垂径定理经典练习题.
垂径定理练习题及答案

垂径定理练习题及答案一、选择题1. 在一个圆中,如果一条直径的端点与圆上一点相连,这条线段的中点与圆心的距离是直径的()A. 一半B. 半径B. 直径D. 无法确定2. 垂径定理指出,如果一条线段是圆的直径,那么它与圆上任意一点连线所形成的直角三角形的斜边是()A. 直径B. 半径C. 线段D. 无法确定3. 圆内接四边形的对角线互相平分,且其中一条对角线是圆的直径,那么这个四边形是()A. 平行四边形B. 矩形C. 菱形D. 无法确定4. 如果圆的半径为r,那么圆的直径是()A. 2rB. rC. r的平方D. 2r的平方二、填空题1. 垂径定理告诉我们,如果一条线段是圆的直径,那么它与圆上任意一点连线所形成的直角三角形的斜边是______。
2. 圆的内接四边形中,如果对角线互相平分,且其中一条对角线是圆的直径,那么这个四边形的对角线长度相等,等于______。
3. 已知圆的半径为5cm,那么圆的直径是______。
三、解答题1. 已知一个圆的半径为7cm,圆内有一点P,连接点P和圆心O,得到线段OP。
如果OP的长度为4cm,求点P到圆上任意一点的距离。
2. 一个圆的直径为14cm,圆内接四边形ABCD,其中AC为直径。
已知AB=6cm,求BC的长度。
四、证明题1. 证明:如果一个三角形是直角三角形,且斜边是圆的直径,那么这个三角形的外接圆的直径是这个三角形的斜边。
2. 证明:如果一个圆的内接四边形的对角线互相平分,且其中一条对角线是圆的直径,那么这个四边形的对角线长度相等。
答案:一、选择题1. A2. A3. B4. A二、填空题1. 直径的一半2. 圆的直径3. 10cm三、解答题1. 点P到圆上任意一点的距离是3cm(利用勾股定理,OP为直角三角形的一条直角边,半径为斜边,另一直角边为点P到圆上任意一点的距离)。
2. BC的长度是8cm(利用圆内接四边形的性质,对角线互相平分,且AC是直径,所以BD=7cm,再利用勾股定理求BC)。
(完整word版)垂径定理典型例题及练习

典型例题分析:例题1、 基本概念1.下面四个命题中正确的一个是( )A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心2.下列命题中,正确的是( ).A .过弦的中点的直线平分弦所对的弧B .过弦的中点的直线必过圆心C .弦所对的两条弧的中点连线垂直平分弦,且过圆心D .弦的垂线平分弦所对的弧例题2、垂径定理1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm ,那么油面宽度AB 是________cm.2、在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的最大深度为________cm.3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F .(1)求证:四边形OEHF 是正方形.(2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离.4、已知:△ABC 内接于⊙O ,AB=AC ,半径OB=5cm ,圆心O 到BC 的距离为3cm ,求AB 的长.5、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是的中点,AD ⊥BC 于D ,求证:AD=21BF.O A E F例题3、度数问题1、已知:在⊙O中,弦cm12=AB,O点到AB的距离等于AB的一半,求:AOB∠的度数和圆的半径.2、已知:⊙O的半径1=OA,弦AB、AC的长分别是2、3.求BAC∠的度数。
