最新《分类加法计数原理与分步乘法计数原理》练习题
(完整版)分类加法计数原理与分步乘法计数原理综合测试题(有答案)

分类加法计数原理与分步乘法计数原理综合测试题(有答案)选修2-3 1.1第一课时分类加法计数原理与分步乘法计数原理一、选择题 1.一个袋子里放有6个球,另一个袋子里放有8个球,每个球各不相同,从两袋子里各取一个球,不同取法的种数为( ) A.182 B.14 C.48 D.91 [答案] C [解析] 由分步乘法计数原理得不同取法的种数为6×8=48,故选C. 2.从甲地到乙地一天有汽车8班,火车3班,轮船2班,某人从甲地到乙地,他共有不同的走法数为( ) A.13种 B.16种 C.24种 D.48种 [答案] A [解析] 应用分类加法计数原理,不同走法数为8+3+2=13(种).故选A. 3.集合A={a,b,c},B={d,e,f,g},从集合A到集合B的不同的映射个数是( ) A.24 B.81 C.6 D.64 [答案] D [解析] 由分步乘法计数原理得43=64,故选D. 4.5本不同的书,全部送给6位学生,有多少种不同的送书方法( ) A.720种 B.7776种 C.360种 D.3888种 [答案] B [解析] 每本书有6种不同去向,5本书全部送完,这件事情才算完成.由乘法原理知不同送书方法有65=7776种. 5.有四位老师在同一年级的4个班级中,各教一个班的数学,在数学考试时,要求每位老师均不在本班监考,则安排监考的方法种数是( ) A.8种 B.9种 C.10种 D.11种 [答案] B [解析] 设四个班级分别是A,B,C,D,它们的老师分别是a,b,c,d,并设a监考的是B,则剩下的三个老师分别监考剩下的三个班级,共有3种不同的方法;同理当a监考C,D时,剩下的三个老师分别监考剩下的三个班级也各有3种不同的方法.这样,用分类加法计数原理求解,共有3+3+3=9(种)不同的安排方法.另外,本题还可让a先选,可从B,C,D中选一个,即有3种选法.若选的是B,则b从剩下的3个班级中任选一个,也有3种选法,剩下的两个老师都只有一种选法,这样用分步乘法计数原理求解,共有3×3×1×1=9(种)不同的安排方法. 6.某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“×××××××0000”到“×××××××9999”共10 000个号码,公司规定:凡卡号的后四位带有数字“4”或“7”的一律作为“优惠卡”,则这组号码中“优惠卡”的个数为( ) A.2 000 B.4096 C.5 904 D.8 320 [答案] C [解析] 可从反面考虑,卡号后四位数不带“4”或“7”的共有8×8×8×8=4 096个,所以符合题意的共有5 904个. 7.如下图所示,小圆圈表示网络的结点,结点之间的线段表示它们有网线相连.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以从分开不同的路线同时传递,则单位时间内传递的最大信息量为( ) A.26 B.24 C.20 D.19 [答案] D [解析] 因信息可以分开沿不同的路线同时传递,由分类计数原理,完成从A向B传递有四种方法:12→5→3,12→6→4,12→6→7,12→8→6,故单位时间内传递的最大信息量为四条不同网线上信息量的和:3+4+6+6=19,故选D. 8.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了2个新节目,如果将这2个新节目插入原节目单中,那么不同插法的种数为( ) A.42 B.30 C.20 D.12 [答案] A [解析] 将新增的2个节目分别插入原定的5个节目中,插入第1个有6种插法,插入第2个时有7个空,共7种插法,所以不同的插法共6×7=42(种). 9.定义集合A与B的运算A*B如下:A*B={(x,y)|x∈A,y∈B},若A={a,b,c},B={a,c,d,e},则集合A*B的元素个数为( ) A.34 B.43 C.12 D.24 [答案] C [解析] 显然(a,a)、(a,c)等均为A*B中的元素,确定A*B中的元素是A中取一个元素来确定x,B中取一个元素来确定y,由分步计数原理可知A*B中有3×4=12个元素.故选C. 10.某医院研究所研制了5种消炎药X1、X2、X3、X4、X5和4种退烧药T1、T2、T3、T4,现从中取出两种消炎药和一种退烧药同时使用进行疗效试验,又知X1、X2两种消炎药必须同时搭配使用,但X3和X4两种药不能同时使用,则不同的试验方案有( ) A.16种 B.15种 C.14种 D.13种 [答案] C [解析] 解决这类问题应分类讨论,要做到不重不漏,尽量做到一题多解,从不同角度思考问题.试验方案有:①消炎药为X1、X2,退烧药有4种选法;②消炎药为X3、X4,退烧药有3种选法;③消炎药为X3、X5,退烧药有3种选法;④消炎药为X4、X5,退烧药有4种选法,所以符合题意的选法有4+3+3+4=14(种).二、填空题11.用数字0,1,2,3,4组成没有重复数字的五位数,则其中数字1,2相邻的偶数有________个(用数字作答). [答案] 24 [解析] 可以分三类情况讨论:①若末位数字为0,则1,2为一组,且可以交换位置,3,4各为1个数字,共可以组成12个五位数;②若末位数字为2,则1与它相邻,其余3个数字排在前3位,且0不是首位数字,则共有4个五位数;③若末位数字为4,则1,2为一组,且可以交换位置,3,0各为1个数字,且0不是首位数字,则共有8个五位数,所以符合要求的五位数共有24个. 12.三边均为整数且最大边长为11的三角形有________个. [答案] 36 [解析] 另两边长用x,y表示,且不妨设1≤x≤y≤11.要构成三角形,需x+y≥12.当y=11时,x∈{1,2,…,11},有11个三角形;当y=10时,x∈{2,3,…,10},有9个三角形……当y=6时,x=6,有1个三角形.所以满足条件的三角形有11+9+7+5+3+1=36(个). 13.5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1、2、3号参加团体比赛,则入选的3名队员中至少有一名老队员,且1、2号中至少有1名新队员的排法有________种.(用数字作答) [答案] 48 [解析] 本题可分为两类完成:两老一新时,有3×2×2=12(种)排法;两新一老时,有2×3×3×2=36(种)排法,即共有48种排法. 14.已知下图的每个开关都有闭合与不闭合两种可能,因此5个开关共有25种可能.在这25种可能中,电路从P到Q接通的情况有______种. [答案] 16 [解析] 五个开关全闭合有1种情况能使电路接通;四个开关闭合有5种情况能使电路接通;三个开关闭合有8种情况能使电路接通;两个开关闭合有2种情况能使电路接通;所以共有1+5+8+2=16种情况能使电路接通.三、解答题 15.有不同的红球8个,不同的白球7个. (1)从中任意取出一个球,有多少种不同的取法? (2)从中任意取出两个不同颜色的球,有多少种不同的取法? [解析] (1)由分类加法计数原理得从中任取一个球共有8+7=15种; (2)由分步乘法计数原理得从中任取两个球共有8×7=56种. 16.若x,y∈N*,且x+y≤6,试求有序自然数对(x,y)的个数. [分析] 由题目可获取以下主要信息: (1)由x,y∈N*且x+y≤6,知x,y的取值均不超过6; (2)(x,y)是有序数对.