4分子间作用力-分子晶体

合集下载

分子间的作用力

分子间的作用力

分子间的作用力上面已经讨论了三种基本类型的化学键,它们都是分子内部原子间较强的结合力,是决定分子化学性质的主要因素。

在分子与分子之间还存在着较弱的作用力,它是决定物质的沸点、熔点、溶解度等物理性质的重要因素。

为了更好地说明分子间作用力,先谈一下分子极化的问题。

一、分子极化任何分子都有正、负电重心,任何分子又都有变形的性能。

因而在外电场的作用下,分子的电荷重心可发生相对的位移,即分子发生变形,这个过程就叫分子的极化(被极化)。

例如非极性分子,正、负电重心是重合的,但在外电场作用下,正负电重心可被拉开,发生变形并产生偶极(图3-59),这叫诱导偶极(外电场除去,偶极也消除)。

对于极性分子,其本身具有偶极这叫固有偶极,在没有外电场作用时极性分子的固有偶极由于热运动,而杂乱排列。

但在外电场作用下杂乱无章的极性分子可按电场方向定向排列起来,同时由于电场的作用而使偶极加大(固有偶极加诱导偶极)产生一定的变形(图3-60)。

由上可看出,无论非极性分子还是极性分子在外电场作用下都可发生极化作用。

二、分子间力的形成如果将外电场换成极性分子自身所产生的电场,这就与上述情况相似,彼此有相互作用,也就产生了分子间力,下面就分别来分析这方面的情况。

1.取向力当极性分子和极性分子相互接近时,它们的固有偶极的同极相斥而异极相吸,就使得极性分子按一定方向排列(图3-61),因而产生了分子间的作用力,这种力叫取向力。

显然,极性分子的偶极矩越大,取向力越大。

这种力只存在于极性分子与极性分子之间。

2.诱导力当极性分子和非极性分子相接近时,非极性分子在极性分子的固有偶极的作用下,发生极化,而产生诱导偶极,然后诱导偶极与极性分子固有偶极相互吸引(图3——62)。

这种由于诱导偶极而产生的作用力,称为诱导力。

这种力产生于极性分子与非极性分子之间,当然极性分子与极性分子之间也互相诱导,因而也有这种力。

3.色散力非极性分子与非极性分子之间有无作用力?实验指出,N2、O2、H2……等气体,只要充分降温,都可以转变成液态和固态。

《分子间作用力 分子晶体》课件(教师版)解析

《分子间作用力 分子晶体》课件(教师版)解析
分子晶体要熔化、要汽化都要克服分子间的作用力。 分子间作用力越大,物质熔化和汽化时需要的能量就越 多,物质的熔点和沸点就越高。
分子晶体熔化时,一般只破坏了分子间作用力,不 破坏分子内的化学键,但也有例外,如硫晶体(S8)熔 化时,既破坏了分子间的作用力,同时部分S-S键断裂, 形成更小的分子。
几种类型的晶体结构和性质
2、分子晶体的特点: 熔点低、硬度小、易升华。
某些分子晶体的熔点
分子晶体


白磷

熔点
-218.3 -210.1
44.2
0
分子晶体 硫化氢
甲烷
乙酸
尿素
熔点
-85.6
-182.5
16.7
132.7
3、典型的分子晶体
(1)所有非金属氢化物 如水、硫化氢、氨、氯化氢、甲烷等
(2)部分非金属单质 如卤素(X2)、氧(O2)、硫(S8)、氮 (N2)、 白
分布是否均匀等。
范德华力比化学键弱得多。一般来说,某 物质的范德华力越大,则它的熔点、沸点就越 高。对于组成和结构相似的物质,范德华力一 般随着相对分子质量的增大而增强。
二、氢键的形成
氧族元素的氢化物的熔点和沸点
温度/℃
100
H2O
0 H2O
H2Te 沸点
H2Se H2S
H2Te熔点
H2S H2Se
晶体类型 金属晶体 离子晶体 原子晶体 分子晶体
构成微粒 结 构 微粒间作
用力
金属离子、 自由电子
金属键
阴、阳离子 离子键
原子 共价键
分子
分子间作 用力
熔、沸点 有高有低
较高
ቤተ መጻሕፍቲ ባይዱ
很高

