第三章立体表面交线投影3-2-2

合集下载

工程制图第三章习题答案new教学文稿

工程制图第三章习题答案new教学文稿

工程制图第三章习题答案n e w第三章基本形体——三视图的投影班级学号姓名3-1、画三棱柱的投影图。

3-2、画出六棱柱的投影图。

3-3、画出右下图的投影图。

3-4、画出半圆拱的三面投影。

收集于网络,如有侵权请联系管理员删除3-5、画出圆台的三面投影。

3-6、画半圆拱的三面投影。

44第三章基本形体——补绘基本形体的第三投影班级学号姓名3-7、补绘基本形体的第三投影(1)(2)(3)收集于网络,如有侵权请联系管理员删除45第三章基本形体——补绘基本形体的第三投影班级学号姓名收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除46第三章平面立体表面上的点班级学号姓名收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除47第三章平面立体表面上的点班级学号姓名收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除48第三章平面体的截交线班级学号姓名收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除49第三章平面体的截交线班级学号姓名收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除50第三章平面体的截交线班级学号姓名收集于网络,如有侵权请联系管理员删除51第三章平面体的截交线班级学号姓名收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除第三章平面体与平面体相交班级学号姓名收集于网络,如有侵权请联系管理员删除54第三章平面体与平面体相交班级学号姓名收集于网络,如有侵权请联系管理员删除55第三章平面体与平面体相交班级学号姓名收集于网络,如有侵权请联系管理员删除56第三章曲面体上的点和直线班级学号姓名收集于网络,如有侵权请联系管理员删除57第三章曲面体上的点和直线班级学号姓名收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除58第三章曲面体截交线班级学号姓名收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除59第三章曲面体截交线班级学号姓名收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除60第三章曲面体截交线班级学号姓名收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除61第三章曲面体截交线班级学号姓名收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除62第三章曲面体与平面体、曲面体相交班级学号姓名收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除63第三章曲面体与平面体、曲面体相交班级学号姓名收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除64第三章曲面体与平面体、曲面体相交班级学号姓名收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除65第三章曲面体与平面体、曲面体相交班级学号姓名收集于网络,如有侵权请联系管理员删除66第三章曲面体与平面体、曲面体相交(应分两页)班级学号姓名收集于网络,如有侵权请联系管理员删除3-75、用辅助平面法求正立面图上的相贯线。

计算机CAD 第3章 立体表面交线3.3 (教师专用课件!!!)

计算机CAD 第3章 立体表面交线3.3 (教师专用课件!!!)

8" ●

3"

7"

4"●
● ● ●
2"
1'●
6"
1"
5"
3●
6● 1● 4

8 ● 3 1●
4●

2●
5
● ●

2
7
椭圆的长、短轴随 截平面与圆柱轴线 夹角的改变而改变。
45°
什么情况下投 影为圆呢? 截平面与轴线 成45°夹角时
例2:求左视图
例3:求作圆柱切口开槽后的视图
3′(4′) 1′(2′)
2

1

注意: 三面共点: 要逐个截平面分析和
2 1
绘制截交线。当平面体只 Ⅰ、Ⅱ两点分 有局部被截切时,先假想 别同时位于三个面 为整体被截切,求出截交 线后再取局部。 上。
例4:求四棱锥被截切后的俯视图和左视图。
例5:求八棱柱被平面P截切后的俯视图。
P
4(5) 7 5 6 3 4 2
y
完成后的三视图:
相贯线的特殊情况
1. 两回转体同轴时,相贯线为垂直于轴线的圆
2. 相贯线为平面曲线:两回转体公切于一圆球
3.相贯线为直线:两回转体沿素线相交,是直线 如:两圆柱轴线平行
或两圆锥共顶点
影响相贯线的各种因素 影响相贯线形状的因素主要有: 回转体表面的形状、大小及它们的相对位 置关系。
7‘ (8') 3‘(4’) 5' (6 ') 9‘ (10') 2' 1' 1"
8" 4" • 6" •

机械制图 第三章 立体及立体表面交线

机械制图 第三章  立体及立体表面交线

第三章立体及立体表面交线目的要求:1)掌握平面立体和回转体的投影特性,以及表面取点线的方法2)熟悉立体表面上常见交线的画法(截交线、相贯线)重点难点:1)掌握和熟练运用各种立体的投影特性求解表面取点线的方法2)熟练求解立体表面上截交线和相贯线授课学时:8学时主要作图练习:1)完成平面立体、回转体的三面投影,平面立体、回转体表面找点、找线。