解答本题可按x(或y)的取值分类解决. [解析] 按x的取值时行分类:x=1时,y=1,2,…,5,共构成5个有序自然数对; x=2时,y=1,2,…,4,共构成4个有序自然数对;… x=5时,y=1,共构成1个有序自然数对.根据分类计数原理,共有N=5+4+3+2+1=15个有序自然数对. [点评] 本题是分类计数原理的实际应用,首先考虑x,y的取值均为正整数,且其和不能超过6,同时注意(x,y)是有序数对,如(1,2)与(2,1)是不同的数对,故可按x或y 的取值进行分类解决.计数的关键是抓住完成一件事是分类还是分步,一个类别内又要分成几个步骤,一个步骤是否又会分若干类. 17.随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需要扩容.交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有3个不重复的英文字母和3个不重复的阿拉伯数字,并有3个字母必须合成一组出现,3个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照? [解析] 将汽车牌照分为2类,一类的字母组合在左,另一类的字母组合在右.字母组合在左时,分6个步骤确定一个牌照的字母和数字:第1步,从26个字母中选1个,放在首位,有26种选法;第2步,从剩下的25个字母中选1个,放在第2位,有25种选法;第3步,从剩下的24个字母中选1个,放在第3位,有24种选法;第4步,从10个数字中选1个,放在第4位,有10种选法;第5步,从剩下的9个数字中选1个,放在第5位,有9种选法;第6步,从剩下的8个数字中选1个,放在第6位,有8种选法.根据分步乘法计数原理,字母组合在左的牌照共有26×25×24×10×9×8=11 232 000(个).同理,字母组合在右的牌照也有11 232 000个.所以,共能给11 232 000+11 232 000=22 464 000辆汽车上牌照. 18.已知集合A={a1,a2,a3,a4},集合B={b1,b2},其中ai,bj(i=1,2,3,4,j=1,2)均为实数. (1)从集合A到集合B能构成多少个不同的映射? (2)能构成多少个以集合A为定义域,集合B为值域的不同函数? [解析] (1)因为集合A中的元素ai(i=1,2,3,4)与集合B中元素的对应方法都有2种,由分步乘法计数原理,可构成A→B的映射有N=24=16个. (2)在(1)的映射中,a1,a2,a3,a4均对应同一元素b1或b2的情形.此时构不成以集合A为定义域,以集合B为值域的函数,这样的映射有2个.所以构成以集合A为定义域,以集合B为值域的函数有M=16-2=14个.。
分类加法计数原理与分步乘法计数原理练习(含答案)

【选修2-3】两种计数原理练习班级: 姓名:1.从集合{ 0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a bi +,其中虚数有( )A .30个B .42个C .36个D .35个答案:C3.在一次运动会上有四项比赛的冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有( )A.24B.34C.43D.4答案:244.由数字0,1,2,3,4可组成无重复数字的两位数的个数是( )A.25 B.20 C.16 D.12答案:C5.设A ,B 是两个非空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==,,,,,,,则P *Q 中元素的个数是( )A.4 B.7 C.12 D.166.三边长均为正整数,且最大边长为11的三角形的个数为( )A.25 B.26 C.36 D.37答案:C4.用1、2、3、4四个数字可以排成不含重复数字的四位数有( )(A )265个 (B )232个 (C )128个 (D )24个5.用1、2、3、4四个数字可排成必须含有重复数字的四位数有( )(A )265个 (B )232个 (C )128个 (D )24个7. 整数630的正约数(包括1和630)共有 个8.圆周上有2n 个等分点(1n >),以其中三个点为顶点的直角三角形的个数为 .答案:2(1)n n -9.已知{}{}0341278a b ∈∈,,,,,,,则方程22()()25x a y b -+-=表示不同的圆的个数是 .答案:1210.多项式123124534()()()()a a a b b a a b b ++++++··展开后共有 项.答案:1011.如图,从A→C,有种不同走法.Array答案:612.将三封信投入4个邮箱,不同的投法有种.答案:347.某班一天上午排语、数、外、体四门课,其中体育课不能排一、四节,则不同排法的种数为___12_____.集合A={a,b,c,d,e},它的子集个数为,真子集个数为,非空子集个数为,非空真子集个数为。
综合练习-分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理综合练习一.选择题1.有2位同学报名参加5个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种B.20种C.25种D.32种2.完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1个人完成这项工作,则不同的选法共有()A.5种B.4种C.9种D.20种3.小王有70元钱,现有面值分别为20元和30元的两种IC电话卡.若他至少买一张,则不同的买法共有( )A.7种 B.8种 C.6种 D.9种4.有不同的语文书9本,不同的数学书7本,不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有A.21种 B.315种 C.153种 D.143种5.高二年级的三个班去甲、乙、丙、丁四个工厂参观学习,去哪个工厂可以自由选择,甲工厂必须有班级要去,则不同的参观方案有()A.16种B.18种C.37种D.48种6.某一数学问题可用综合法和分析法两种方法证明,有5位同学只会用综合法证明,有3位同学只会用分析法证明,现任选1名同学证明这个问题,不同的选法种数有()种.A.8 B.15 C.18 D.307.现有A B C D E、、、、五位同学分别报名参加航模、机器人、网页制作三个兴趣小组竞赛,每人限报一组,那么不同的报名方法种数有( )A.120种B.5种C.35种D.53种8.从3名女同学和2名男同学中选1人主持主题班会,则不同的选法种数为()A.6 B.5 C.3 D.2 9.已知{1,2,3},{4,5,6,7}a b∈∈,则方程22()()4x a y b-+-=可表示不同的圆的个数为()A.7 B.9 C.12 D.1610.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A.243 B.252 C.261 D.279二.填空题11.要把四封信投入3个信箱,共有___________种不同的投法(用数值作答)12.5名工人分别要在3天中选择一天休息,不同方法的种数是____________.13.从甲地到乙地有三种方式可以到达.每天有8班汽车、2班火车和2班飞机.一天一人从甲地去乙地,共有________种不同的方法.14.从3名男生和4名女生中选出2人分别担任2项不同的社区活动服务者,要求男、女生各1人,那么不同的安排有________种(用数字做答);15.