24v开关电源设计
24V开关电源设计

24V开关稳压电源设计2009-11-10 13:53:1324V开关稳压电源设计输出电压4~16V开关稳压电源的设计2007-02-03 06:18摘要:介绍一种采用半桥电路的开关电源,其输入电压为交流220V±20%,输出电压为直流4~16V,最大电流40A,工作频率50kHz。
重点介绍了该电源的设计思想,工作原理及特点。
关键词:脉宽调制;半桥变换器;电源1、引言:在科研、生产、实验等应用场合,经常用到电压在5~15V,电流在5~40A的电源。
而一般实验用电源最大电流只有5A、10A。
为此专门开发了电压4V~16V连续可调,输出电流最大40A的开关电源。
它采用了半桥电路,所选用开关器件为功率MOS管,开关工作频率为50kHz,具有重量轻、体积小、成本低等特点。
2、主要技术指标1)交流输入电压AC220V±20%;2)直流输出电压4~16V可调;3)输出电流0~40A;4)输出电压调整率≤1%;5)纹波电压Up p≤50mV;6)显示与报警具有电流/电压显示功能及故障告警指示。
3、基本工作原理及原理框图该电源的原理框图如图1所示。
220V交流电压经过EMI滤波及整流滤波后,得到约300V的直流电压加到半桥变换器上,用脉宽调制电路产生的双列脉冲信号去驱动功率MOS管,通过功率变压器的耦合和隔离作用在次级得到准方波电压,经整流滤波反馈控制后可得到稳定的直流输出电压。
图1整体电源的工作框图4、各主要功能描述4.1、交流EMI滤波及整流滤波电路交流EMI滤波及整流滤波电路如图2所示。
图2交流EMI滤波及输入整流滤波电路电子设备的电源线是电磁干扰(EMI)出入电子设备的一个重要途径,在设备电源线入口处安装电网滤波器可以有效地切断这条电磁干扰传播途径,本电源滤波器由带有IEC插头电网滤波器和PCB电源滤波器组成。
IEC插头电网滤波器主要是阻止来自电网的干扰进入电源机箱。
PCB电源滤波器主要是抑制功率开关转换时产生的高频噪声。
24v开关电源设计

摘要随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用, 人们对其需求量日益增长, 并且对电源的效率、体积、重量及可靠性等方面提出了更高的要求。
开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨又重的线性电源。
电力电子技术的发展,特别是大功率器件IGBT和MOSFET的迅速发展,将开关电源的工作频率提高到相当高的水平,使其具有高稳定性和高性价比等特性。
开关电源技术的主要用途之一是为信息产业服务,信息技术的发展对电源技术又提出了更高的要求,从而促进了开关电源技术的发展。
本次设计采用典型的正激式开关电源结构设计形式,以(RCC)作为控制核心器件,运用脉宽调制的基本原理,并采用辅助电源供电方式为其供电,有利于增大主电源的输出功率。
采用场效应管作为开关器件,其导通和截止速度很快,导通损耗小,这就为开关电源的高效性提供保障。
同时,电路中辅以过压过流保护电路,为系统的安全工作提供保障,本电路注意改善负载调整率,降低了电磁串扰,达到绿色环保的目的。
输出电压可调,使其可适用于不同场合。
关键词高频变压器;场效应管;正激式变换器;脉宽调制AbstractWith the wide application of switching power supply in the computer, communications, aerospace, instrumentation and electrical appliances and so on, the growing demand for its people, and has put forward higher requirements for power efficiency, volume, weight and reliability.Switching power supply with its high efficiency, small size, light weight and other advantages in many respects gradually replaced the linear power supply, low efficiency, heavy and bulky. The development of power electronic technology, especially the rapid development of the high-power IGBT devices and MOSFET, increasing the working frequency of the switching power supply to a very high level, which has high stability and high performance characteristics. One of the main purposes of