛物线型
例2 (2022·河南)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面 0.7 m,水柱在距喷水头P水平距离5 m处达到最高,最高点距地面3.2 m;建立如图所示的平面直角坐标系, 并设抛物线的解析式为y=a(x-h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高 度.
中考ห้องสมุดไป่ตู้学专题复习
二次函数
第一课时二次函数的图像和性质



第二课时二次函数的实际应用



第三课时二次函数的综合应用
第一课时 二次函数的图像和性质
考点
二次函数的图像与性质通常以选择题或填 空题的形式出现,为历年必考题目。题目设计 主要有同一坐标系中多函数像问题、根据图像 做判断的多结论问题、根据表格形式呈现的多 结论问题等,考查a、b、c的符号、对称轴、最 值、大小比较、与一元二次方程的关系(与x轴、 平行于x轴的直线交点个数)、根据图像解不等 式、图像的平移等。
(1)要加强学生的做题意识,树立必胜的信心,教 师要让学生知道综合题常常是“起点低,坡度缓,尾巴略 翘”,要多鼓励学生大敢作答;
(2)是基础知识和基本技能训练要全面,重点内容 适当分类进行专题训练;
(3)是要教会学生一些常用的解题策略,重视数学 思想和方法的提炼,注意知识的迁移,让学生学会融会贯 通.

初三九年级 二次函数专题复习

基础知识知识点一、二次函数的有关概念1、二次函数的概念:一般地,我们把形如c bx ax y ++=2(其中c b a ,,是常数,0≠a )的函数叫做二次函数,其中a 称为二次项系数,b 为一次项系数,c 为常数项。

x 称为自变量,y 称为因变量。

知识点二、二次函数的基本性质 1、二次函数的图像:抛物线。

2、二次函数的常见的几种表达式 ①、一般式:c bx ax y ++=2②、顶点式:()k h x a y +-=2a b h 2-= ab ac k 442-=3、抛物线的三要素:开口方向(与a 有关系)、对称轴(与a 、b 有关系)、顶点()k h ,。

4、二次函数的基本性质5、二次函数c bx ax y ++=2与()k h x a y +-=2之间的转化6、二次函数的平移7、二次函数c bx ax y ++=2中a 、b 、c 正负的判定a :看开口方向 0>a 开口向上;0<a 开口向下。

b :看对称轴 对称轴在y 轴左边,则与a 正负相同,对称轴在y 轴右边,则与a 正负相反。

c :看于y 轴的交点 0>c 于y 轴交于正半轴; 0<c 于y 轴交于负半轴。

知识点四:二次函数解析式的求法 1、设一般式:c bx ax y ++=2一般题目提供已知三个点坐标,则设所求抛物线解析式一般式,将已知条件带入解析式,得到关于a 、b 、c 的三元一次方程组,解方程组求出a 、b 、c 的值即可得到解析式。

2、设顶点式:()k h x a y +-=2一般题目提供已知一个点和顶点坐标,则设所求抛物线解析式顶点式,将已知条件带入解析式,得到一个关于a 的一元一次方程,求出a 即可得到解析式。

知识点四:二次函数的实际问题 二次函数的实际应用题解题步骤:1、分析:分析此题的类型:行程问题、销售问题……2、提取:提取题目中的已知条件,并标记:如行程问题,则跟速度、时间、路程有关,应标清楚是什么量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十六章二次函数【课标要求】考点课标要求知识与技能目标了解理解掌握灵活应用二次函数理解二次函数的意义∨会用描点法画出二次函数的图像∨会确定抛物线开口方向、顶点坐标和对称轴∨通过对实际问题的分析确定二次函数表达式∨∨理解二次函数与一元二次方程的关系∨会根据抛物线y=ax2+bx+c (a≠0)的图像来确定a、b、c的符号∨∨【知识梳理】1.定义:一般地,如果是常数,,那么叫做的二次函数.2.二次函数用配方法可化成:的形式,其中.3.抛物线的三要素:开口方向、对称轴、顶点.①的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.②平行于轴(或重合)的直线记作.特别地,轴记作直线.4.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.5.求抛物线的顶点、对称轴的方法(1)公式法:,∴顶点是,对称轴是直线.(2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.6.抛物线中,的作用(1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.7.用待定系数法求二次函数的解析式(1)一般式:.已知图像上三点或三对、的值,通常选择一般式.(2)顶点式:.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与轴的交点坐标、,通常选用交点式:.12.直线与抛物线的交点(1)轴与抛物线得交点为(0,).(2)与轴平行的直线与抛物线有且只有一个交点(,).(3)抛物线与轴的交点二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点抛物线与轴相交;②有一个交点(顶点在轴上)抛物线与轴相切;③没有交点抛物线与轴相离.(4)平行于轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根.(5)一次函数的图像与二次函数的图像的交点,由方程组的解的数目来确定:①方程组有两组不同的解时与有两个交点; ②方程组只有一组解时与只有一个交点;③方程组无解时与没有交点.(6)抛物线与轴两交点之间的距离:若抛物线与轴两交点为,由于、是方程的两个根,故【能力训练】1.二次函数y=-x2+6x-5,当时,,且随的增大而减小。