已知某种新产品的编号由1个英文字母和1个数字组成,且英文字母在前,数字在后.已知英文字母是A,B,C,D,E这5个字母中的1个,数字是1,2,3,4,5,6,7,8,9这9个数字中的一个,则共有__________个不同的编号(用数字作答).16.某县总工会利用业余时间开设太极、书法、绘画三个培训班,甲、乙、丙、丁四人报名参加,每人只报名参加一项,且甲乙不参加同一项,则不同的报名方法种数为_____________.17.联合国际援助组织计划向非洲三个国家援助粮食和药品两种物资,每种物资既可以全部给一个国家,也可以由其中两个或三个国家均分,若每个国家都要有物资援助,则不同的援助方案有__________种.三.解答题18.某体育彩票规定:从01至36个号中抽出7个号为一注,每注2元,某人想从01至10中选3个连续的号,从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,此人想把这种特殊要求的号买全,需要花多少钱?19.设集合M={-3,-2,-1,0,1,2},P(a,b)是坐标平面上的点,a,b∈M.求:(1)P可以表示多少个平面上的不同的点? (2)P可以表示多少个第二象限的点?(3)P可以表示多少个不在直线y=x上的点?20.集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一种分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,则集合A={a,b,c}的不同分拆种数为多少?21.用0,1,2,3,4这五个数字可以组成多少个无重复数字的(1)四位密码?(2)四位数?(3)四位奇数?22.用n种不同的颜色为下列两块广告牌着色,(如图甲、乙),要求在A,B,C,D四个区域中相邻(有公共边界)的区域不用同一颜色.(1)若n=6,则为甲图着色时共有多少种不同的方法;(2)若为乙图着色时共有120种不同方法,求n.分类加法计数原理与分步乘法计数原理一.选择题1.(2019·湖南高二月考)有2位同学报名参加5个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种B.20种C.25种D.32种【答案】C【解析】每位同学有5种选择,则不同的报名方法共有:5525⨯=种选法故选:C2.(2019·陕西高二期末(理))完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1个人完成这项工作,则不同的选法共有()A.5种B.4种C.9种D.20种【答案】C【解析】会用第一种方法的有5个人,选1个人完成这项工作有5种选择;会用第二种方法的有4个人,选1个人完成这项工作有4种选择;两者相加一共有9种选择,故选C.3.(2019·重庆高二月考(理))小王有70元钱,现有面值分别为20元和30元的两种IC电话卡.若他至少买一张,则不同的买法共有( )A.7种 B.8种C.6种 D.9种【答案】A【解析】要完成的一件事是“至少买一张IC电话卡”,分三类完成:买1张IC卡,买2张IC 卡,买3张IC卡.而每一类都能独立完成“至少买一张IC电话卡”这件事.买1张IC卡有2种方法,即买一张20元面值的或买一张30元面值的;买2张IC卡有3种方法,即买两张20元面值的或买两张30元面值的或20元面值的和30元面值的各买一张,买3张IC卡有2种方法,即买两张20元面值的和一张30元面值的或3张20元面值的,故共有2+3+2=7(种)不同的买法.4.(2019·吉林省实验高二期末(理))有不同的语文书9本,不同的数学书7本,不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有A.21种 B.315种 C.153种 D.143种【答案】D【解析】由题意,选一本语文书一本数学书有9×7=63种,选一本数学书一本英语书有5×7=35种,选一本语文书一本英语书有9×5=45种,∴共有63+45+35=143种选法.故选D.5.(2019·辽宁实验中学高三月考(理))高二年级的三个班去甲、乙、丙、丁四个工厂参观学习,去哪个工厂可以自由选择,甲工厂必须有班级要去,则不同的参观方案有()A.16种B.18种C.37种D.48种【答案】C【解析】根据题意,若不考虑限制条件,每个班级都有4种选择,共有种情况,其中工厂甲没有班级去,即每个班都选择了其他三个工厂,此时每个班级都有3种选择,共有种方案;则符合条件的有种,故选:C.6.(2019·陕西高二期末(理))某一数学问题可用综合法和分析法两种方法证明,有5位同学只会用综合法证明,有3位同学只会用分析法证明,现任选1名同学证明这个问题,不同的选法种数有()种.A.8 B.15 C.18 D.30【答案】A【解析】由题意知本题是一个分类计数问题,解决问题分成两个种类,一是可以用综合法证明,有5种方法, 一是可以用分析法来证明,有3种方法, 根据分类计数原理知共有3+5=8种结果, 故选A .7.(2019·湖北高二期末(理))现有A B C D E 、、、、五位同学分别报名参加航模、机器人、网页制作三个兴趣小组竞赛,每人限报一组,那么不同的报名方法种数有( ) A .120种 B .5种C .35种D .53种【答案】D 【解析】A 同学可以参加航模、机器人、网页制作三个兴趣小组,共有3种选择. 同理BCDE 四位同学也各有3种选择,乘法原理得到5333333⨯⨯⨯⨯= 答案为D8.(2020·全国高三专题练习)从3名女同学和2名男同学中选1人主持主题班会,则不同的选法种数为( ) A .6 B .5C .3D .2【答案】B 【解析】选女同学有3种选法,选男同学有2种选法,所以共有5种选法. 故选:B.9.(2020·全国高三专题练习)已知{1,2,3},{4,5,6,7}a b ∈∈,则方程22()()4x a y b -+-=可表示不同的圆的个数为( ) A .7 B .9C .12D .16【答案】C【解析】得到圆的方程分两步:第一步:确定a 有3种选法;第二步:确定b 有4种选法,由分步乘法计数原理知,共有3×4=12(个). 故选:C.10.(2020·全国高三专题练习)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .279 【答案】B 【解析】由分步乘法原理知:用0,1,…,9十个数字组成的三位数(含有重复数字的)共有9×10×10=900,组成无重复数字的三位数共有9×9×8=648,因此组成有重复数字的三位数共有900-648=252. 二.填空题11.(2018·上海市第二工业大学附属龚路中学高三月考)要把四封信投入3个信箱,共有___________种不同的投法(用数值作答) 【答案】81 【解析】把四封信投入3个信箱,每封信都有3种选择,根据分步计数原理共有43=81种不同的投法. 故答案为:8112.(2018·吉林高二期中(理))5名工人分别要在3天中选择一天休息,不同方法的种数是____________. 【答案】243【解析】每个人都有3种选择方法,根据分步计算原理可知方法有53243=种.13.(2020·全国高三专题练习)从甲地到乙地有三种方式可以到达.每天有8班汽车、2班火车和2班飞机.一天一人从甲地去乙地,共有________种不同的方法.【答案】12 【解析】(1)分三类:一类是乘汽车有8种方法;一类是乘火车有2种方法;一类是乘飞机有2种方法,由分类加法计数原理知,共有8+2+2=12(种)方法. 