2)单个截平面截棱柱、棱锥后的三面投影。

3)多个截平面(切口)截棱柱、棱锥的三面投影,尤其是长方体截切后的三面投影。

4)单个和多个截平面截切圆柱、圆锥、圆球后的三面投影,尤以带槽的圆柱和圆球为主。

5)圆柱与圆柱相贯、同轴回转体相贯的各种情况作图、综合作图。

6)授课内容:机件形状是多种多样的,经过分析,都是由一些基本几何体所组成。

而几何体又是由一些表面所围成,根据这些表面的性质,几何体可分为两类:平面立体——由若干个平面所围成的几何体,如棱柱、棱锥等。

曲面立体——由曲面或曲面与平面所围成的几何体,最常见的是回转体,如圆柱、圆锥、圆球、圆环等。

用投影图表示一个立体,就是把围成立体的这些平面和曲面表达出来,然后根据可见性判别哪些线是可见的,哪些线是不可见的,把其投影分别画成粗实线和虚线,即可得立体的投影图。

§3-1 平面立体的投影平面立体各表面都是平面图形,各平面图形均由棱线围成,棱线又由其端点确定。

因此,平面立体的投影是由围成它的各平面图形的投影表示的,其实质是作各棱线与端点的投影。

一、棱柱以正六棱柱为例,其顶面、底面均为水平面,它们的水平投影反映实形,正面及侧面投影积聚为一直线。

棱柱有六个侧棱面,前后棱面为正平面,它们的正面投影反映实形,水平投影及侧面投影积聚为一直线。

棱柱的其它四个侧棱面均为铅垂面,水平投影积聚为直线,正面投影和侧面投影为类似形。

图3-1 正六棱柱的投影二、棱锥以四棱锥为例,其底面为一长方形,呈水平位置,水平投影反映底面的实形。

左右两个棱面是正垂面,其正面投影积聚为直线,水平和侧面投影均为类似三角形,前后两个棱面为侧垂面,其侧面投影积聚为直线,水平和正面投影同样为类似的三角形。

第三章立体表面交线投影3-3

第三章立体表面交线投影3-3

学习内容教学方法任务实施(一)相贯线的性质1、相贯线的概念两个基本体相交(或称相贯),表面产生的交线称为相贯线。

本节只讨论最为常见的两个曲面立体相交的问题。

2、相贯线的性质:(1)相贯线是两个曲面立体表面的共有线,也是两个曲面立体表面的分界线。

相贯线上的点是两个曲面立体表面的共有点。

(2)两个曲面立体的相贯线一般为封闭的空间曲线,特殊情况下可能是平面曲线或直线。

求两个曲面立体相贯线的实质就是求它们表面的共有点。

作图时,依次求出特殊点和一般点,判别其可见性,然后将各点光滑连接起来,即得相贯线。

(二)相贯线的画法两个相交的曲面立体中,如果其中一个是柱面立体(常见的是圆柱面),且其轴线垂直于某投影面时,相贯线在该投影面上的投影一定积聚在柱面投影上,相贯线的其余投影可用表面取点法求出。

1、讲解例题(例3-8)如图3-21(a)所示,求正交两圆柱体的相贯线。

分析:两圆柱体的轴线正交,且分别垂直于水平面和侧面。

相贯线在水平面上的投影积聚在小圆柱水平投影的圆周上,在侧面上的投影积聚在大圆柱侧面投影的圆周上,故只需求作相贯线的正面投影。

出示模型辅助讲解。

a)立体图(b)3-21正交两圆柱的相贯线讲授法演示法任务实施边画图边讲解作图方法与步骤。

2、相贯线的近似画法相贯线的作图步骤较多,如对相贯线的准确性无特殊要求,当两圆柱垂直正交且直径有相差时,可采用圆弧代替相贯线的近似画法。

如图3-22所示,垂直正交两圆柱的相贯线可用大圆柱的D/2为半径作圆弧来代替。

图3-22 相贯线的近似画法3、两圆柱正交的类型两圆柱正交有三种情况:(1)两外圆柱面相交;(2)外圆柱面与内圆柱面相交;(3)两内圆柱面相交。

这三种情况的相交形式虽然不同,但相贯线的性质和形状一样,求法也是一样的。

如图3-23所示。

出示模型辅助讲解。

(a)两外圆柱面相交(b)外圆柱面与内圆柱面相交讲授法演示法(c)两内圆柱面相交图3-23两正交圆柱相交的三种情况(三)相贯线的特殊情况两曲面立体相交,其相贯线一般为空间曲线,但在特殊情况下也可能是平面曲线或直线。