2.抛物线的顶点坐标在第三象限,则的值为()A.B.C.D..3.抛物线y=x2-2x+3的对称轴是直线()A.x =2 B.x =-2 C.x =-1 D.x =14.二次函数y=x2+2x-7的函数值是8,那么对应的x的值是()A.3 B.5 C.-3和5 D.3和-55.抛物线y=x2-x的顶点坐标是()6.二次函数的图象,如图1-2-40所示,根据图象可得a、b、c与0的大小关系是()A.a>0,b<0,c<0 B.a>0,b>0,c>0C.a<0,b<0,c<0 D.a<0,b>0,c<07.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h=3.5 t-4.9 t2(t的单位s;h中的单位:m)可以描述他跳跃时重心高度的变化.如图,则他起跳后到重心最高时所用的时间是()A.0.71s B.0.70s C.0.63s D.0.36s8.已知抛物线的解析式为y=-(x—2)2+l,则抛物线的顶点坐标是()A.(-2,1)B.(2,l)C.(2,-1)D.(1,2)9.若二次函数y=x2-x与y=-x2+k的图象的顶点重合,则下列结论不正确的是()A.这两个函数图象有相同的对称轴B.这两个函数图象的开口方向相反C.方程-x2+k=0没有实数根D.二次函数y=-x2+k的最大值为10.抛物线y=x2 +2x-3与x轴的交点的个数有()A.0个 B.1个 C.2个 D.3个11.抛物线y=(x—l)2 +2的对称轴是()A.直线x=-1 B.直线x=1 C.直线x=2 D.直线x=212.已知二次函数的图象如图所示,则在“① a<0,②b >0,③c< 0,④b2-4ac>0”中,正确的判断是()A、①②③④B、④C、①②③D、①④13.已知二次函数(a≠0)的图象如图所示,则下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x的值只能取0.其中正确的个数是()A.l个 B.2个 C.3个 D.4个14.如图,抛物线的顶点P的坐标是(1,-3),则此抛物线对应的二次函数有()A.最大值1 B.最小值-3C.最大值-3 D.最小值115.用列表法画二次函数的图象时先列一个表,当表中对自变量x的值以相等间隔的值增加时,函数y所对应的值依次为:20,56,110,182,274,380,506,650.其中有一个值不正确,这个不正确的值是()A.506 B.380 C.274 D.18216.将二次函数y=x2-4x+ 6化为 y=(x—h)2+k的形式:y=___________17.把二次函数y=x2-4x+5化成y=(x—h)2+k的形式:y=___________18.若二次函数y=x2-4x+c的图象与x轴没有交点,其中c为整数,则c=___________________(只要求写一个).19.抛物线y=(x-1)2+3的顶点坐标是____________.20.二次函数y=x2-2x-3与x轴两交点之间的距离为_________.21. 已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,(1)求抛物线的解析式和顶点M的坐标,并在给定的直角坐标系中画出这条抛物线。

(2)若点(x0,y0)在抛物线上,且0≤x0≤4,试写出y0的取值范围。

22.华联商场以每件30元购进一种商品,试销中发现每天的销售量(件)与每件的销售价(元)满足一次函数y=162-3x;(1)写出商场每天的销售利润(元)与每件的销售价(元)的函数关系式;(2)如果商场要想获得最大利润,每件商品的销售价定为多少为最合适?最大销售利润为多少?23.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图像(部分)刻画了该公司年初以来累积利润s (万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图像提供的信息,解答下列问题:(1)求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?24.如图,有一座抛物线型拱桥,在正常水位时水面AB的宽是20米,如果水位上升3米时,水面CD的宽为10米,(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)现有一辆载有救援物质的货车从甲地出发,要经过此桥开往乙地,已知甲地到此桥千米,(桥长忽略不计)货车以每小时40千米的速度开往乙地,当行驶到1小时时,忽然接到紧急通知,前方连降大雨,造成水位以每小时米的速度持续上涨,(货车接到通知时水位在CD处),当水位达到桥拱最高点O 时,禁止车辆通行;试问:汽车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过多少千米?25.已知直线y=-2x+b(b≠0)与x轴交于点A,与y轴交于点B;一抛物线的解析式为y=x2-(b+10)x+c.⑴若该抛物线过点B,且它的顶点P在直线y=-2x+b上,试确定这条抛物线的解析式;⑵过点B作直线BC⊥AB交x轴于点C,若抛物线的对称轴恰好过C点,试确定直线y=-2x+b的解析式.26.已知抛物线y=(1-m)x2+4x-3开口向下,与x轴交于A(x1,0)和B(x2,0)两点,其中xl<x2.(1)求m的取值范围;(2)若x12+ x22=10,求抛物线的解析式,并在给出的直角坐标系中画出这条抛物线;27.如图,等腰梯形ABCD的边BC在x轴上,点A在y轴的正方向上,A( 0, 6 ),D ( 4,6),且AB=2.(1)求点B的坐标;(2)求经过A、B、D三点的抛物线的解析式;(3)在(2)中所求的抛物线上是否存在一点P,使得S△PBD=S梯形ABCD。

若存在,请求出该点坐标,若不存在,请说明理由.28.数学活动小组接受学校的一项任务:在紧靠围墙的空地上,利用围墙及一段长为60米的木栅栏围成一块生物园地,请设计一个方案使生物园的面积尽可能大。

继续阅读。

相关文档
最新文档