故答案为:12.14.(2020·北京高二期末)从3名男生和4名女生中选出2人分别担任2项不同的社区活动服务者,要求男、女生各1人,那么不同的安排有________种(用数字做答); 【答案】24 【解析】先选一名男生,有3种方法;再选一名女生,有4种方法,根据分步计数原理求得选取男、女生各1名,不同的安排方案种数为 4×3×2=24, 故答案为: 24.15.(2019·江苏高二期末(理))已知某种新产品的编号由1个英文字母和1个数字组成,且英文字母在前,数字在后.已知英文字母是A ,B ,C ,D ,E 这5个字母中的1个,数字是1,2,3,4,5,6,7,8,9这9个数字中的一个,则共有__________个不同的编号(用数字作答). 【答案】45 【解析】对于英文字母来说,共有5种可能,对于数字来说,共有9种可能,按照分步乘法原理,即可知道共有5945⨯=个不同的编号.16.(2019·河北高二期中(理))某县总工会利用业余时间开设太极、书法、绘画三个培训班,甲、乙、丙、丁四人报名参加,每人只报名参加一项,且甲乙不参加同一项,则不同的报名方法种数为_____________. 【答案】54 【解析】甲有三个培训可选,甲乙不参加同一项,所以乙有二个培训可选,丙、丁各有三个培训可选,根据乘法计数原理,不同的报名方法种数为3233=54⨯⨯⨯.17.(2018·浙江高考模拟)联合国际援助组织计划向非洲三个国家援助粮食和药品两种物资,每种物资既可以全部给一个国家,也可以由其中两个或三个国家均分,若每个国家都要有物资援助,则不同的援助方案有__________种. 【答案】25.【解析】分析:按照每个国家都要有物资援助,分类型,求解即可. 详解:联合国际援助组织计划向非洲三个国家援助粮食和药品两种物资, 每种物资既可以全部给一个国家,也可以由其中两个或三个国家均分,若每个国家都要有物资援助, 需要分为:粮食和药品都有,方法1种; 一个国家粮食,两个国家药品,有3种方法; 一个国家药品,两个国家粮食,有3种方法; 两个国家粮食,三个国家药品,有3种方法; 两个国家药品,三个国家粮食,有3种方法;一个国家粮食和药品,另两个国家各一种,有3×(2+2)=12种方法; 方法总数是:25. 故答案为:25. 三.解答题18.(2016·全国高二课时练习(理))18.(2016·全国高二课时练习(理))某体育彩票规定:从01至36个号中抽出7个号为一注,每注2元,某人想从01至10中选3个连续的号,从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,此人想把这种特殊要求的号买全,需要花多少钱? 【答案】8640元【解析】第一步:从01至10中选3个连续的号码有01,02,03;02,03,04;…;08,09,10,共8种不同的选法;第二步:同理,从11至20中选2个连续的自然数有9种不同的选法;第三步:从21至30中选一个号码有10种不同的选法;第四步:从31至36中选一个号码有6种不同的选法.共可组成8×9×10×6=4320注,所以需要花费2×4320=8640元钱.19.(2018·海林市朝鲜族中学高二单元测试)设集合M={-3,-2,-1,0,1,2},P(a,b)是坐标平面上的点,a,b∈M.求:(1)P可以表示多少个平面上的不同的点?(2)P可以表示多少个第二象限的点?(3)P可以表示多少个不在直线y=x上的点?【答案】(1)36;(2)6;(3)30【解析】(1)分两步,第一步确定a,有6种方法,第二步确定b也有6种方法,根据分步乘法计数原理共有6×6=36(个)不同的点.(2)分两步,第一步确定a,有3种方法,第2步确定b,有2种方法,根据分步乘法计数原理,第二象限的点共有3×2=6(个).(3)分两步,第一步确定a,有6种方法,第二步确定b,有5种方法,根据分步乘法计数原理不在直线y=x上的点共有6×5=30(个).20.(2018·上海市第二工业大学附属龚路中学高三月考)集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一种分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,则集合A={a,b,c}的不同分拆种数为多少?【答案】27种【解析】当A1=φ时,A2=A,此时只有1种分拆;当A1为单元素集时,A2=∁A A1或A,此时A1有三种情况,故拆法为6种;当A1为双元素集时,如A1={a,b},A2={c}、{a,c}、{b,c}、{a,b,c},此时A1有三种情况,故拆法为12种;当A1为A时,A2可取A的任何子集,此时A2有8种情况,故拆法为8种;综上,共27种拆法.21.(2017·湖北省松滋市第一中学高二课时练习)用0,1,2,3,4这五个数字可以组成多少个无重复数字的(1)四位密码?(2)四位数?(3)四位奇数?【答案】(1)120(个);(2)96个;(3)36(个).【解析】(1)可组成N=5×4×3×2=120(个).(2)依次确定千、百、十、个位,有N=4×4×3×2=96(个).(3)依次确定个位、首位、百位、十位,有N=2×3×3×2=36(个)22.(2017·湖北省松滋市第一中学高二课时练习)用n种不同的颜色为下列两块广告牌着色,(如图甲、乙),要求在A,B,C,D四个区域中相邻(有公共边界)的区域不用同一颜色.(1)若n=6,则为甲图着色时共有多少种不同的方法;(2)若为乙图着色时共有120种不同方法,求n.【答案】(1)480(种);(2)n=5.【解析】(1)对区域A,B,C,D按顺序着色,共有6×5×4×4=480(种)(2) 对区域A,B,C,D按顺序着色,依次有n种、n-1种、n-2种和n-3种,由分布乘法计数原理,不同的着色方法共有n(n-1)(n-2(n-3)=120,整理得(n2-3n)(n2-3n+2)=120,(n2-3n)2+2(n2-3n)-120=0n2-3n-10=0或n2-3n+12=0(舍去),解得n=5.。
分类加法计数原理与分步乘法计数原理测试题(学生卷)

分类加法计数原理与分步乘法计数原理测试题(学生卷)一、单选题1.现有A ,B 两种类型的车床各一台,甲、乙、丙三名工人,其中甲、乙都会操作两种车床,丙只会操作A 种车床,现在要从这三名工人中选两名分别去操作以上车床,不同的选派方法有( )A .6种B .5种C .4种D .3种2.已知{}{}1,2,4,2,3,5x y ∈∈--,则x y ⋅可表示不同的值的个数为( )A .8B .9C .10D .123.从A 地到B 地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内乘坐这三种交通工具的不同走法数为( ) A .1+1+1=3B .3+4+2=9C .3×4×2=24D .以上都不对4.将3封信投入2个邮箱,共有( )种投法A .4B .6C .8D .95.某学生去书店,发现2本好书,决定至少买其中一本,则购买方式共有( ) A .1种B .2种C .3种D .4种6.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同的选法的种数是( )A .56B .65C .30D .117.将3个不同的小球放入4个盒子中,不同放法种数为( )A .81B .64C .14D .128.