机械制图第3章

机械制图第3章

第 3 章 基本体及其表面交线
3.3 平面与立体相交
平面与平面体相交 3.3.1 平面与平面体相交 平面与立体表面相交而产生的交线称为截交线。 这个截 交线是一个平面多边形,此多边形的各个顶点就是截平面与平 面体的棱线的交点, 称为贯穿点。在求作棱柱或棱锥的截交线 时,常常先求出贯穿点, 即侧棱线或底棱与截平面的交点, 然 后依次连成截交线。 棱柱的截交线 1. 棱柱的截交线 例 3-1 图3-7所示的L形棱柱被正垂面P切割, 求作切割后 棱柱的三视图。
第 3 章 基本体及其表面交线
图 3-1 正三棱柱及其表面上点的投影
第 3 章 基本体及其表面交线 投影分析 1. 投影分析 如图3-1所示,正三棱柱的两端面(顶面和底面)平行于水平 面, 后侧棱面平行于正面, 另外两个棱面垂直于水平面。 在这 种位置下, 三棱柱的投影特征是: 顶面和底面的水平投影重合, 并反映实形——正三角形。三个侧棱面的水平投影积聚为三角 形的三条边。
第 3 章 基本体及其表面交线
图 3-10 正垂面切割三棱锥的截交线的作图步骤
第 3 章 基本体及其表面交线 作图 作图 (1) 根据三棱锥的三视图以及p′的位置, 由s′a′和s′c′与p′的交 点d′和f′,分别在sa、 sc和s″a″、s″c″上直接求出d、 f和d″、 f″, 如图3-10(a)所示。 (2) 由于SB是侧平线, 因此必须由s′b′与p′的交点e′在s″b″ 上求出e″, 再由45°线或利用宽相等的投影关系在sb上求出e, 如 图3-10(b)所示。 (3) 连接各点的同面投影即为所求交线的三面投影,擦去作 图线, 将切割后三棱锥的图线描深, 如图3-10(c)所示。
第 3 章 基本体及其表面交线 2. 作图方法 作图方法 画圆锥的三视图时, 应先画各投影的中心线, 再画底面圆的 各投影, 然后画出锥顶的投影和等腰三角形, 完成圆锥的三视图。 3. 圆锥体表面上点的投影 圆锥体表面上点的投影 如图3-5所示,已知圆锥体表面上点M的正面投影m′,求作m和 m″。根据M点的位置和可见性, 可确定点M在前、左方圆锥面上, 点M的三面投影均为可见。

第三章-立体投影

第三章-立体投影
当截交线的投影为非圆曲线时,其作图步骤为: ☆ 先找特殊点,补充一般点。
☆ 将各点光滑地连接起来,并判断截交线的可 见性。
特殊点
一、平面与圆柱相交
1.平面与圆柱相交所得截交线形状 2.例题
1. 平面与圆柱相交所得截交线形状
两平行直线

椭圆
2. 例题
[例题1] 求圆柱截交线
1'
2'(3')
1" 3"
S
s"
d" a"
C (b") c"
b
c
Y
3. 圆锥面的(转向)轮廓线和可见性
4. 圆锥表面上取点
2'
2"
(3')
(3")
3 2
5.圆锥表面上取线
2' 5' 3' 4' 1'
435 2 1
(2")
(5")
3"
4"
1"
三、圆球
1.圆球的形成:圆(母线)围绕直径回转而成。
主视轮廓圆
Z
回转轴
平行V面
由两个底面和几个侧 面组成。侧面与侧面 的交线叫侧棱,侧棱 相互平行。
2. 棱柱的投影
侧面投影 水平投影
在图示位置时,六棱 柱的两底面为水平面, 在水平投影中反映实 形。前后两侧面是正 平面,其余四个侧面 是铅垂面,它们的水 平投影都积聚成直线, 与六边形的边重合。
六棱柱的投影
3. 棱柱表面上取点
4'(5')
5"
6'(7')
8'

机械制图3_立体表面交线的投影作图

机械制图3_立体表面交线的投影作图

例2、如图所示,球被正垂面截切,求截交线的 水平投影。
具体步骤如下: (1)先求特殊点。
(32)依确次定连截接交各线点与的转水向平轮投廓影线。的交点。
2’
2’
1’
3 5’6’’
4’
1’
3 5’6’’
4’
64
1
2
53
平面与球相交
64
1
2
53
2 4
3 1
2’
3 5’ ’ 4’
6’ 1’
2’
3’ 5’ 4’ 1’ 6’
两个侧平面截圆球的截交线的投 影,在侧视图上为部分圆弧,在 俯视图上积聚为直线。
4 组合的截交线
首先分析其由哪些基本回转体组成以及它们的连
接关系,然后分别求出这些基本体的截交线,并
依次将其连接。





