高二数学必考知识点归纳整理5篇
高二数学知识点及公式总结5篇

高二数学知识点及公式总结5篇第一篇:高二数学必备知识点及公式总结1.函数的概念及其性质函数是一种特殊的关系,它将一组自变量的值映射到另一组因变量的值上。
函数的三要素为定义域、值域和对应关系。
常见的函数有一次函数、二次函数、指数函数、对数函数等,不同的函数具有不同的性质。
常见函数的公式:一次函数:y = kx + b二次函数:y = ax^2 + bx + c指数函数:y = a^x (a > 0, a ≠ 1)对数函数:y = loga(x) (a > 0, a ≠ 1)2.三角函数及其应用三角函数是指正弦函数、余弦函数、正切函数等。
由于三角函数具有周期性、奇偶性、单调性等特点,因此在物理、工程、数学等领域中被广泛应用。
三角函数的公式:正弦函数:y = sinx余弦函数:y = cosx正切函数:y = tanx割函数:y = secx余割函数:y = cotx3.微积分基础微积分是研究函数变化的过程的一门学科,包括导数和积分两个方面。
导数表示函数在某一点的变化率,积分则表示函数在一段区间内的累积变化量。
微积分在自然科学、社会科学、工程技术等领域中均有广泛应用。
微积分的公式:导数公式:f'(x) = lim├_(∆x→0) (f(x + ∆x) - f(x))/∆x积分公式:∫_a^b f(x)dx = lim├_n→∞ □(□(□(Δx )))Σ▒f(xi)Δx第二篇:高二数学解析几何知识点及公式总结1.向量及其运算向量是数学中的一种对象,具有大小和方向两个要素。
向量的运算包括加、减、数乘、点乘等,可以用来描述物体的运动、力的作用等。
向量运算的公式:向量加法: A + B = (Ax + Bx, Ay + By)向量减法: A - B = (Ax - Bx, Ay - By)向量数乘: kA = (kAx, kAy)向量点乘:A·B = |A||B|cosθ2.平面及直线的方程平面是空间内的一种二维图形,可以通过点和法向量来确定。
高二数学知识点总结(精选15篇)

高二数学知识点总结(精选15篇)高二数学知识点总结1第一章:解三角形。
掌握正弦余弦公式及其变式和推论和三角面积公式即可。
第二章:数列。
考试必考。
等差等比数列的通项公式、前n 项和及一些性质。
这一章属于学起来很容易,但做题却不会做的类型。
考试题中,一般都是要求通项公式、前n项和,所以拿到题目之后要带有目的的去推导。
第三章:不等式。
这一章一般用线性规划的形式来考察。
这种题一般是和实际问题联系的,所以要会读题,从题中找不等式,画出线性规划图。
然后再根据实际问题的限制要求求最值。
选修中的简单逻辑用语、圆锥曲线和导数:逻辑用语只要弄懂充分条件和必要条件到底指的是前者还是后者,四种命题的真假性关系,逻辑连接词,及否命题和命题的否定的区别,考试一般会用选择题考这一知识点,难度不大;圆锥曲线一般作为考试的压轴题出现。
而且有多问,一般第一问较简单,是求曲线方程,只要记住圆锥曲线的表达式难度就不大。
后面两到三问难打一般会很大,而且较费时间。
所以不建议做。
这一章属于学的比较难,考试也比较难,但是考试要求不高的内容;导数,导数公式、运算法则、用导数求极值和最值的方法。
一般会考察用导数求最值,会用导数公式就难度不大。
高二数学知识点总结2一、集合、简易逻辑(14课时,8个)1、集合;2、子集;3、补集;4、交集;5、并集;6、逻辑连结词;7、四种命题;8、充要条件。
二、函数(30课时,12个)1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。
12、函数的应用举例。
三、数列(12课时,5个)1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。
四、三角函数(46课时,17个)1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。
高二数学课本知识点总结归纳(8篇)