如图所示,在A ,B 间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通,则焊接点脱落的不通情况有( )种.A .9B .11C .13D .15二、多选题 9.现有不同的黄球5个,黑球6个,蓝球4个,则下列说法正确的是( )A .从中任选1个球,有15种不同的选法B .若每种颜色选出1个球,有120种不同的选法C .若要选出不同颜色的2个球,有31种不同的选法D .若要不放回地选出任意的2个球,有240种不同的选法10.某学校高一年级数学课外活动小组中有男生7人,女生3人,则下列说法正确的是( )A .从中选2人,1人做正组长,1人做副组长,共有100种不同的选法B .从中选2人参加数学竞赛,其中男、女生各1人,共有21种不同的选法C .从中选1人参加数学竞赛,共有10种不同的选法D .若报名参加学校的足球队、羽毛球队,每人限报其中的1个队,共有100种不同的报名方法11.甲、乙、丙、丁、戊五只猴子在一棵枯树上玩耍,假设它们均不慎失足下落,已知:(1)甲在下落的过程中依次撞击到树枝A ,B ,C ;(2)乙在下落的过程中依次撞击到树枝D ,E ,F ;(3)丙在下落的过程中依次撞击到树枝G ,A ,C ;(4)丁在下落的过程中依次撞击到树枝B ,D ,H ;(5)戊在下落的过程中依次撞击到树枝I ,C ,E ,则下列结论正确的是( )A .最高处的树枝为G ,I 中的一个B .最低处的树枝一定是FC .这九根树枝从高到低不同的顺序共有33种D .这九根树枝从高到低不同的顺序共有32种12.我国古代的《易经》与“二进制”有着一定的联系,该书中有两类最基本的符号:“——”和“——”,其中“——”在二进制中记作“1”,“——”在二进制中记作“0”,其转化原理与“逢二进一”的法则相通,如符号“”对应的二进制数()2011转化为十进制数的计算为()21020110212123=⨯+⨯+⨯=.若从两类符号中任取2个符号排列,则组成的十进制数可以为( )A .1B .2C .4D .6三、填空题13.在如图①的电路中,只合上一只开关以接通电路,有___________种不同的方法;在如图②的电路中,合上两只开关以接通电路,有___________种不同的方法.14.用1、2、3三个数字能组成不同三位数的个数是________(结果用数字作答)15.从3名女同学和2名男同学中,选出1人主持某次主题班会,不同的选法种数为______.16.从4男2女共6名学生中选出队长1人、副队长1人、普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有_______种不同的选法.(用数字作答)四、解答题17.如图,一只蚂蚁沿着长方体的棱,从顶点A爬到相对顶点C1,求其中经过3条棱的路线共有多少条?18.一种号码锁有4个拨号盘,每个拨号盘上有0~9共10个数字.现最后一个拨号盘出现了故障,只能在0~5这6个数字中拨号,这4个拨号盘可组成多少个四位数字号码?19.某小组有3名女生、4名男生,从中选出3名代表,要求女生与男生都至少要有一名,共有多少种不同的选法?20.已知两条异面直线a,b上分别有5个点和8个点,用这13个点可确定多少个不同的平面?21.如图,把硬币有币值的一面称为正面,有花的一面称为反面.拋一次硬币,得到正面记为1,得到反面记为0.现抛一枚硬币5次,按照每次的结果,可得到由5个数组成的数组(例如若第一、二、四次得到的是正面,第三、五次得到的是反面,则结果可1,1,0,1,0,则可得不同的数组共有多少个?记为()22.用4种不同的颜色给图中的A,B,C,D四个区域涂色,要求每个区域只能涂一种颜色.(1)有多少种不同的涂法?(2)若相邻区域不能涂同一种颜色,有多少种不同的涂法?参考答案1.C【详解】若选甲、乙两人,包括甲操作A 车床,乙操作B 车床,或甲操作B 车床,乙操作A 车床,共有2种选派方法.若选甲、丙二人,则只有甲操作B 车床,丙操作A 车床这1种选派方法.若选乙、丙二人,则只有乙操作B 车床,丙操作A 车床这1种选派方法,故共有2+1+1=4(种)不同的选派方法.故选:C2.B【详解】因为{}{}1,2,4,2,3,5x y ∈∈--,所以x 1,y 2==-时,2x y ⋅=-;1,3x y ==-时,3x y ⋅=-;1,5x y ==时,5x y ⋅=;2,2-==y x 时,4x y ⋅=-;2,3x y ==-时,6x y ⋅=-;2,5x y ==时,10x y ⋅=;4,2x y ==-时,8x y ⋅=-;4,3x y ==-时,12x y ⋅=-;4,5x y ==时,20x y ⋅=;一共有9个不同结果.故选:B3.B【详解】根据分类加法计数原理可得,一天内乘坐这三种交通工具的不同走法数为3+4+2=9种. 故选:B.4.C【详解】第一步:投递第一封信,有2种投递方式,第二步:投递第二封信,有2种投递方式,第三步:投递第三封信,有2种投递方式,所以一共有8中投法.故选:C5.C【详解】解析:分两类:买1本或买2本书,各类购买方式依次有2种、1种,故购买方式共有2+1=3(种).故选:C.6.A【详解】第一名同学有5种选择方法,第二名也有5种选择方法,…,依次选择,第六名同学也有5种选择方法,综上,6名同学共有56种不同的选法.故选A .7.B【详解】解:对于第一个小球有4种不同的放法,第二个小球也有4种不同的放法,第三个小球也有4种不同的放法,即每个小球都有4种不同的放法,根据分步乘法计数原理知共有44464⨯⨯=种放法,故选:B.8.C【详解】解:按照可能脱落的个数分类讨论,若脱落1个,则有(1),(4)两种情况,若脱落2个,则有()1,2,()1,3,()1,4,()2,3,()2,4,()3,4共6种情况,若脱落3个,则有()1,2,3,()1,2,4,()2,3,4,()1,3,4共4种情况,若脱落4个,则有()1,2,3,4共1种情况,综上共有264113+++=种情况.故选:C.9.AB【详解】++=种不同的选法,故A正确;解:对于A,从中任选1个球,共有56415⨯⨯=种不同的选对于B,每种颜色选出1个球,可分步从每种颜色分别选择,共有564120法,故B正确;对于C,若要选出不同颜色的2个球,首先按颜色分三类“黄,黑”,“黄,蓝”,“黑,蓝”,⨯+⨯+⨯=种不同的选法,故C错误;再进行各类分步选择,共有56546474对于D,若要不放回地选出任意的2个球,直接分步计算,共有1514210⨯=种不同的选法,故D错误.故选:AB.10.BC【详解】对于A,选1人做正组长,1人做副组长需要分两步,⨯=种不同的选法,故A 先选正组长有10种选法,再选副组长有9种选法,则共有10990错误;⨯=种不同的选法,对于B,从中选2人参加数学竞赛,其中男、女生各1人,则共有7321故B正确;+=种不同的选对于C,选1人参加数学竞赛,既可以选男生,也可以选女生,则共有7310法,故C正确;对于D,每人报名都有2种选择,共有10人,则共有10=种不同的报名方法,故D错21024误.故选:BC.11.AC【分析】由题判断出部分树枝由高到低的顺序为GABCEF,还剩下D,H,I,且树枝I比C高,树枝D在树枝B,E之间,树枝H比D低,根据I的位置不同分类讨论,求得这九根树枝从高到低不同的顺序共33种.【详解】由题判断出部分树枝由高到低的顺序为GABCEF,还剩下D,H,I,且树枝I比C高,树枝D 在树枝B ,E 之间,树枝H 比D 低,最高可能为G 或I ,最低为F 或H ,故A 选项正确,B 错误;先看树枝I ,有4种可能,若I 在B ,C 之间,则D 有3种可能:①D 在B ,I 之间,H 有5种可能;②D 在I ,C 之间,H 有4种可能;③D 在C ,E 之间,H 有3种可能,此时树枝的高低顺序有54312++=(种)。