●●


● ● ●
● ● ●

例1、如图所示,圆锥被正垂面截切,求出截
交线的另外两个投影。
• 用辅助平面法。 一般是根据立体或给出的投影,分析两回转面的形状、 大小及其轴线的相对位置,判断相贯线的形状特点和各投影 的特点,从而选择适当的方法作图。
3、作图步骤
(1)先作出特殊点的投影。 (2)求作一般点 (3)光滑连接各点
回转体相贯的三种基本形式
两外表面相贯
外表面与内表面相贯
64
64
1
2
1
2
53
53
平面与球相交
2 4
3 1
㈣ 复合回转体的截切
例:求作顶尖的俯视图


●●

●●

立体及其表面交线的投影知识

立体及其表面交线的投影知识
如已知棱柱表面上M点的正面投影m′,求水平、侧 面投影m、m″。由于正面投影m′是可见的,因此M点必 定在棱柱的前半部平面ABCD上,而平面ABCD为铅垂 面,水平投影abcd具有积聚性,因此m必在abcd上。根 据m′和m,由点的投影规律可求出m″,如图3-1(b)所示。
1.2 棱锥
1. 棱锥的投影
圆柱表面上的点
在图3-3(b)中,圆柱面上有两点M和N,已知其正 投影m′和n′,求另外两投影。由于点N在圆柱的转向轮 廓线上,其另外两投影可直接求出;而点M可利用圆 柱面有积聚性的投影,先求出点M的水平投影m,再由 m和m′求出m″。点M在圆柱面的右半部分,故其侧面 投影m″不可见。
2.2 圆锥 1. 圆锥面的形成 圆锥面是由一条直母线绕与它相交的轴线旋转而
立体及其表面交线的投影
1 平面立体 2回转体 3截交线 4相贯线
1 平面立体
1.1 棱柱 1. 棱柱的投影 如图3-1(a)所示的正六棱柱,其顶面、底面均为水
平面,它们的水平投影反映实形,正面和侧面投影积 聚为一直线。棱柱有六个侧面,前后为正平面,其正 面投影反映实形,水平投影及侧面投影积聚为一直线。 棱柱的其他四个侧面均为铅垂面,水平投影积聚为直 线,正面投影和侧面投影为类似形。
2.3 圆球 1. 圆球面的形成 圆球面是由一圆母线以它的直径为回转轴旋转形成
的。
2. 圆球的投影 圆球面的三个投影是圆球上平行于相应投影面的三 个不同位置的最大轮廓圆。正面投影的轮廓圆是前、后 两半球面的可见与不可见的分界线;水平投影的轮廓圆 是上、下两半球面的可见与不可见的分界线;侧面投影 的轮廓圆是左、右两半球面的可见与不可见的分界线。 如图3-5所示。
2回转体
由一母线绕轴线回转而形成的曲面称为回转面, 由回转面或回转面与平面所围成的立体称为回转体。 母线在回转面上的任一位置称为素线。常见的回转体 有圆柱、圆锥和圆球等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习内容教学方法
任务实施(一)圆柱的截交线
1、基本类型:平面截切圆柱时,根据截平面与圆柱轴线的相对位置不同,其截交线有
三种不同的形状。

对照表3-1分析讲解。

2、讲解例题(1)例一如图3-15(a)所示,求圆柱被正垂面截切后的截交线。

分析:截平面与圆柱的轴线倾斜,故截交线为椭圆。

此椭圆的正面投影积聚为一直
线。

圆柱面的水平投影积聚为圆,故椭圆的水平投影与圆柱面水平投影重合。

椭圆的侧
面投影是它的类似形,仍为椭圆。

可根据投影规律由正面投影和水平投影求出侧面投影。

(a)立体图(b)






任务实施
c)
(d)
图3-15
圆柱的截
交线(边
画图边
讲解作
图方法与步骤)
图3-14 带切口正三棱锥的投影
2)例二(例3-4)如图3-16(a)所示,完成被截切圆柱的正面投影和水平投影。

分析:该圆柱左端的开槽是由两个平行于圆柱轴线的对称的正平面和一个垂直于轴
线的侧平面切割而成。

圆柱右端的切口是由两个平行于圆柱轴线的水平面和两个侧平面
切割而成。







(a)(b)
(c)(d)
图3-16 补全带切口圆柱的投影
边画图边讲解作图方法与步骤。

(a)立体图(b)。

相关文档
最新文档