switching power supply technology is serves for the information industries, the development of information technology on power technology and put forward higher requirements, so as to promote the development of switch power supply. This design is excited by the switching power supply design of the structure of typical, with (RCC) as the core control device, using the basic principle of pulse width modulation, and auxiliary power supply by way of its power, is conducive to the output power increase of the main power supply. FET used as a switching device, the conducting and closing fast, conduction loss is small, which guarantee the high efficiency switching power supply. At the same time,the circuit with over-voltage and over-current protection circuit, providing security for the safe operation of system, the attention of the circuit to improveload regulation, reducing the electromagnetic crosstalk, to achieve the purposeof environmental protection. The output voltage is adjustable, so that it can be suitable for different occasionsKeywords:High frequency transformer; MOSFET; forward converter; pulsewidth modulation目录1 诸论 (5)1.1 开关电源的基本概念 (6)1.2 开关电源的发展 (6)1.2.1 开关电源的发展史 (7)2 电路的比较方案 (7)2.1 方案一、反激式变换器 (7)2.2 方案二、半桥变换器 (8)2.3 方案三、正激式变换器 (11)3 各部分电路工作原理 (12)3.1 单相桥式整流电路 (12)3.1.2 参数计算 (13)3.2 功率变换电路 (14)3.2.1 MOS管工作原理 (14)3.3.1肖特基二极管 (18)3.4 高频变压器的设计 (19)3.4.1 变压器的设计 (19)3.4.2 控制电路工作原理 (23)3.5 L431的功能 (23)3.6 短路保护电路 (25)3.6.1 输入保护器件 (25)3.6.2输入瞬间电压保护 (26)4、电路的总结构 .........................................................错误!未定义书签。
24v开关电源电路图(五款24v开关电源原理详解)

24v开关电源电路图(五款24v开关电源原理详解)24v开关电源电路图(五款24v开关电源原理详解)24v开关电源电路图(一)电路以UC3842振荡芯片为核心,构成逆变、整流电路。
UC3842一种高性能单端输出式电流控制型脉宽调制器芯片,相关引脚功能及内部电路原理已有介绍,此处从略。
AC220V电源经共模滤波器L1引入,能较好抑制从电网进入的和从电源本身向辐射的高频干扰,交流电压经桥式整流电路、电容C4滤波成为约280V的不稳定直流电压,作为由振荡芯片U1、开关管Q1、开关变压器T1及其它元件组成的逆变电路。
逆变电路,可以分为四个电路部分讲解其电路工作原理。
图1 CL-A-35-24仪用DC24V开关电源1、振荡回路:开关变压器的主绕组N1、Q1的漏--源极、R2(工作电流检测电阻)为电源工作电流的通路;本机启动电路与其它开关电源(启动电路由降压限流电阻组成)有所不同,启动电路由C5、D3、D4组成,提供一个“瞬态”的启动电流,二极管D2吸收反向电压,D3具有整流作用,保障加到U1的7脚的启动电流为正电流;电路起振后,由N2自供电绕组、D2、C5整流滤波电路,提供U1芯片的供电电压。
这三个环节的正常运行,是电源能够振荡起来的先决条件。
当然,U1的4脚外接定时元件R48、C8和U1芯片本身,也构成了振荡回路的一部分。