数学例题与探究:分类加法计数原理与分步乘法计数原理

典题精讲【例1】一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同。
(1)从两个口袋内任取一个小球,有多少种不同的取法?(2)从两个口袋内各取一个小球,有多少种不同的取法?思路分析:欲完成从两个口袋内任取一个小球这件事,可有两类办法,或从第一个口袋取或从第二个口袋取,都能完成这件事,所以题(1)可用分类加法计数原理来解;欲完成从两个口袋内各取一个小球这件事,需分两个步骤,第一步从第一个口袋内任取1个小球,第二步从第二个口袋内任取1个小球,两个步骤都完成了这件事就解决了,因此题(2)可用分步乘法计数原理来解。
解:(1)从两个口袋内任取1个小球,有两类办法:第一类办法是从第一个口袋内任取1个小球,可以从5个小球中任取1个,有5种方法;第二类办法是从第二个口袋内任取1个小球,可以从4个小球中任取1个,有4种方法。
根据分类加法计数原理,得到不同的取法种数是N=m1+m2=5+4=9。
所以从两个口袋内任取1个小球,有9种不同的取法.(2)从两个口袋内各取一个小球,可以分成两个步骤来完成:第一步是从第一个口袋内任取1个小球,有5种方法;第二步是从第二个口袋内任取1个小球,有4种方法。
根据分步乘法计数原理,得到不同的取法的种数是N=m1×m2=5×4=20。
所以从两个口袋内各取1个小球,有20种不同的取法.绿色通道:在用两个原理解决问题时,一定要分清完成这件事,是有n 类办法还是需分成n个步骤,而判断“分步”还是“分类",主要是看作一次能否完成整个事件,这是问题的实质所在。
应用分类加法计数原理必须要求各类的每一种方法都能完成这件事。
应用分步乘法计数原理则需要各步均是完成这件事必须经过的若干彼此相关联的步骤.变式训练1 在夏季,一个女孩有红、绿、黄、白4件上衣,红、绿、黄、白、黑5条裙子,3双不同鞋子,3双不同丝袜,这位女孩夏季某一天去学校上学,有多少种不同的穿法?思路解析:此题在于完成穿衣这一件事:需分4个步骤:穿上衣、裙子、丝袜和鞋子才能完成整件事,其中各个步骤互不干扰又不可或缺。
高考数学 10.1 分类加法计数原理与分步乘法计数原理练习

课时提升作业(六十一)分类加法计数原理与分步乘法计数原理(25分钟50分)一、选择题(每小题5分,共35分)1.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()A.3B.4C.6D.8【解析】选D.以1为首项的等比数列为1,2,4;1,3,9;以2为首项的等比数列为2,4,8;以4为首项的等比数列为4,6,9.把这4个数列顺序颠倒,又得到4个数列,故所求数列有8个.【误区警示】本题极易出现选B的错误,其原因是忽略公比小于1的情况.2.(2015·郑州模拟)5位同学站成一排准备照相的时候,有两位老师碰巧路过,同学们强烈要求与老师合影留念,如果5位同学顺序一定,那么两位老师与同学们站成一排照相的站法总数为()A.6B.20C.30D.42【解析】选D.因为五位学生已经排好,第一位老师站进去有6种选择,当第一位老师站好后,第二位老师站进去有7种选择,所以两位老师与学生站成一排的站法共有6×7=42种.【加固训练】三张卡片的正反面分别写有1和2,3和4,5和6,若将三张卡片并列,可得到不同的三位数(6不能作9用)的个数为()A.8B.6C.14D.48【解析】选D.先排首位6种可能,十位数从剩下2张卡片中任取一数有4种可能,个位数从剩下的1张卡片中取一数有2种可能,所以一共有6×4×2=48(种).3.(2015·三门峡模拟)有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有()A.8种B.9种C.10种D.11种【解析】选B.设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理共有3+3+3=9(种).4.用1,3,5,7,9五个数字中的三个替换直线方程Ax+By+C=0中的A,B,C,若A,B,C的值互不相同,则不同的直线共有()A.25条B.60条C.80条D.181条【解题提示】A,B,C的值互不相同,用1,3,5,7,9五个数字来替换,是分步乘法计数原理.【解析】选B.用1,3,5,7,9五个数字中的三个来替换A,B,C;A,B,C的值互不相同,是分步乘法计数原理,直线条数是5×4×3=60.5.(2015·青岛模拟)如图所示的五个区域中,中心区域是一幅图画,现在要求在其余四个区域中涂色,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A.64B.72C.84D.96【解析】选C.分成两类:A和C同色时有4×3×3=36(种);A和C不同色时有4×3×2×2=48(种),所以一共有36+48=84(种).6.(2015·福州模拟)设集合I={1,2,3,4,5},选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有()A.50种B.49种C.48种D.47种【解题提示】以A中最大的数为标准,进行分类讨论,A中最大的数可能为1,2,3,4共四种情况.【解析】选B.当A中最大的数为1时,B可以是{2,3,4,5}的非空子集,即有24-1=15(种)方法;当A中最大的数为2时,A可以是{2},也可以是{1,2},B可以是{3,4,5}的非空子集,即有2×(23-1)=14(种)方法; 当A中最大的数为3时,A可以是{3},{1,3},{2,3},{1,2,3},B可以是{4,5}的非空子集,即有4(22-1)=12(种)方法; 当A中最大的数为4时,A可以是{4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4},B可以是{5},有8×1=8(种)方法,故共有15+14+12+8=49(种)方法.7.(2015·九江模拟)若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“良数”.例如:32是“良数”,因为32+33+34不产生进位现象;23不是“良数”,因为23+24+25产生进位现象.那么小于1000的“良数”的个数为()A.27B.36C.39D.48【解析】选D.一位“良数”有0,1,2,共3个;两位数的“良数”十位数可以是1,2,3,两位数的“良数”有10,11,12,20,21,22,30,31,32,共9个;三位数的“良数”百位可以为1,2,3,十位数为0的,个位可以是0,1,2,共3×3=9个,十位不是0时,十位个位可以是两位“良数”,共有3×9=27个.根据分类加法计数原理,共有48个小于1000的“良数”.二、填空题(每小题5分,共15分)8.椭圆22 xym n=1的焦点在y轴上,且m∈{1,2,3,4,5},n∈{1,2,3,4,5,6,7},则这样的椭圆有个.【解析】m<n,根据m的取值分为5类:m=1时,有6个椭圆;m=2时,有5个椭圆;m=3时,有4个椭圆;m=4时,有3个椭圆;m=5时,有2个椭圆.共有6+5+4+3+2=20(个).答案:20【误区警示】本题极易出现忽略m<n,即焦点在y轴上的情况,其原因是对焦点在y轴上时满足的条件不清晰或粗心忽略该条件.9.