例题4、相交问题如图,已知⊙O的直径AB和弦CD相交于点E,AE=6cm,EB=2cm,∠BED=30°,求CD的长.例题5、平行问题在直径为50cm的⊙O中,弦AB=40cm,弦CD=48cm,且AB∥CD,求:AB与CD之间的距离.例题6、同心圆问题如图,在两个同心圆中,大圆的弦AB,交小圆于C、D两点,设大圆和小圆的半径分别为ba,.求证:22baBDAD-=⋅.例题7、平行与相似已知:如图,AB是⊙O的直径,CD是弦,于CDAE⊥E,CDBF⊥于F.求证:FDEC=.A BDCEO作 业: 一、概念题1.下列命题中错误的有()(1)弦的垂直平分线经过圆心(2)平分弦的直径垂直于弦(3)梯形的对角线互相平分(4)圆的对称轴是直径A .1个B .2个C .3个D .4个2、⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值范围是( )(A )5OM 3≤≤ (B )5OM 4≤≤(C )5OM 3<< (D )5OM 4<<3.如图,如果AB 为⊙O 直径,弦AB CD ⊥,垂足为E ,那么下列结论中错误的是( )A .DE CE =B .C .BAD BAC ∠=∠ D .AD AC >4.如图,AB 是⊙O 直径,CD 是⊙O 的弦,CD AB ⊥于E ,则图中不大于半圆的相等弧有( )对。
初中垂径定理试题及答案

初中垂径定理试题及答案一、选择题1. 在圆中,垂直于弦的直径是该弦的()。
A. 垂线B. 垂径C. 弦心距D. 弦长答案:B2. 垂径定理告诉我们,如果一条线段垂直于弦,并且平分弦,那么它也平分弦所对的()。
A. 弧B. 圆心角C. 弦心距D. 弦长答案:A3. 在圆中,如果一条直径垂直于弦,那么这条直径将弦分成的两段长度()。
A. 相等B. 不相等C. 无法确定D. 取决于圆的大小答案:A二、填空题4. 在圆中,如果弦AB的中点为M,且直径CD垂直于弦AB于点M,则弦AB所对的弧ACB的度数为______。
答案:90°5. 垂径定理在圆的几何学中非常重要,它说明了垂直于弦的直径将弦平分,并且平分的弦所对的弧是______。
答案:相等的三、解答题6. 已知圆O的半径为10cm,弦AB垂直于直径CD于点M,求弦AB的长度。
答案:由于直径CD垂直于弦AB,根据垂径定理,弦AB被直径CD平分,因此弦AB的长度为圆的直径,即20cm。
7. 在一个圆中,弦AC的长度为12cm,弦BC的长度为8cm,且AC和BC相交于点O,求圆的半径。
答案:由于AC和BC相交于圆心O,根据垂径定理,OA=OC,OB=OA,因此OA=OC=6cm,OB=OA=6cm。
根据勾股定理,圆的半径r满足r^2 =OA^2 + OB^2 = 6^2 + 6^2 = 72,所以r = √72 = 6√2 cm。
四、证明题8. 证明:在圆中,如果一条直径垂直于弦,那么这条直径将弦平分。
答案:设圆心为O,直径为CD,弦为AB,且CD垂直于AB于点M。
要证明CM=MD。
由于CD是直径,所以∠CMO=∠DMO=90°。
根据垂径定理,CM=MD,因此这条直径将弦平分。
圆垂径定理综合应用六十道经典题(答案解析)

(1)这条公路上的车辆形成的噪音是否会对学校造成影响?
(2)若车辆形成的噪音会对学校造成影响,为消除噪音,计划在公路边修筑一段消音墙,请你计算消音墙的长度.(只考虑声音的直线传播)
37.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC、BC,若∠BAC=30º,CD=6cm.
(1)求∠BCD的度数;
(2)求⊙O的直径.
38.如图,AC为⊙O的直径,CD为⊙O的弦,BE⊥CD于点E, = .
(1)求证:BE的⊙O切线.Fra bibliotek(2)若AD=4,EC=1,求BD的长.
39.如图,A,B,C是⊙O上的点,其中 ,过点B画BD⊥OC于点D.