分子晶体

分子晶体

BC
A组 Cl键键 Ⅰ.H—I键键能大于H—Cl键键 I键键能大于H Cl 能 C1键键 Ⅱ.H—I键键能小于H—C1键键 I键键能小于H C1 能 HI分子间作用力大于 分子间作用力大于HCl Ⅲ.HI分子间作用力大于HCl 分子间作用力 HI分子间作用力小于 分子间作用力小于HCl Ⅳ.HI分子间作用力小于HCl 分子间作用力
5,关于下列常见晶体说法正确的是
2 60
冰中每个水分子周围有12 12个紧邻的水分子 B.冰中每个水分子周围有12个紧邻的水分子 C.水在固态时密度一定比液态小 干冰中, 个分子周围有12的紧邻分子, 12的紧邻分子 D.干冰中,1个分子周围有12的紧邻分子, 密度比冰小. 密度比冰小.
有下列两组命题,B组中命题正确,且能用A ,B组中命题正确 6,有下列两组命题,B组中命题正确,且能用A组 命题加以正确解释的是 A. Ⅰ ① B. Ⅱ ② C. Ⅲ ③ D. Ⅳ ④
B组 ①HI比HCI稳定 HI比HCI稳定 ②HCl比HI稳定 HCl比HI稳定 ③HI沸点比HCl高 HI沸点比HCl 沸点比HCl高 ④HI沸点比HCl低 HI沸点比HCl 沸点比HCl低

5,典型的分子晶体
(1)所有非金属氢化物: (1)所有非金属氢化物: H2O,H2S,NH3,CH4,HX 所有非金属氢化物 (2)部分非金属单质:X (2)部分非金属单质:X2,O2,H2, S8,P4, C60,稀有气体 部分非金属单质 60, (除硼,金刚石,晶体硅) 除硼,金刚石,晶体硅) (3)部分非金属氧化物: CO2, SO2, NO2, P4O6, P4O10 (3)部分非金属氧化物: 部分非金属氧化物 (除二氧化硅) 除二氧化硅) (4)几乎所有的酸: (4)几乎所有的酸:H2SO4,HNO3,H3PO4 几乎所有的酸 (5)大多数有机物的晶体:冰醋酸, (5)大多数有机物的晶体:冰醋酸,蔗糖 大多数有机物的晶体

第四章 分子结构——分子间的作用力、氢键、离子极化理论

第四章 分子结构——分子间的作用力、氢键、离子极化理论







• •
键的极性的增大 离子键向共价键的过渡 图4-55 由离子键向共价键的过渡
(1) 离子的极化力和变形性 离子的极化力 极化力和
极化力( 极化力(φ )—— 一种离子使邻近的异性离子极化而
变形的能力,通常阳离子极化力占主导 阳离子极化力占主导。 变形的能力,通常阳离子极化力占主导。
Z* φ 极化力 ∝ r
表4-14 分子间的作用能 ⋅mol-1)的分配 分子间的作用能(kJ⋅ 的分配
范德华力对共价化合物物理性质的影响: 范德华力对共价化合物物理性质的影响: 物理性质的影响
分子间范德华力的大小可说明共价化合物间 分子间范德华力的大小可说明共价化合物间 范德华力的大小可说明共价化合物 的物理性质差异: 的物理性质差异: 熔点、沸点的高低,溶解度的大小, 如,熔点、沸点的高低,溶解度的大小, 液化、 等等。 液化、结晶现象及相似相溶原理 ••• 等等。
d→偶极长→正电荷重心和负电荷重心的距离。偶极长 、 →偶极长→正电荷重心和负电荷重心的距离。偶极长d、 偶极子电荷q 是无法测定的, 偶极子电荷 是无法测定的,但偶极矩 µ 可通过实验测得
µ 的单位为 德拜 , 1D = 3.33×10-30 C·m。 的单位为D(德拜 德拜), × 。
因为一个电子的电量是1.6× 因为一个电子的电量是 ×10-19C,分子的直径在 -10 m ,分子的直径在10 数量级,所以,分子电偶极矩大小数量级为10 数量级,所以,分子电偶极矩大小数量级为 -30(C·m)。 。
极性分子的这种 固有偶极叫做 叫做永久偶 固有偶极叫做永久偶 极矩µ 。 外电场影响下所 外电场影响下所 产生的偶极叫 产生的偶极叫诱导偶 诱导偶极矩(∆ 极。诱导偶极矩 ∆µ) 的大小与外电场强度 成正比。 成正比。