电容式启动电路,当过载或短路故障发生时,电路能处于稳定的停振保护状态,不像电阻启动电路,会再现“打嗝”式间歇振荡现象。
工作电流检测从电阻R2上取得,当故障状态引起工作过流异常增大时,U1的6脚输出PWM脉冲占空比减小,N1自供电绕组的感应电路也随之降低,当U1的7脚供电电压低于10V时,电路停振,负载电压为0,这是过流(过载或短路)引发U1内部欠电压保护电路动作导致的输出中止;工作电流异常增大时,R2上的电压降大于1V时,内部锁存器动作,电路停振,这是由过流引发U1内部过流保护动红豆博客作导致输出中止。
24V开关电源的几种保护电路

24V开关电源常用的几种保护电路1.防浪涌软启动电路24V开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。
在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。
上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。
2.过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。
因此对输入电源的上限和下限要有所限制,为此采用过压、欠压保护以提高电源的可靠性和安全性。
温度是影响电源设备可靠性的最重要因素。
根据有关资料分析表明,电子元器件温度每升高2℃,可靠性下降10%,温升50℃时的工作寿命只有温升25℃时的1/6,为了避免功率器件过热造成损坏,在开关电源中亦需要设置过热保护电路。
3.缺相保护电路由于电网自身原因或电源输入接线不可靠,24V开关电源有时会出现缺相运行的情况,且掉相运行不易被及时发现。
当电源处于缺相运行时,整流桥某一臂无电流,而其它臂会严重过流造成损坏,同时使逆变器工作出现异常,因此必须对缺相进行保护。
检测电网缺相通常采用电流互感器或电子缺相检测电路。
由于电流互感器检测成本高、体积大,故开关电源中一般采用电子缺相保护电路。
图5是一个简单的电子缺相保护电路。
三相平衡时,R1~R3结点H电位很低,光耦合输出近似为零电平。
当缺相时,H点电位抬高,光耦输出高电平,经比较器进行比较,输出低电平,封锁驱动信号。
比较器的基准可调,以便调节缺相动作阈值。
该缺相保护适用于三相四线制,而不适用于三相三线制。
电路稍加变动,亦可用高电平封锁PWM信号。
初级开关电源MINI 24VDC 1A 说明书

45 x 99 x 114.5 mm 约0.25kg约0.4kg约0.4kg
67.5 x 99 x 114.5 mm
100-240 V AC 85-264 V AC / 90-350 V DC 45-65 Hz / 0 Hz
1.3A/在230VAC时约0.8A
)>20ms(在120VAC时)/>100ms(在230VAC时) <1s
缓冲时间(典型值)>30ms(在120VAC时)/>140ms(在230VAC时) 电源起动时间
输入端保险丝内置2AT 输出参数 额定输出电压 UN/ 误差 输出电压调节范围 额定输出电流 IN ( 最高60 °C) / 带功率裕度 IBoost 可并联连接用于冗余和增加输出功率
最大功率损耗(空载/额定负载)/效率(典型值) 残波/额定负载时的峰值开关电压(20MHZ)
UL/C-UL条例UL508 UL/C-UL认证UL60950
NEC等级2(MINI24VDC/100W ) 符合 EN 61 000-3-2 c,符合EMC准则89/336/EEC
158 Phoenix Contact
114.5
114.5
114.5
99 99 99
45
67.5
67.5
MINI 24 V DC/2 A
信号 DC OK ( 有源: Uout > 0.9 x UN = 高信号 ) LED (Uout < 0.9 x UN = LED闪烁 ) 尺寸/重量 尺寸 W x H x D 重量约0.17kg
100-240 V AC 85-264 V AC / 90-350 V DC 45-65 Hz / 0 Hz
初级开关电源,超薄设计
基于软开关的24V开关电源的设计与仿真

叭
重降低 了效率. 而采 用 软 开 关 不 对称 半 桥 可 以 降低
开关 损耗 , 通过 提 高开关 频率来 减 小变 压器 的体 积. 此外 , 开关不 对 称半桥 还能 减小 线路 的电磁干 扰 . 软 软开 关不 对称 半桥 利用 寄生 电容 和变压 器 漏感 谐振
]构 卜图 惺撤 L 控源 制整 电体 路结 r电 _ 一 联
、 z \S
图 2 全 桥 整 流 滤 波 电 路
当S 与 S 导通 时 , w 电压 为正 半周 , V 对 D 、 V 加正 向电压 , D V 导通 , D V 、 D 电路 中构成 w。 、
V U。V D 、 、 D 回路 , L。 形成上 正下 负 的半 波整 在 ,上
2 电 压 ( 1 . 4V 图 )
流 电压 ; S 当 。与 S 导 通 时 , 。 w。电压 为 负 半 周 , 对
V 、D D。V 加正 向电压 , D。V V 、 D。 导通 , 电路 中构 成