C.若△BCD是等腰三角形,则△ACD也是等腰三角形
D.若PB=4PA,则CD=PB
3.如图,在 中, , 为互相垂直且相等的两条弦, , ,垂足分别为 , ,若 ,则 的半径是()
A. B. C. D.
4.如图, 的直径为10,弦 , 是 上一个动点,则 的最小值为()
A.2B.3C.4D.5
5.如图是一个圆弧形门拱,拱高 ,跨度 ,那么这个门拱的半径为()
A. B. C. D.
11.平面直角坐标系中,在以(2,1)为圆心,5为半径的圆上的点的坐标是()
A.(4,7)B.(-1,-2)C.(5,4)D.(2,-4)
12.如图,⊙O的半径OA=8,以A为圆心,OA为半径的弧交⊙O于B,C点,则BC=( )
A. B. C. D.
13.如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,AC=4,则OD的长为( )
(完整版)圆的垂径定理习题及答案

圆的垂径定理习题一 . 选择题1.如图 1,⊙ O 的直径为 10,圆心 O 到弦 AB 的距离 OM 的长为 3,那么弦 AB 的长是( )2.如图,⊙O 的半径为 5,弦AB 的长为 8,M 是弦AB 上的一个动点,则线段 OM 长的最小值为( )3.过⊙ 0内一点 M 的最长弦为 10cm ,最短弦长为 8cm ,则 OM 的长为( )4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子 O A 、OB 在 O 点钉在一起,并使它们保持垂直,在测直径时,把 O 点靠在圆周上,读得刻度 OE=8个单位, OF=6个单位,则圆的直位 D . 15 个单位5.如图,O ⊙的直径 AB 垂直弦 CD 于P ,且P 是半径 OB 的中点,6cmCD ,则直径 AB 的长是( )6.下列命题中,正确的是( )A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必经过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心7.如图,某公园的一座石拱桥是圆弧形(劣弧) ,其跨度为 24 米,拱的半径为 13 米,则拱高为A .4B .6C .7D .8B .3C .4D . 5B . 10 个单位C . 1 个单A . 212 个单位8.⊙ O 的半径为 5cm ,弦 AB//CD ,且 AB=8cm,CD=6cm 则, AB 与 CD 之间的距离为 ( )A . 1 cmB . 7cmC . 3 cm 或 4 cmD . 1cm 或 7cm 9.已知等腰△ ABC 的三个顶点都在半径为 5 的⊙ O 上,如果底边 BC 的长为 8,那么 BC 边上的高为 ( ) A .2 B .8 C .2或 8 D .3二、填空题1.已知 AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与 C ,OC=3cm ,则⊙ O 的半径为 cm 2.在直径为 10cm 的圆中,弦 AB 的长为 8cm ,则它的弦心距为 cm3.在半径为 10的圆中有一条长为 16 的弦,那么这条弦的弦心距等于4. 已知 AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与 C ,OC=3cm ,则⊙ O 的半径为 cm 5.如图,⊙O 的直径 AB 垂直于弦 CD ,垂足为 E ,若∠COD =120°,OE =3厘米,则 CD = 厘 6.半径为 6cm 的圆中,垂直平分半径 OA 的弦长为 cm7.过⊙ O 内一点 M 的最长的弦长为 6cm ,最短的弦长为 4cm ,则 OM 的长等于 cm8.已知 AB 是⊙O 的直径,弦 CD ⊥ AB ,E 为垂足, CD=8,OE=1,则 AB=9.如图, AB 为⊙O 的弦,⊙ O 的半径为 5,OC ⊥AB 于点 D ,交⊙ O 于点 C ,且 CD =l ,则弦 AB 的长11. 如图,在直角坐标系中,以点 P 为圆心的圆弧与轴交于 A 、B 两点,已知 P(4,2) 和A(2,0) , 则点 B 的坐标是12.如图, AB 是⊙ O 的直径, OD ⊥AC 于点 D ,BC=6cm ,则 OD= cm10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知 AB =16m ,半径 OA = 10m ,则中间柱CD 13.