分子晶体

分子晶体

(3)原子晶体 原子半径越小、键长越短、键能越大,共价 键越强,晶体熔沸点越高、硬度越大
(4)分子晶体
组成和结构相似的分子晶体,相对分子质量 越大,分子间作用力越大,熔沸点越高; 相对分子质量相近的分子晶体,分子极性越大,
分子间作用力越大,熔沸点越高;
(2)氢键表示方法:
X—H · · · Y
氢键
分子间氢键时: Y· · ·H-X三原子在一条直线上
(3)氢键大小 氢键: 比范德华力稍强,比化学键弱的分子间作用力
(4)氢键存在
HF、NH3、H2O、-OH、-COOH、-CHO与-OH
(5)氢键类别
① 分子间氢键
a. H2O分子间氢键2个,HF分子间氢键1个 b. 分子间氢键的形成使物质沸点升高
(1)所有非金属氢化物:H2O,H2S,NH3 (2)部分非金属单质: X2,O2,H2,S8,P4,C60 (3)部分非金属氧化物: CO2,P4O6, P4O10 (4)几乎所有的酸:H2SO4,HNO3,H3PO4 (5)绝大多数有机物的晶体:乙醇,冰醋酸 (6)稀有气体
分子的密堆积
氧(O2)的晶体结构
③冰中,水分子大范围地以氢键互相联结, 形成疏松的晶体,有许多空隙,密度减小, 因此冰能浮在水面上。
三、分子晶体
1. 定义 : 分子间以分子间作用力相结合的晶体叫分
子晶体。 2. 结构特点 : 构成微粒:分子 化学式几乎都是分子式
3. 物理特性
(1)较低的熔点和沸点,易升华 (2)较小的硬度 (3)一般都是绝缘体,熔融状态也不导 电。有些在水溶液中可以导电
碳60的晶胞
氢键具有方向性
水分子周围有4个水分子
冰的结构
4. 分子晶体结构特征 (1)密堆积

分子间作用力-分子晶体-5.10

分子间作用力-分子晶体-5.10
的角度,分析导致干冰和二氧
化硅晶体性质差异的原 因。
5. 干冰的晶体结构
(1)二氧化碳分子的位置:在
晶体中截取一个最小的正方体, 正方体的八个顶点都落到CO2 分子的中心,在这个正方体的
每个面心上还有一个CO2分子。
(2)每个晶胞含二氧化碳
分子的个数 8×1/8+6×1/2=4
(3)与每个二氧化碳分子等距离 且最近的二氧化碳分子有 12个
X—H ···Y
X、 Y为电负性大,而原子半径较小的且有 孤对电子非金属原子,可相同也可不同,如 F、O、N。
(2)氢键的表示方法: X—H ···Y 氢键
(3)氢键键能大小:
F—H … F O—H … O
N—H … N
氢 键 键 能 28.1
18.8
20.9
(kJ/mol)
共价键键
568
能(kJ/mol)
SnH4

PH3
GeH4

SiH4
CH4
2. 氢键:
• 氢键:
除范德华力外的另一种分子间作用力,它 是由已经与电负性大的原子(F、O、N等)形 成共价键的H原子遇另一分子中电负性大原子 半径小且有孤对电子的原子(如F、O、N)能 形成氢键。
• 注意:
氢键是另一种分子间作用力,不属于化学键。
水分子间形成的氢键
卤素单质的相对分子质量和熔、沸点的数据见表3-9。请 你根据表中的数据与同学交流讨论以下问题:
(1)卤素单质的熔、沸点又怎样的变化规律?
(2)导致卤素熔、沸点规律变化的原因是什么?它与卤素单质 相对分子质量的变化规律又怎样的关系? 表3-9卤素单质的相对分子质量和熔、沸点
单质
相对分子质量