某城市在中心广场建造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有种(用数字作答).【解析】从题意来看6部分种4种颜色的花,又从图形看知必有2组同颜色的花,从同颜色的花入手分类求.(1)②与⑤同色,则③⑥也同色或④⑥也同色,所以共有N1=4×3×2×2×1=48(种).(2)③与⑤同色,则②④或⑥④同色,所以共有N2=4×3×2×2×1=48(种).(3)②与④且③与⑥同色,则共有N3=4×3×2×1=24(种).所以共有N=N1+N2+N3=48+48+24=120(种).答案:120【一题多解】本题还可用以下方法求解.记不同颜色的花为A,B,C,D,先安排①,②,③有4×3×2种不同的栽法.不妨设①,②,③已分别栽种A,B,C,则④,⑤,⑥栽种方法共5种,由以下树状图清晰可见.根据分步乘法计数原理,不同栽种方法有N=4×3×2×5=120.答案:12010.用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有种.【解析】把区域分为三部分,第一部分1,5,9,有3种涂法.第二部分4,7,8,当5,7同色时,4,8各有2种涂法,共4种涂法;当5,7异色时,7有2种涂法,4,8均只有1种涂法,故第二部分共4+2=6种涂法.第三部分2,3,6与第二部分一样,共6种涂法.由分步乘法计数原理,可得共有3×6×6=108种涂法.答案:108(20分钟40分)1.(5分)如图所示,在A,B间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通.今发现A,B之间电路不通,则焊接点脱落的不同情况有()A.9种B.11种C.13种D.15种【解析】选 C.按照焊接点脱落的个数进行分类:第1类,脱落1个,有1,4,共2种;第2类,脱落2个,有(1,4),(2,3),(1,2),(1,3),(4,2),(4,3),共6种;第3类,脱落3个,有(1,2,3),(1,2,4),(2,3,4),(1,3,4),共4种;第4类,脱落4个,有(1,2,3,4),共1种.根据分类加法计数原理,共有2+6+4+1=13种焊接点脱落的情况.2.(5分)(2015·福州模拟)记集合A={1,2,3,4,5,6},M= ,将M中的元素按从小到大的顺序排列,则第70个元素是()A.0.264B.0.265C.0.431D.0.432【解析】选A.根据题意,a1,a2,a3∈A,则a1,a2,a3都有6种情况,则m的值可有6×6×6=216,故M中有216个元素.当a1=1时,a2,a3有6×6=36种情况,此时m的值有36个,是M中第1到36个元素.当a1=2时,a2,a3有6×6=36种情况,此时m的值有36个,是M中第37到72个元素.其中最大的数为0.266,即M中第72个元素,其第71个元素为0.265,第70个元素为0.264.故选A.3.(5分)将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有种.【解析】由于3×3方格中,每行、每列均没有重复数字,因此可从中间斜对角线填起.△△△如图中的△,当△全为1时,有2种(即第1行第2列为2或3,当第2列填2时,第3列只能填3,当第1行填完后,其他行的数字便可确定),当△全为2或3时,分别有2种,共有6种;当△分别为1,2,3时,也共有6种,共12种.答案:124.(12分)给程序命名,需要用3个字符,其中首字符要求用字母A~G或U~Z,后两个要求用数字1~9.问最多可以给多少个程序命名?【解题提示】要给一个程序命名,可以分三个步骤:第1步,选首字符;第2步,选中间字符;第3步,选最后一个字符.而首字符又可以分为两类.【解析】先计算首字符的选法.由分类加法计数原理,首字符共有7+6=13种选法.再计算可能的不同程序名称.由分步乘法计数原理,最多可以有13×9×9=1053个不同的名称,即最多可以给1053个程序命名.5.(13分)(能力挑战题)编号为A,B,C,D,E的五个小球放在如图所示的五个盒子里,要求每个盒子只能放一个小球,且A球不能放在1,2号,B球必须放在与A球相邻的盒子中,则不同的放法有多少种?【解析】根据A球所在位置分三类:(1)若A球放在3号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C,D,E,则根据分步乘法计数原理得,3×2×1=6种不同的放法.(2)若A球放在5号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C,D,E,则根据分步乘法计数原理得,3×2×1=6种不同的放法.(3)若A球放在4号盒子内,则B球可以放在2号,3号,5号盒子中的任何一个,余下的三个盒子放球C,D,E有3×2×1=6种不同的放法,根据分步乘法计数原理得,3×6=18种不同的放法.综上所述,由分类加法计数原理得不同的放法共有6+6+18=30种.【方法技巧】分类和分步的技巧用两个计数原理解决计数问题时,最重要的是在开始计算之前要进行仔细分析:(1)需要分类还是需要分步.分类要做到“不重不漏”.分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“步骤完整”,即完成了所有步骤,恰好完成任务,当然步与步之间要相互独立.分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.。
《6.1分类加法计数原理与分步乘法计数原理》(同步训练)高中数学选择性必修第三册

《6.1分类加法计数原理与分步乘法计数原理》同步训练(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、若事件A和B互斥,事件C和D互斥,且A∩C=B∩D=∅,则下列结论正确的是:A. AC与BD互斥B. AC与BD风险集体C. AC与BD包容D. AC与BD是等可能事件2、在5名同学中,需要从他们中选出2名同学参加数学竞赛,不考虑顺序,用组合数表示这个问题的解法是:A.C52B.P52C.A52D.5×43、在一个班里有男生20人,女生15人。
从中任选2人参加某个活动,问恰好选到一男一女的概率是多少?)A.(13)B.(23)C.(37)D.(474、(7×5)×(9×3)可以用以下哪个计数原理来解释?A. 分步乘法计数原理B. 分类加法计数原理C. 排列D. 组合5、在完成一个任务的过程中,有两种方法可以完成,第一种方法有3个步骤,第二种方法有4个步骤,且每个步骤都是独立的,那么完成这个任务的不同方法共有()种。
A. 7种B. 12种C. 15种D. 21种6、从甲地到乙地之间有3条不同的公路和2条不同的铁路连接,那么从甲地到乙地之间有多少种不同的出行方式?A. 3种B. 5种C. 6种D. 8种7、某班级举行数学竞赛,共有五道题目,其中一道为选择题,两道为填空题,两道为解答题,要求参赛选手必须在规定时间内完成所有题目。
若选择题有四个选项(包含一个错误选项),填空题有四个空格(每个空格填写一个数字),每道解答题目有五个步骤,每一步骤有三种方法,则参赛选手完成所有题目的方法总数为:A. 2,880B. 1,080C. 3,780D. 9,0008、一个班级有5名男生和6名女生,要从中选出2名男生和3名女生参加学校活动,不同的选法共有()A. 150种B. 120种C. 90种D. 60种二、多选题(本大题有3小题,每小题6分,共18分)1、某班共有5名男生和4名女生,从中任选2名学生参加志愿者活动。