如图,矩形 ABCD 与圆心在 AB 上的圆 O 交于点 G 、B 、 F 、E ,GB=10, EF=8,那么 AD=的高度为14.如图,⊙ O 的半径是 5cm ,P 是⊙O 外一点,PO=8cm ,∠P=30o, 则 AB= cm是 Cm16.已知 AB 是圆 O 的弦,半径 OC 垂直 AB ,交 AB 于 D ,若 AB=8, CD=2,则圆的半径为 17.一个圆弧形门拱的拱高为 1 米,跨度为 4 米,那么这个门拱的半径为 米 18.在直径为 10厘米的圆中 ,两条分别为 6厘米和 8厘米的平行弦之间的距离是 厘米19. 如图,是一个隧道的截面, 如果路面 AB 宽为 8米,净高 CD 为 8米,那么这个 隧道所在圆的20.如图, AB 为半圆直径, O 为圆心, C 为半圆上一点, E 是弧 AC 的中点, OE 交弦 AC 于点 D 。
垂径定理练习题(精选)

垂径定理练习题1、如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,则下列结论中不一定成立的是( )A .∠COE =∠DOEB .CE =DEC .OE =BED .BD =BC2、如图,AB 是⊙O 的直径,CD ⊥AB 于E ,CD=10,BE=1,则AB= 。
3、已知圆的半径为5cm ,一弦长为8cm ,则该弦的中点到弦所对的弧的中点的距离为__ _____。
4、已知圆心到圆的两条平行弦的距离分别是2和3,则两条平行弦之间的距离为_ ____。
5、在半径为5cm 的圆内有两条互相平行的弦,一条弦长为8cm ,另一条弦长为6cm ,则这两条弦之间的距离为_____ _。
6、如图,在⊙O 中,OA 是半径,弦AB =310cm ,D 是弧AB 的中点,OD 交AB 于点C ,若∠OAB =300,则⊙O 的半径____cm 。
7、在⊙O 中,半径OA =10cm ,AB 是弦,C 是AB 弦的中点,且OC:AC=3:4,则AB=_____。
8、在弓形ABC 中,弦AB=24,高CD=6,则弓形所在圆的半径等于 。
9.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 、D 两点,AB =10cm ,CD =6cm ,则AC 的长为_____。
10、如图所示,P 为弦AB 上一点,CP ⊥OP 交⊙O 于点C ,AB =8,AP:PB =1:3,求PC 的长。
11、如图,在⊙O 中,弦AB 所对的劣弧为圆的31,圆的半径为2cm ,求AB 的长。
OAB DC OA BCD 2题图O A P BC6题图1题图CDAOBE12、我市某居民区一处圆形地下水管道破裂,修理工人准备更换一段新管道,经测量得到如图所示的数据,修理工人应准备内径多大的管道?若此题只知下面弓形的高和AB 的长,你仍然会做吗?13、一工厂的厂门是由一个半圆与矩形组成的。
如图所示,AD =2.3米,CD =2米,现有一辆集装箱卡车要开进工厂,卡车高2.5米,宽1.6米,请你通过计算说明这辆卡车能否通过厂门?14、如图所示,⊙O 的直径AB 和弦CD 相交于点E ,已知,AE =6cm ,EB =2cm ,∠CEA =300,求CD 的长。
垂径定理-练习题 含答案

垂径定理副标题题号一二总分得分一、选择题(本大题共4小题,共12.0分)1.如图所示,的半径为13,弦AB的长度是24,,垂足为N,则A. 5B. 7C. 9D.11【答案】A【解析】解:由题意可得,,,,,,故选A.根据的半径为13,弦AB的长度是24,,可以求得AN的长,从而可以求得ON的长.本题考查垂径定理,解题的关键是明确垂径定理的内容,利用垂径定理解答问题.2.如图,AB是的直径,弦于点E,,的半径为5cm,则圆心O到弦CD的距离为A.B. 3cmC.D. 6cm【答案】A【解析】解:连接CB.是的直径,弦于点E,圆心O到弦CD的距离为OE;同弧所对的圆周角是所对的圆心角的一半,,;在中,,,.故选A.根据垂径定理知圆心O到弦CD的距离为OE;由圆周角定理知,已知半径OC的长,即可在中求OE的长度.本题考查了垂径定理、圆周角定理及解直角三角形的综合应用解答这类题一些学生不会综合运用所学知识解答问题,不知从何处入手造成错解.3.如图,已知半径OD与弦AB互相垂直,垂足为点C,若,,则的半径为A. 5B.C.D. 4【答案】C【解析】解:连结OA,如图,设的半径为r,,,在中,,,,,解得.