分子晶体

分子晶体

氢键 F H F H
氢键 F H F H
F原子半径小, 原子半径小, 原子半径小 得电子能力强
2.氢键 2.氢键 定义: (1)定义:在某些氢化物分子间存在着一种比分于间 作用力稍强的相互作用,称为氢键。 作用力稍强的相互作用,称为氢键。 其实质是静电吸引作用 强度:比分子间作用力稍强,但比化学键弱得多。 ①强度:比分子间作用力稍强,但比化学键弱得多。 表示方法: 表示( HF、 ②表示方法:用“…”表示(教材中HF、H2O氢键的表示 表示 教材中HF 法) 影响:氢键的存在使物质的熔点、沸点相对较高。 ③影响:氢键的存在使物质的熔点、沸点相对较高。 氢键是化学键吗? 不是。氢键属于特殊的分子间作用力。 氢键是化学键吗? 不是。氢键属于特殊的分子间作用力。 【讨论】1.存在氢键的物质为何熔点、沸点相对较高? 讨论】 .存在氢键的物质为何熔点、沸点相对较高?
(2)表示方法: X-H … Y 表示 “…”表示氢键 表示方法: 表示氢键 用 形成条件: (3)形成条件: 要存在非金属性强半径小的非金属原子如N、 、 要存在非金属性强半径小的非金属原子如 、O、F 氢键的特点: (4) 氢键的特点 : 比化学键弱得多, ①比化学键弱得多,只比分子间作用力稍强 ②氢键的形成增强了分子间作用力,从而增大了物质的 氢键的形成增强了分子间作用力, 沸点( HF、 或在水中的溶解度。 熔、沸点(NH3、HF、H2O),或在水中的溶解度。 (5)氢键的应用 氢键的应用: (5)氢键的应用: 解释一些氢化物熔沸点反常. ①解释一些氢化物熔沸点反常 冰的密度比液态水小。 ②冰的密度比液态水小。
干冰晶体结构示意图
每个CO 分子周围有12个紧邻等距的CO 分子。 每个CO2分子周围有12个紧邻等距的CO2分子。 12个紧邻等距的

晶体的结构与性质 (2)

晶体的结构与性质 (2)

(2)非密堆积
有分子间氢键——氢键具有方向性,使晶体中 的空间利率不高,留有相当大的空隙.这种晶体不 具有分子密堆积特征。如:HF 、NH3、冰(每 个水分子周围只有4个紧邻的水分子)。
小结:
1 、分子晶体:由分子构成。相邻分子靠分子间作用力 相互吸引。 2、分子晶体特点:低熔点、升华、硬度很小等。 3、常见分子晶体分类:(1)所有非金属氢化物 (2)部分非 金属单质, (3) 部分非金属氧化物 (4) 几乎所有的酸 ( 而碱 和盐则是离子晶体 (5)绝大多数有机物的晶体。 晶体分子结构特征