W。VD。 U。V 回路 , U。 、 、 、D 在 上形 成上 正下 负 的另 外半 波整 流 电压 . 出电压 由原 边上 正下 负 的正 输
3 0V 的直流 电压 加 在半 桥 变换 器 上 , 脉 宽 调 制 0 用 电路 产 生 的 P WM 波 去 驱 动 功 率 M0S E 开 关 FT
管 , 功 率变压 器 的次级 得 到准方 波 电压 , 经 过整 在 再 流滤 波及 反 馈 控 制 后 可 在 输 出端 得 到 稳 定 的 直 流
●J
』+ { 一 “
乙
1 2 1 开 关 电 源 总体 结构 4V/ A 2
2 1 开关 电源包 括 主电路 、 动 电路 、 4v/ 2A 驱 控 制 电路 、 护 电路 、 助 电路 等 部 分 _ . 入 2 0V 保 辅 3输 ] 2
高稳定度直流电源+24V设计说明书

高稳定度直流电源设计
1
随着电力电子技术的发展,电力电子设备与人们工作、生活的关系日益密切,而电子设备都离不开可靠的电源。进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代。进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛使用了开关电源,更促进了开关电源技术的迅速发展。开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,其成本低、效率高、体积小、重量轻、电源输出组数多、极性可变等诸多优点,这些使得开关电源在现在生产和生活中得到广泛应用。
毕业设计说明书
高稳定度直流电源设计
专业
电气工程及其自动化
学生
班级
学号
指导教师
完成日期
高稳定度直流电源设计
摘 要:叙述开关电源的发展与现状,简要介绍开关电源的分类、发展动向及其意义;阐述了直流开关电源的结构和工作原理,对开关电源的主电路和控制回路进行设计:在主电路的输入回路中整流电路采用单相桥式整流,其中还设计了低通滤波电路、整流滤波电路和其他形式的滤波电路。此设计中功率转换电路采用半桥型DC/DC变换器,这是开关电源的核心部分,对此部分进行了重点分析和设计;控制电路采用电压型PWM控制,控制器采用开关电源集成控制器SG3525A,并对其特点、结构和工作原理作了简单介绍,对于系统的结构也进行了重点设计,并对其各个部分进行了元器件的选择和参数计算。其他部分还设计了保护电路和辅助电源电路。最后,用MATLAB仿真软件对主电路进行仿真测试,通过仿真测试结果对该直流电源设计的合理性进行判断,视其稳定性是否符合设计要求。
双24 V开关电源自动切换电路设计

双24 V开关电源自动切换电路设计作者:王旭来源:《硅谷》2014年第11期摘要文章介绍了针对门禁系统车站级紧急按钮模块供电系统存在的不足所设计的双24 V 开关电源自动切换电路,该设计能实现双24 V开关电源自动切换的功能,有效避免由于门禁紧急按钮系统因开关电源故障导致全站门禁设备断电的问题,提高地铁设备运行稳定性。
关键词24 V;开关电源;自动;切换中图分类号:TM564 文献标识码:A 文章编号:1671-7597(2014)11-0059-011概述目前,车站级门禁紧急按钮是通过24 V开关电源和两个继电器组合,实现车站全部门禁紧急释放功能。
设计时出于车站门禁用户使用的安全要求,为确保该紧急按钮时刻保持正常工作,避免电路中个别元器件故障,引起车站级门禁紧急按钮不能正常工作的情况,只要该电路任意元器件出现故障时,门禁系统均会断电。
而此系统中的24 V开关电源尤为重要,在7*24小时的工作状态下,出现欠压或者无输出的情况在所难免,全站门禁设备就会断电释放,造成重大故障。
2需解决问题为提高门禁紧急按钮系统的稳定性,需要组建一套双开关电源切换系统,通过硬件判断主开关电源与辅开关电源的电压情况,实现当主开关电源供电电压大于22 V时,由主开关电压源供电继电器,当主开关电源出现低于22 V的供电电压时,自动切换至辅开关电源供电,继续为继电器供电,实现无间断供电的作用。
3技术方案双电源自动切换电路如图2所示。
它由电压检测器MC34064、小功率开关管2N2222、P 沟道功率MOSFET、N沟道功率MOSFET及备用电源V2等组成。
电路原理如下。
1)V1电压正常(V1>22 V)。
当V1大于22 V,经TL431及电阻分压,MC34064检测到电压大于4.5 V,其输出端R输出5 V电压,点亮LED1(指示V1正常),并使Q3导通,12 V稳压二极管D1被击穿,两端电压稳定在12 V,Q1的G端经R5、R6分压后电压为6 V,因此,Q1的Vgs=-18 V,Q1导通,同时Q2的G端因Q3导通接地,所以Vgs=0V,Q2截止,V2无输出,V1为供电开关电源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用, 人们对其需求量日益增长, 并且对电源的效率、体积、重量及可靠性等方面提出了更高的要求。
开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨又重的线性电源。