故选C.连结OA,如图,设的半径为r,根据垂径定理得到,再在中利用勾股定理得到,然后解方程求出r即可.本题考查了的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.4.如图,线段AB是的直径,弦CD丄AB,,则等于A.B.C.D.【答案】C【解析】解:线段AB是的直径,弦CD丄AB,,,,.故选:C.利用垂径定理得出,进而求出,再利用邻补角的性质得出答案.此题主要考查了圆周角定理以及垂径定理等知识,得出的度数是解题关键.二、解答题(本大题共2小题,共16.0分)5.如图,在四边形ABCD中,,,AD不平行于BC,过点C作交的外接圆O于点E,连接AE.求证:四边形AECD为平行四边形;连接CO,求证:CO平分.【答案】证明:由圆周角定理得,,又,,,,,,四边形AECD为平行四边形;作于M,于N,四边形AECD为平行四边形,,又,,,又,,平分.【解析】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.根据圆周角定理得到,得到,根据平行线的判定和性质定理得到,证明结论;作于M,于N,根据垂径定理、角平分线的判定定理证明.6.如图,AB为直径,C为上一点,点D是的中点,于E,于F.判断DE与的位置关系,并证明你的结论;若,求AC的长度.【答案】解:与相切.证明:连接OD、AD,点D是的中点,,,,,,,,,与相切.连接BC交OD于H,延长DF交于G,由垂径定理可得:,,,,弦心距,是直径,,,是的中位线,.【解析】先连接OD、AD,根据点D是的中点,得出,进而根据内错角相等,判定,最后根据,得出DE与相切;先连接BC交OD于H,延长DF交于G,根据垂径定理推导可得,再根据AB是直径,推出OH是的中位线,进而得到AC的长是OH长的2倍.本题主要考查了直线与圆的位置关系,在判定一条直线为圆的切线时,当已知条件中明确指出直线与圆有公共点时,通常连接过该公共点的半径,证明该半径垂直于这条直线本题也可以根据与相似,求得AC的长.。
垂径定理练习题

垂径定理练习题1、已知:AB 是⊙O 的直径,弦CD ⊥AB 于点P ,CD =10cm ,AP:PB =1:5,则⊙O 的半径为_______。
2、在⊙O 中,P 为其内一点,过点P 的最长的弦为8cm ,最短的弦长为4cm ,则OP =____ _。
3、已知圆的半径为5cm ,一弦长为8cm ,则该弦的中点到弦所对的弧的中点的距离为__ _____。
4、已知圆心到圆的两条平行弦的距离分别是2和3,则两条平行弦之间的距离为_ ____。
5、在半径为5cm 的圆内有两条互相平行的弦,一条弦长为8cm ,另一条弦长为6cm ,则这两条弦之间的距离为_____ _。
6、如图,在⊙O 中,OA 是半径,弦AB =310cm ,D 是弧AB 的中点,OD 交AB 于点C ,若∠OAB =300,则⊙O 的半径____cm 。
7、在⊙O 中,半径OA =10cm ,AB 是弦,C 是AB 弦的中点,且OC:AC=3:4,则AB=_____。
8、在弓形ABC 中,弦AB=24,高CD=6,则弓形所在圆的半径等于 。
9.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 、D 两点,AB =10cm ,CD =6cm ,则AC 的长为_____。
10、如图,AB 是⊙O 的直径,CD ⊥AB 于E ,CD=10,BE=1,则AB= 。
11、如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,则下列结论中不一定成立的是( )A .∠COE =∠DOEB .CE =DEC .OE =BED .BD =BC12.1300 多年前,我国隋代建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦长)为37.4米,拱高(弧的中点到弦的距离,也叫拱形高)为7.2米,求桥拱的半径(精确到0.1米)10题图6题图11题图CDAOBE13.已知:在△ABC 中,AB=AC=10, BC=16.求△ABC 的外接圆的半径.15.本市新建的滴水湖是圆形人工湖。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆垂径定理专题练习题
1.垂径定理:垂直于弦的直径____这条弦,并且____弦所对的两条弧.