3、下列叙述正确的是( B)
A.任何晶体中,若含有阳离子也一定含 有阴离子 B.原子晶体中只含有共价键 C.离子晶体中只含有离子键,不含有共 价键 D.分子晶体中只存在分子间作用力, 不含有其他化学键
4、金属键的强弱与金属价电子数的多少有 关,价电子数越多金属键越强;与金属阳离 子的半径大小也有关,金属阳离子的半径越 大,金属键越弱。据此判断下列金属熔点逐 渐升高的是 ( B) A、Li C、Li Na Be K Mg B、Na D、Li Mg Na Al Mg
(3).常见的原子晶体
• 某些非金属单质: 金刚石(C)、晶体硅(Si)、 晶体硼(B)、晶体锗(Ge)等
• 某些非金属化合物: 碳化硅(SiC)晶体、氮化硼(BN)晶体 • 某些氧化物: 二氧化硅( SiO2)晶体、
109º 28´
共价键
思考:
(1)在金刚石晶体中,C采取什 么杂化方式?每个C与多少个C成 键?形成怎样的空间结构?每个 碳原子周围紧邻的碳原子有多少 个?最小碳环由多少个碳原子组 成?它们是否在同一平面内? (2)在金刚石晶体中,C原子 个数与C—C键数之比为多少?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6、分子晶体熔、沸点高低的比较规律
比较分子晶体的熔、沸点高低,实际上就 是比较分子间作用力(包括范德华力和氢键) 的大小。
首先看:分子间是否有氢键的物质(HF、 H2O、NH3等),含有氢键的熔、沸点高。
其次:(1)组成和结构相似的物质
相对分子质量越大,分子间作用力越大,熔 沸点越高。 例如:烷烃、烯烃、炔烃、饱和一元醇、醛、 羧酸等同系物的沸点均随着碳原子数的增加而 升高。
B. 稀有气体原子序数越大沸点越高
C. 分子间作用力越弱,则由分子组成的物质
熔点越低
D. 同周期元素的原子半径越小越易失去电子
H2O
一 些 氢 化 物 的 沸 点
HF H2Se AsH3 HBr GeH4
H2Te
NH3
H2S HCl PH3 SiH4
SbH3 HI
SnH4
CH4
2、氢键
1.氢键的形成过程 在水分子中的O—H中,共用电子对强 烈的偏向氧原子,使得氢原子几乎成 为 “裸露”的质子,其显正电性, 它能与另一个水分子中氧原子的孤电 子对产生静电作用,从而形成氢键。
专题3
微粒间作用力与物质性质 第四单元 分子间作用力 分子晶体
我们生活中,经常见到许多 由分子聚集而成的物质。状态 也不一定相同。
分子间作用力
分子间存在一种把分子聚集在一起的作用 力——分子间作用力
分子间作用力是一种静电作用, 比化学键弱得多
范德华力
常见的两种 分子间作用力
氢键
范德华(J.D.van der Waals,1837~1923),荷兰物理学家。他首 先研究了分子间作用力,1910年获诺贝尔物理学奖,因确立真 空气体状态方程和分子间范德华力而闻名于世。
⑴离子晶体
离子所带电荷越多、离子半径越小,晶格能越大, 离子键越强,晶体熔沸点越高、硬度越大。
⑵原子晶体
原子半径越小、键长越短、键能越大,共价键越 强,晶体熔沸点越高、硬度越大。
⑶金属晶体
金属原子半径越小、单位体积内自由电子数目越 多,金属键越强,晶体熔沸点越高、硬度越大。
⑷分子晶体
组成和结构相似的分子晶体,相对分子质量越大,分
水分子间形成的氢键
2. 氢键:
•(1)氢键的定义:
除范德华力外的另一种分子间作用力,它 是由已经与电负性大的原子(F、O、N等)形成 共价键的H原子遇另一分子中电负性大原子半径 小且有孤对电子的原子(如F、O、N)能形成氢 键。
•注意:
氢键是另一种分子间作用力,不属于化学键。
氢键成因探究
参照H2O中氢键的形成,讨论 NH3 、HF中 氢键的形成,CH4为什么没有形成氢键,并 讨论形成氢键的条件?
对于组成和结构相似的分子,其 熔、沸点一般随着相对分子质量的增 大而升高
(3). 影响范德华力大小的因素
组成和结构相似的分子,一般相 对分子质量越大,范德华力越大。克 服分子间作用力使物质熔化和气化就 需要更多的能量,熔、沸点越高。
还有:分子的大小、分子的空间构型、 分子中的电荷分布情况也都会影响范德华 力。
(1) 所有非金属氢化物: H2O、H2S、NH3、CH4、HX (2) 大多数非金属单质: X2、N2、 O2、 H2、 S8、 P4、C60 (3) 大多数非金属氧化物: CO2、 SO2、N2O4、P4O6、P4O10 (4) 几乎所有的酸: H2SO4 、HNO3 、H3PO4 (5) 大多数有机物: 乙醇,冰醋酸,蔗糖
共价键 将CO2气体溶于水,破坏了CO2分子的————
作用微粒 作用力强弱 化学键
相邻原 子之间
意义
影响物质的化学 作用力强烈 性质和物理性质 影响物质的物理 作用力微弱 性质(熔、沸点 及溶解度等)
范德华力 分子之间
晶体熔沸点高低的判断
1. 不同晶体类型的物质:
原子晶体>离子晶体>分子晶体
2. 同种晶体类型的物质:
很高 大 绝缘体 (半导体) 金刚石、 SiO2
性பைடு நூலகம்质
硬度 导电性 举例
(2)相对分子质量接近的,看分子极性,对 称性差、分子极性强的,熔沸点高一些.