分类加法计数原理与分步乘法计数原理题目

分类加法计数原理与分步乘法计数原理题目示例文章篇一:哎呀呀,啥是分类加法计数原理和分步乘法计数原理呀?这可把我这个小学生难倒啦!老师在课堂上讲的时候,我一开始那是一头雾水,感觉就像掉进了一个巨大的数字迷宫里。
你能想象吗?就好像我在森林里迷路了,找不到出去的方向。
比如说,我们班组织活动,要选班长和学习委员。
选班长呢,有5 个同学可以选;选学习委员呢,又有另外3 个同学可以选。
那总共可以有多少种选法?这就是分类加法计数原理呀!这就好比我有5 种不同口味的糖果,又有3 种不同形状的饼干,那我拥有的零食种类不就是5 + 3 嘛!还有分步乘法计数原理呢。
就像我们从家去学校,要先坐公交车,有3 路车可以选;到了中转站,又有2 种不同的路线能到学校。
那能有多少种去学校的方法?这就得用乘法啦,3×2 = 6 种,是不是很神奇?这就好像我要搭积木盖房子,第一层有3 种搭法,第二层又有2 种搭法,那搭成完整房子的方法不就是它们相乘嘛!我和同桌讨论这两个原理的时候,我问他:“你说这咋这么绕呢?”他摇摇头说:“我也有点晕乎。
”然后我俩一起琢磨,互相讲给对方听。
还有一次,我回家问爸爸妈妈,他们一开始也被我问懵了,后来爸爸想了想说:“这就像我们出门旅游,选择交通工具是一类,选择路线又是一类,把它们组合起来就是各种不同的出行方案啦。
”妈妈在旁边笑着点头。
经过这么多次的讨论和思考,我好像慢慢有点明白啦。
这两个计数原理就像是我的小帮手,能帮我解决好多好多生活中的数学问题呢!你说,数学是不是很有趣又很神奇?虽然有时候它让我头疼,但搞明白之后,那种成就感简直太棒啦!反正我觉得,只要多思考多练习,就没有搞不定的数学难题!示例文章篇二:哎呀,这“分类加法计数原理与分步乘法计数原理”可真是让我头疼了好一阵子呢!你能想象吗?就好像我在一个超级大的迷宫里,到处都是数字和符号,我得努力找到出去的路。
有一次上课,老师在黑板上写了一道题:从甲地到乙地,有3 条路可走,从乙地到丙地,有2 条路可走,那么从甲地经过乙地到丙地,有几种走法?我看着这道题,心里直嘀咕:“这可咋整啊?”同桌小明凑过来悄悄说:“这还不简单,用分步乘法计数原理呗!”我瞪了他一眼说:“我要是会还用你说?”老师看到我们在下面交头接耳,就问:“谁来说说这道题该怎么做?”我赶紧低下头,心里祈祷着:“千万别叫我,千万别叫我!”可是怕啥来啥,老师的目光还是落在了我身上,说:“来,这位同学,你说说看。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2 4 5 3
《分类加法计数原理与分步乘法计数原理》基本练习
一、 选择题
1.由数字0,1,2,3,4可组成无重复数字的两位数的个数是( )
A.25 B.20 C.16 D.12
2.由0,1,2,3,...,9十个数码和一个虚数单位i 可以组成虚数的个数为( )
A.100 B .10 C .9 D .90
3.教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有( )
A .10种
B .52种 C.25种 D.42种 4.三边长均为正整数,且最大边长为11的三角形的个数为( )
A.25 B.26 C.36 D.37
5.4名同学分别报名参加数、理、化竞赛,每人限报其中的1科,不同的报名方法种数 ( )
A .24
B .4
C .34
D .43
6.甲、乙、丙三个电台,分别有3、4、4人,新年中彼此祝贺,每两个电台的人都彼此一一通话,那么他们一共要通话( )
A .40次
B .48次
C .36次
D .24次。
7.编号为A ,B ,C ,D ,E 的五个小球放在如图所示五个盒子中。
要求每个盒子只能放一个小球,且A 不能放1,2号,B 必须放在与A 相邻的盒子中。
则不同的放法有( )种
A.42
B.36
C.32
D.30
8.一只青蛙在三角形ABC 的三个顶点之间跳动,若此青蛙从A 点起跳,跳4次后仍回到A 点,则此青蛙不同的跳法的种数是( )
A .4
B .5
C .6
D .7
9.一植物园参观路径如右图所示,若要全部参观并且路线不重复,则不同的参观路线种数共有( )
A .6种
B .8种
C .36种
D .48种
10.现有1角、2角、5角、1元、2元、5元、10元、50元人民币各一张,100元人民币2张,从中至少取一张,共可组成不同的币值种数是( )
A.1024种
B.1023种
C.1536种
D. 1535种
11.平面内有7个点,其中有5个点在一条直线上,此外无三点共线,经过这7个点可连成不同直线
12.某班元旦晚会原定的5个节目已排成节目单,开演前又增加了2个新节目,如果将这两个节目插入原节目单中,那么不同的插法的种数为________.
13.电子计算机的输入纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产生 _________种不同的信息.
14.在1,2,3,4,5这五个数字所组成的没有重复数字的三位数中,其各位数字之和为9的三位数共有________
个.云南省昆明市2015年中考物理试题(word版,有答案)
一、选择题(本大2共8小题,每小题3分,共24分)。
下列各题的答案中只有一个是正确的,请考生用2B铅笔把答题卡上对应题目的答案标号涂黑。
1.关于电磁波的叙述,下列说法中不正确的是
A.电磁波可以传播信息
B.不同波长的电磁波在空气中传播的速度不同
C.电磁波传播不需要介质
D.当电磁辐射达到一定强度,也会造成电磁污染
2.下列现象中属于升华的是
A.烧水时,壶嘴喷出的“白气”
B.加在饮料中的冰块不见了
C.撒在地上的水一会儿没有了D.放在衣柜里的樟脑丸越来越小
3.下列对光现象的解释,正确的是
A.远视眼镜能矫正远视眼,是因为其镜片对光有会聚作用
B.日食是由于光的折射形成的
C.能够看到周围的物体,是因为眼睛发出的光照射到物体上
D.水杯中的筷子看起来折断了,是由于光发生了漫反射
4.下面说法中正确的是
A.发电机的工作原理是磁场对电流的作用
B.滑动摩擦力的大小与接触面积有关
C.做功和热传递都可以改变物体的内能
D.定滑轮既能省力,又能改变力的方向
5.如图1所示的电路,电源电压不变。
当开关S由断开到闭合,电路中
A.电流表示数不变,电阻R2两端电压减小
B.电流表示数变大,电阻R2的功率变大
C.电流表示数变小,总功率变大
D.电流表示数变大,总电阻变小
6.用与毛皮摩擦过的橡胶棒,去靠近用细线悬挂的轻质小球,发现小球被排斥,则小球
A. 一定带正电B.一定带负电C.可能带正电,也可能带负电 D. 一定不带电
7.对下列物理概念的理解,错误的是
A.速度用于描述物体运动的快慢
B.光线用于描述光传播的方向和路径
C.温度用于描述物体所含热量的多少
D.电阻用于描述导体对电流阻碍作用的大小
8.在图2所示的电路中,电源电压为9V保持不变;AB为滑动变阻器,最大阻值R AB=30 Ω;小灯泡的额定电压为6V,额定功率为1.8W。
闭合开关S,滑动变阻器滑片从B端向A端缓慢移动,当到达某一位置C处时,小灯泡刚好正常发光,则CB之间的电阻应为
A. 5Ω
B. 10Ω
C. 15Ω
D. 20Ω
二、填空题(本大题共9小题,每空1分,共20分)。
请考生用黑色碳素笔在答题卡上作答,不要求写出解答过程。
9.核能是一种新能源,核裂变是产生核能的一种方式,另一种核反应方式是____;半导体二极管具有导电性;若用超导体输电,优点是可以实现输电过程中____电能损失。
10.。