2.如图,在半径为5 cm的⊙O中,弦AB=6 cm,OC⊥AB于点C,则OC=( )
A.3 cm B.4 cm C.5 cm D.6 cm
3.如图,已知⊙O的半径为5,弦AB=6,M是AB上任意一点,则线段OM的长可能是( ) A.2.5 B.3.5 C.4.5 D.5.5
4. 如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A,B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为___.
5. 如图,圆内接四边形ABDC,AB是⊙O的直径,OD⊥BC于点E.
(1)请写出四个不同类型的正确结论;
(2)若BE=4,AC=6,求DE的长.
6. 一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
A.4 B.5 C.6 D.8
7. 为了测量一铁球的直径,将该铁球放入工件槽内,测得有关数据如图所示(单位:cm),则该铁球的直径为____.
8. H5N1亚型高致病性禽流感是一种传染速度很快的传染病,为防止禽流感蔓延,政府规定:离疫点3千米范围内为扑杀区,所有禽类全部扑杀;离疫点3至5千米范围内为免疫区,所有禽类强制免疫;同时,对扑杀区和免疫区内的村庄,道路实行全封闭管理.现有一条笔直的公路AB通过禽流感疫区,如图所示,O为疫点,在扑杀区内的公路CD长为4千米,问这条公路在免疫区内有多少千米?
9.如图,直线与两个同心圆交于图示的各点,MN=10,PR=6,则MP=____.
10.如图,矩形ABCD与圆心在AB上的⊙O交于点G,B,F,E,GB=8 cm,AG=1 cm,DE=2 cm,则EF=____cm.
11. 如图,⊙O的直径AB=16 cm,P是OB的中点,∠APD=30°,求CD的长.
12. 如图,⊙O的直径AB垂直于弦CD.垂足P是OB的中点,CD=6 cm,求直径AB的长.
13. 在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.
(1)如图1,当PQ∥AB时,求PQ的长度;
(2)如图2,当点P在BC上移动时,求PQ长的最大值.
答案:
1. 平分 平分
2. B
3. C
4. 4
5.
解:(1)不同类型的正确结论为BE =12
BC ,BD ︵=CD ︵, ∠BED =90°,BD =CD ,△BOD 是等腰三角形, △BDE ≌△CDE ,OB 2=OE 2+BE 2等 (2)∵AB 是 ⊙O 的直径,∴OA =OB ,∵OD ⊥BC 于E 点,
∴BE =CE ,∴OE 为△ABC 的中位线,∴OE =12
AC =12
×6=3,在Rt △OBE 中,由勾股定理,得 OB =OE 2+BE 2=32+42=5,∴OD =OB =5, ∴DE =OD -OE =5-3=2
6. C
7. 10 cm
8.
解:过O 作OE ⊥AB 于E ,连接OC , OA ,易求OE =5,AE =25,则
AB =2AE =45,∴AC +DB =AB -CD =45-4=4(5-1)(千米)
9. 2
10. 6
11.
解:连接OD ,过点O 作OM ⊥CD
于点M ,则CM =DM.∵直径AB =16 cm , P 为OB 的中点,∴OP =4 cm.在
Rt △OPM 中,∵∠APD =30°,
∴OM =12
OP =2 cm.在Rt △DOM 中, DM =DO 2-OM 2=82-22=215(cm ), ∴CD =2DM =415 cm 12.
解:连接OD ,∵P 是OB 的中点,∴OP =12OB =12
OD , ∵AB ⊥CD ,∴∠OPD =90°,DP =12CD =12
×6=3(cm ), 在Rt △ODP 中,sin ∠ODP =OP OD =12OD OD =12
,∴∠ODP =30° ∴OD =DP cos 30°=23(cm ),∴AB =2OD =43(cm )
13.
解:(1)PQ =6 (2)PQ 长的最大值为332。