例如①试着比较CO、N2的熔沸点高低。
极性越大,熔沸点就越高 ②在碳原子数相同的烷烃的同分异构体中,一般 熔沸点越低。如沸点:正戊烷 来说,支链数越多___________ > 异戊烷 > 新戊烷;芳香烃及其衍生物苯环上的 邻位 > 间位 > 对位 的 同分异构体一般按照“____________________” 顺序。
(4).氢键的方向性与饱和性:
氢键具有方向性与饱和性 (5).氢键的类型:
(1).分子间氢键
F —— H ····F —— H
对羟基苯甲醛 熔点:115℃
邻羟基苯甲醛 熔点:2℃
沸点:250℃
沸点:196.5℃
分子间氢键
分子内氢键
(7)氢键对物质性质的影响
①.氢键对物质溶、沸点的影响
分子间氢键增大了分子间的作用力使物质的溶、沸 点升高。 分子内氢键减少了分子间的作用力,是物质的熔沸 点降低。
(2)氢键的形成条件: 氢原子与电负性大而原子半径小的非 金属元素原子,如氟、氧、氮原子
(3)氢键的表示方法
化 学 键
X —— H ···Y
氢键 微弱、距离远
强烈、距离近
X、 Y为电负性大,而原子半径较小的且有孤 对电子非金属原子,可相同也可不同,如F、O、 N等。
氢键是比范德华力要强而比化学键弱的分子间作用力
2.固体乙醇晶体中不存在的作用力是( C ) A.极性键 B.非极性键 C.离子键 D.氢键影响
分子晶体
干冰及其晶胞
分子晶体: 分子通过分子间作用力结合形成的晶体
碘晶体及其晶胞
分子晶体
分子通过分子间作用力结合形成的晶体 1.定义:
2.构成微粒: 分子
3.微粒间的作用:
分子间作用力(部分分子晶体中还存在氢键)
(1)范德华力很弱, (2)范德华力一般没有饱和性和方向性
卤素单质的相对分子质量和熔、沸点
单质 F2 Cl2 Br2 I2 相对分子质量 38 71 160 254 熔点/℃ -219.6 -101.0 -7.2 113.5 沸点/℃ -188.1 -34.6 58.8 184.4
通过观察上面的表格,解决一下两个问题? (1)卤素单质的熔、沸点有怎样的变化规律? (2)导致卤素熔、沸点规律变化的原因是什么? 它与卤素单质相对分子质量的变化规律又怎样的 关系?
子间作用力越大,熔沸点越高;
相对分子质量相近的分子晶体,分子极性越大,分子
间作用力越大,熔沸点越高;
具有分子间氢键的分子晶体,分子间作用力显著增大,
熔沸点升高。
(1)试判断:①SiO2,②CO2,③CS2 ④NaCl晶体 的熔点由高到低排列的顺序是 ① >④ > ③ >② . (填相应物质的编号)。
CO2和SiO2的一些物理性 质如下表所示。请你从两种晶 体的构成微粒及微粒间作用力 的角度,分析导致干冰和二氧 化硅晶体性质差异的原 因。
干冰的晶体结构 ——面心立方晶胞
CO2分子处于8个顶点和6个面心
1个干冰晶体晶胞中含有 4 个CO2分子
与CO2分子距离最近的CO2分子共有 12 个
将干冰气化,破坏了CO2分子晶体的分子间作用力 —————
由于分子晶体的构成微粒是分子,所以 分子晶体的化学式都是分子式。
4.分子晶体的特点
低熔点、低沸点、硬度小。 某些分子晶体的熔点
分子晶体 熔点 分子晶体 熔点 氧 -218.3 硫化氢 -85.6 氮 -210.1 甲烷 -182.5 白磷 44.2 乙酸 16.7 水 0 尿素 132.7
5.典型的分子晶体
晶体类型
结 构 微粒间作 用力
熔、沸点 构成微粒
金属晶体
金属离子、 自由电子
离子晶体 原子晶体 分子晶体
阴、阳离子 原子 分子 分子间作 用力 低 小 不良 P4、干冰
金属键
有高有低 有高有低 良导体 Na、Mg、 Al、Cu
离子键
较高 硬而脆 不良(熔融、 水溶液导电) NaOH、 NaCl
共价键
(2)对溶解度的影响
在极性溶剂里,如果溶质分子与溶剂分 子间可以生成氢键,则溶质的溶解度增大。
水和甲醇的相互溶解
(深蓝色虚线为氢键)
3.水中的氢键对水的性质的影响:
(1)水分子间形成氢键,增大了水分 子间的作用,使水的溶、沸点比H2S高
(2)水结冰时,体积膨胀,密度减小


1.下列有关水的叙述中,可以用氢键的知 识来解释的是( BD ) A.水比硫化氢气体稳定 B.水的熔沸点比硫化氢的高 C.氯化氢气体易溶于水 D.0℃时,水的密度比冰大
几种类型的范德华力
教科书P54拓展视野----了解
(4).范德华力与物质性质的关系
对于分子构成的物质,范德华力 影响物质的熔、沸点、溶解度
例:氧气在水中的溶解度比氮气大,原 因是氧分子与水分子之间的范德华力大


C )
1.下列物质中,其沸点可能低于SiCl4的是( A. GeCl4 B. SiBr4 C. CCl4 D. NaCl 2. 下列叙述正确的是( B C ) A. 氧气的沸点低于氮气的沸点
1. 范德华力
(1)是一种普遍存在于固体、液体和气体中分子 间的作用力。
(2)范德华力与共价键的区别
请同学们根据下面的数据,比较范德华力与共价 键的区别? HCl HBr HI 分子 范 德 华 力 (kJ/mol) 共价键键能 (kJ/mol)
21.14 432
23.11 366
26.00 298
相关文档
最新文档