电力电子技术的发展,特别是大功率器件IGBT和MOSFET的迅速发展,将开关电源的工作频率提高到相当高的水平,使其具有高稳定性和高性价比等特性。
开关电源技术的主要用途之一是为信息产业服务,信息技术的发展对电源技术又提出了更高的要求,从而促进了开关电源技术的发展。
本次设计采用典型的正激式开关电源结构设计形式,以(RCC)作为控制核心器件,运用脉宽调制的基本原理,并采用辅助电源供电方式为其供电,有利于增大主电源的输出功率。
采用场效应管作为开关器件,其导通和截止速度很快,导通损耗小,这就为开关电源的高效性提供保障。
同时,电路中辅以过压过流保护电路,为系统的安全工作提供保障,本电路注意改善负载调整率,降低了电磁串扰,达到绿色环保的目的。
输出电压可调,使其可适用于不同场合。
关键词高频变压器;场效应管;正激式变换器;脉宽调制AbstractWith the wide application of switching power supply in the computer, communications, aerospace, instrumentation and electrical appliances and so on, the growing demand for its people, and has put forward higher requirements for power efficiency, volume, weight and reliability.Switching power supply with its high efficiency, small size, light weight and other advantages in many respects gradually replaced the linear power supply, low efficiency, heavy and bulky. The development of power electronic technology, especially the rapid development of the high-power IGBT devices and MOSFET, increasing the working frequency of the switching power supply to a very high level, which has high stability and high performance characteristics. One of the main purposes of switching power supply technology is serves for the information industries, the development of information technology on power technology and put forward higher requirements, so as to promote the development of switch power supply. This design is excited by the switching power supply design of the structure of typical, with (RCC) as the core control device, using the basic principle of pulse width modulation, and auxiliary power supply by way of its power, is conducive to the output power increase of the main power supply. FET used as a switching device, the conducting and closing fast, conduction loss is small, which guarantee the high efficiency switching power supply. At the same time,the circuit with over-voltage and over-current protection circuit, providing security for the safe operation of system, the attention of the circuit to improveload regulation, reducing the electromagnetic crosstalk, to achieve the purposeof environmental protection. The output voltage is adjustable, so that it can be suitable for