高二数学课本知识点总结归纳(8篇)高二数学课本知识点总结归纳(8篇)你知道哪些高二数学知识点是真正对我们有帮助的吗在平凡的学习生活中,大家都背过各种知识点吧知识点就是一些常考的内容,或者考试经常出题的地方。
下面是小编给大家整理的高二数学课本知识点总结归纳,仅供参考希望能帮助到大家。
高二数学课本知识点总结归纳篇1高二数学知识点11、导数的定义:在点处的导数记作、2、导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。
V=s/(t)表示即时速度。
a=v/(t)表示加速度。
3、常见函数的导数公式:4、导数的四则运算法则:5、导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
高二数学知识点2等差数列:对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。
那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:将以上n—1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n—1个d,如此便得到上述通项公式。
此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。
值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。
等比数列:对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。
高二数学必考知识点精选归纳【五篇】

高二数学必考知识点精选归纳【五篇】学任何一门功课,都不能只有三分钟热度,而要一鼓作气,天天坚持,久而久之,不论是状元还是伊人,都会向你招手。
下面就是给大家带来的高二数学知识点总结,希望能帮助到大家!高二数学知识点总结1一、随机事件主要掌握好(三四五)(1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。
(2)四种运算律:交换律、结合律、分配律、德莫根律。
(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。
二、概率定义(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。
三、概率性质与公式(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B 互不相容,则P(A+B)=P(A)+P(B);(2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.(5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式.高二数学知识点总结21.解不等式问题的分类(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化为一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解无理不等式;④解指数不等式;⑤解对数不等式;⑥解带绝对值的不等式;⑦解不等式组.2.解不等式时应特别注意下列几点:(1)正确应用不等式的基本性质.(2)正确应用幂函数、指数函数和对数函数的增、减性.(3)注意代数式中未知数的取值范围.3.不等式的同解性(5)|f(x)|(6)|f(x)|g(x)①与f(x)g(x)或f(x)-g(x)(其中g(x)≥0)同解;②与g(x)0同解.(9)当a1时,af(x)ag(x)与f(x)g(x)同解,当0ag(x)与f(x)高二数学知识点总结3、圆锥曲线(18课时,7个)1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。
高二数学知识点总结归纳【五篇】

高二数学知识点总结归纳【五篇】高二数学是整个高中数学学科体系的重要部分,其涵盖的知识点和内容比高一数学更加广泛和深入。
在高二数学学习中,有许多重要的知识点需要我们理解和掌握,这些知识点不仅关乎我们学习数学的基础,也是我们未来竞争中必不可少的组成部分。
在本文中,我们将为大家总结归纳五篇高二数学知识点,帮助大家更好地进行数学学习。
一、高二数学知识点总结之初等函数初等函数是高中数学中的重要分支,也是理科生考试中不可缺少的重要知识点。
其中,包括常见的多项式函数、指数函数、对数函数、三角函数等等。
其中,多项式函数和三角函数经常出现在各类赛事和奥赛中,并且重要性非常高。
例如,多项式函数有如下例子:1、$y = x^2 + x + 1$,它的图像一定是一个开口向上的抛物线,其中顶点的横坐标为$x = -\frac{1}{2}$ ,纵坐标为$y =\frac{3}{4}$。
2、$y = x^3 - 3x$,它的图像对称于原点,其中$x =\sqrt[3]{3}$,$x = -\sqrt[3]{3}$,$x = 0$是它的零点,且$x$轴为其渐近线。
3、$y = \frac{x + 2}{2x^2 + x - 3}$,它的最简式是$y =\frac{1}{2(x-1)} - \frac{1}{2(x+3)}$,它的函数图像有两个渐近线:$x = 1$和$x = -\frac{3}{2}$,且$y$轴为其对称轴。
二、高二数学知识点总结之平面几何平面几何是高中数学的另一个重要方向,它主要研究平面上的图形、尺寸、位置等特性,包括平面中的各种三角形、四边形、圆与圆、平行四边形、相似三角形、几何变换等内容。
在此,我们可以举例如下:1、三角形内角和定理:一个三角形内角的和等于$180°$。
2、欧拉线定理:对于任何三角形,它的欧拉线、垂心和重心共线,并且欧拉线的长度等于重心到垂心距离的$2$倍。
3、圆的欧拉定理:对于任何圆,它的欧拉定理都成立,即圆心、外心、内心和互补的费马点四点共线。
高二数学知识点重点梳理最新5篇精选