different occasionsKeywords:High frequency transformer; MOSFET; forward converter; pulsewidth modulation目录1 诸论 (5)1.1 开关电源的基本概念 (6)1.2 开关电源的发展 (6)1.2.1 开关电源的发展史 (7)2 电路的比较方案 (7)2.1 方案一、反激式变换器 (7)2.2 方案二、半桥变换器 (8)2.3 方案三、正激式变换器 (11)3 各部分电路工作原理 (12)3.1 单相桥式整流电路 (12)3.1.2 参数计算 (13)3.2 功率变换电路 (14)3.2.1 MOS管工作原理 (14)3.3.1肖特基二极管 (18)3.4 高频变压器的设计 (19)3.4.1 变压器的设计 (19)3.4.2 控制电路工作原理 (23)3.5 L431的功能 (23)3.6 短路保护电路 (25)3.6.1 输入保护器件 (25)3.6.2输入瞬间电压保护 (26)4、电路的总结构 .........................................................错误!未定义书签。
附录.............................................................................错误!未定义书签。
附录一 (28)附录二 (29)参考文献 (30)致 (31)1 诸论电是工业的动力,是人类生活的源泉。
电源是生产电的装置,表示电源特性的参数有功率、电压、电流、频率等;在同一参数要求下,又有重量、体积、效率和可靠性等指标。
我们用的电,一般都需经过转换才能适合使用的需要,例如交流转换成直流,高电压变成低电压,大功率变换为小功率等。
按照电子理论,所谓AC/DC就是交流转化为直流;AC/AC称为交流变交流,即为改变频率;DC/AC称为逆变;DC/DC为直流变交流后再变为直流。
为了达到转换的目的,电源变换的方法是多样的。
自20世纪60年代,人们研发出了二极管、三极管半导体器件后,就用半导体器件进行转换。
所以,凡是用半导体功率器件作开关,将一种电源形态转换成另一种形态的电路,叫做开关变换电路。
在转换时,以自动控制稳压输出并有各种保护环节的电路,称为开关电源(Switching Power Supply)。
1.1 开关电源的基本概念开关电源是通过电路控制开关管进行高速的导通与截止。
利用开关功率器件并通过功率变换技术而制成的直流稳压电源。
它具有体积小、重量轻、效率高、对电网电压及频率的变化适应性强、输出电压稳定、有利于计算机信息保护等优点,因而广泛应用于以电子计算机为主导的各种终端设备、通信设备,是当今电子信息产业飞速发展不可缺少的一种电源。
开关电源又被称为高效能节能电源,部电路工作在高频开关状态,转化为高频交流电的原因是高频交流在变压器变压电路中的效率要比50Hz高很多,自身消耗的能量很低,电源效率可达80%左右,比普通线性稳压电源提高一倍。
目前生产的无工频变压器式中,开关电源采用脉冲宽调制器PWM或脉冲频率调制器PFM1.2 开关电源的发展随着大规模和超大规模集成电路的快速发展。
特别是微处理器和半导体存储器的开发利用,孕育了电子系统的新一代产品。
显然,那种体积大而笨重的使用工频变压器的线性调节稳压电源已经过时。
取而代之的是小型化、重量轻、效率高的隔离式开关电源。
隔离式开关电源的核心是一种高频电源变换电路。
它使交流电源高效率地产生一路或多路经调整的稳定直流电压,开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用, 人们对其需求量日益增长, 并且对电源的效率、体积、重量及可靠性等方面提出了更高的要求。
开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨又重的线性电源。
电力电子技术的发展,特别是大功率器件IGBT和MOSFET的迅速发展,将开关电源的工作频率提高到相当高的水平,使其具有高稳定性和高性价比等特性。
在转换时,以自动控制稳压输出并有各种保护环节的电路,称为开关电源(Switching Power Supply)。
1.2.1 开关电源的发展史自20世纪60年代,人们研发出了二极管、三极管半导体器件后,就用半导体器件进行转换。
所以,凡是用半导体功率器件作开关,将一种电源形态转换成另一种形态的电路,叫做开关变换电路。
在70年代,随着电子技术的不断发展,集成化的开关电源就已被广泛地应用于电子计算机、彩色电视机、卫星通信设备、程控交换机、精密仪表等电子设备。
这是由于开关电源能够满足现代电子设备对多种电压和电流的需求。
随着半导体技术的高度发展,高反压快速开关晶体管使无工频变压器的开关电源迅速实用化。
而半导体集成电路技术的迅速发展又为开关电源控制电路的集成化奠定了基础,适应各类开关电源控制要求的集成开关稳压器应运而生,其功能不断完善,集成化水平也不断提高,外接元件越来越少,使得开关电源的设计、生产和调整工作日益简化,成本也不断下降。