高二数学知识点重点梳理最新5篇精选直到高二,学生的学习自觉性增强,获取知识一方面从教师那里接受,但这种接受也应该有别于以前的被动接受,它是在经过自己思考、理解的基础上接受。
另一方面通过自学主动获取知识。
能否顺利实现转变,是成绩能否突破的关键。
高二数学知识点总结11.解不等式问题的分类(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化为一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解无理不等式;④解指数不等式;⑤解对数不等式;⑥解带绝对值的不等式;⑦解不等式组.2.解不等式时应特别注意下列几点:(1)正确应用不等式的基本性质.(2)正确应用幂函数、指数函数和对数函数的增、减性.(3)注意代数式中未知数的取值范围.3.不等式的同解性(5)|f(x)|(6)|f(x)|g(x)①与f(x)g(x)或f(x)-g(x)(其中g(x)≥0)同解;②与g(x)0同解.(9)当a1时,af(x)ag(x)与f(x)g(x)同解,当0ag(x)与f(x)高二数学知识点总结2用样本的数字特征估计总体的数字特征1、本均值:2、样本标准差:3.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。
在随机抽样中,这种偏差是不可避免的。
虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。
4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变(2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍(3)一组数据中的值和最小值对标准差的影响,区间的应用;“去掉一个分,去掉一个最低分”中的科学道理两个变量的线性相关1、概念:(1)回归直线方程(2)回归系数2.最小二乘法3.直线回归方程的应用(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。
高二数学重点复习知识点归纳5篇

高二数学重点复习知识点归纳5篇高二数学是一门很重要的学科,它不仅是其它学科的基础,还是升学和工作的重要一环。
由于数学内容较多,知识点也较为深奥,复习难度较大,因此,在复习高二数学时,学生们需要对各个知识点进行分类、整理和归纳. 以下是五种重点复习知识点的归纳。
1. 函数与导数函数与导数是高二数学中的核心知识点,也是后续理论的基础,因此非常重要。
在复习时,可以重点复习以下重要知识点:(1)常见函数及其性质,如常函数、幂函数、指数函数、对数函数、三角函数等;(2)函数的定义域、值域、单调性及极值等;(3)导数的定义、求导法则及其应用;(4)二阶导数的概念与应用;(5)函数的极值、曲线形状及其与导数的关系等。
2. 三角恒等式三角恒等式也是高二数学中的重点,几乎涉及全部内容,考试时也经常考查,因此需要重视。
在复习时,可以重点复习以下重要知识点:(1)正弦、余弦、正切、余切等三角函数的定义及其图像;(2)三角函数的基本恒等式、和差化积恒等式等;(3)三角函数的奇偶性、单调性、周期性等;(4)三角函数的简单变形及其应用。
3. 数列与数学归纳法数列与数学归纳法也是高二数学中的重点知识点,也是考试中经常考查的内容。
在复习时,可以重点复习以下重要知识点:(1)基本概念,如等差数列、等比数列、递推公式等;(2)数列的通项公式及其应用;(3)数列的极限及其性质;(4)数学归纳法的概念、步骤及其应用。
例如:1. 一等差数列的第6项是10,第10项是22,求第20项的值。
2. 若等比数列的第3项是12,第6项是162,第10项是5832,求它的首项和公比。
3. 证明:若一个数为4的倍数,则此数的数字和也一定是4的倍数。
4. 解析几何解析几何是数学中非常重要的一个分支学科,也是理工类专业必学的一门科目,复习难度较大,需要重视。
在复习时,可以重点复习以下重要知识点:(1)直线和平面的方程及其性质,如一般式、截距式、斜截式等;(2)二元一次方程组的解法及其应用;(3)向量的定义、基本性质、运算法则及其应用;(4)空间几何图形的方程及其性质,如直线、平面、圆锥曲线、圆柱曲面等例如:1. 已知两条直线的方程分别为y = kx + 2和y = 2x + 1,问此两直线是否相交?2. 已知四个点A(–2,3)、B(5,–1)、C(1,–4)、D(–6,0),判断这四个点能否构成一个矩形,并证明你的结论。
高二数学知识点考点归纳5篇

高二数学知识点考点归纳高二数学知识点考点归纳5篇高二数学知识点考点归纳5篇1第一章:集合和函数的基本概念,错误基本都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就是五分没了。
次一级的知识点就是集合的韦恩图,会画图,集合的“并、补、交、非”也就解决了,还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。
在第一轮复习中一定要反复去记这些概念,的方法是写在笔记本上,每天至少看上一遍。
第二章:基本初等函数:指数、对数、幂函数三大函数的运算性质及图像。
函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。
关于这三大函数的运算公式,多记多用,多做一点练习基本就没多大问题。
函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。
对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考常错点。
另外指数函数和对数函数的对立关系及其相互之间要怎样转化问题也要了解清楚。
第三章:函数的应用。
主要就是函数与方程的结合。
其实就是的实根,即函数的零点,也就是函数图像与X轴的交点。
这三者之间的转化关系是这一章的重点,要学会在这三者之间的灵活转化,以求能最简单的解决问题。
关于证明零点的方法,直接计算加得必有零点,连续函数在x轴上方下方有定义则有零点等等,这是这一章的难点,这几种证明方法都要记得,多练习强化。
这二次函数的零点的Δ判别法,这个倒不算难。
高二数学知识点考点归纳5篇2空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.线线平行线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.线面平行线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)高二数学知识点考点归纳5篇3导数是微积分中的重要基础概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学必考知识点归纳整理5篇
学习高中数学知识点的时候需要讲究方法和技巧,更要学会对高中数学知识点进行归纳整理。
高二数学知识点总结1
一、随机事件
主要掌握好(三四五)
(1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。
(2)四种运算律:交换律、结合律、分配律、德莫根律。
(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。
二、概率定义
(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;
(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;
(4)公理化定义:满足三条公理的任何从样本空间的子集集合到
[0,1]的映射。
三、概率性质与公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B 互不相容,则P(A+B)=P(A)+P(B);
(2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式.
高二数学知识点总结2
空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、
俯视图(从上向下)
注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。
空间几何体的直观图——斜二测画法
斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
柱体、锥体、台体的表面积与体积
(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)
(3)柱体、锥体、台体的体积公式
(4)球体的表面积和体积公式:V=;S=
高二数学知识点总结3
1、圆的定义
平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程
(x-a) +(y-b) =r
(1)标准方程,圆心(a,b),半径为r;
(2)求圆方程的方法:
一般都采用待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系
直线与圆的位置关系有相离,相切,相交三种情况:
(1)设直线,圆,圆心到l的距离为,则有;;
(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设
点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】
(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2
高二数学知识点总结4
分层抽样
先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
两种方法
1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。
2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。
2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。
分层标准
(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。
(2)以保证各层内部同质性强、各层之间异质性强、突出总体内
在结构的变量作为分层变量。
(3)以那些有明显分层区分的变量作为分层变量。
分层的比例问题
(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。
(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。
如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。
高二数学知识点总结5
数列定义:
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。
等差数列的通项公式为:an=a1+(n-1)d(1)
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
以上n均属于正整数。
解释说明:
从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。
在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar 为Am,An的等差中项,且为数列的平均数。
且任意两项am,an的关系为:an=am+(n-m)d
它可以看作等差数列广义的通项公式。
推论公式:
从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。
基本公式:
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
末项=首项+(项数-1)×公差
高二数学必考知识点归纳整理5篇。