医用分子筛制氧机的原理以及特性
分子筛制氧机工作原理

分子筛制氧机工作原理
分子筛制氧机是一种利用分子筛技术制取高纯度氧气的设备。
其工作原理是通过分子筛材料对气体中的氮气进行吸附,从而将气体中的氧气浓缩提取出来。
分子筛是一种具有特定孔径和微孔结构的物质,在分子筛制氧机中,常用的分子筛材料是沸石,它的微孔尺寸可以选择性地吸附不同大小的分子。
当气体进入分子筛制氧机时,经过预处理后,进入分子筛吸附装置。
在吸附装置中,氮气分子由于其分子体积较大,无法进入微孔结构,而氧气分子则可以被吸附。
随着氮气的逐渐被吸附,出口气体中的氧气浓度逐渐提高。
当分子筛达到一定吸附饱和度时,需要对分子筛进行再生,以使其重新具备吸附氮气的能力。
分子筛的再生过程通常采用两步法。
首先是脱附,将吸附装置中的压力降低,使被吸附的氮气分子解除吸附,然后通过排空将已解除吸附的氮气从分子筛装置中排出。
脱附后的分子筛需要进行再生,通常是通过向吸附装置加入一定量的干燥空气或纯氧气进行洗涤,以恢复分子筛的吸附能力。
通过反复的吸附和再生过程,分子筛制氧机可以稳定地分离氮气和氧气,从而提取出高纯度的氧气供应给使用者。
综上所述,分子筛制氧机通过分子筛材料对气体中的氮气进行吸附,在反复的吸附和再生过程中分离出高纯度的氧气。
这种设备广泛应用于医疗、制造业、食品加工等领域,为各种应用提供了高质量的氧气资源。
分子筛制氧机原理简介

1、分子筛简介分子筛是一种具有立方晶格的硅铝酸盐化合物。
分子筛具有均匀的微孔结构,它的孔穴直径大小均匀,这些孔穴能把比其直径小的分子吸附到孔腔的内部,并对极性分子和饱和分子具有优先吸附能力,因而能把极性程度不同,饱和程度不同,分子大小不同及沸点不同的分子分离开来,即具有“筛分”分子的作用,故称分子筛。
由于分子筛具有吸附能力高,热稳定性强等其它吸附剂所没有的优点,使得分子筛获得广泛的应用。
分子筛结构图2、制氧分子筛5A小型制氧分子筛是一种特制的5A分子筛,是专为医疗保健制氧机而生产的,该分子筛具有制氧纯度高、速度快、使用寿命长的特点,是5A分子筛在医疗保健行业的一个重要应用。
化学式:4/5CaO·1/5Na2O·Al2O3·2 SiO2硅铝比:SiO2/Al2O3≈2有效孔径:约5A应用:除具有一般5A分子筛的特性外,主要用于变压吸附制氧。
3、小型分子筛制氧机的发展历程1962年美国联合碳化物公司(UCC)发现了分子筛对气体的选择性特性,并在实验设备上实现了对少数不同气体的分离;随即研制成功了世界上第一台制氢工业装置;随着分子筛材料与工艺的不断提升,70年代中期美国和德国首先将PSA技术应用于空气分离并在化工领域得到应用,到80年代中期化学工业的发展为分子筛的性能提高起到了关键作用,这使设备小型化成为可能,1985年美国的Praxair公司研制的第一台小型制氧机的问世标志着PSA技术小型化的开始,90年代初产品意义上的医用小型制氧机开始出现,美国材料实验学会(ASTM)于1993年颁布了医用小型制氧机标准规范(F1464-1993),国际标准组织于1996年发布了医用小型制氧机的安全性标准(ISO8359:1996)。
目前我国只有国家药品管理局颁布的《YY/T0298—1998医用分子筛制氧设备通用技术规范》,还没有相应的与国际接轨的医用小型制氧机行业或产品标准。
美国《F1464—1993》标准及国际标准《ISO8359:1996》两个标准的一个共同特点是对制氧机做了以下几点强制性规范,而我国《YY/T0298—1998》则没有强制性要求:A.产品必须设计有不可更改的累计计时功能。
分子筛制氧机里边结构的原理

分子筛制氧机里边结构的原理引言:分子筛制氧机是一种常见的用于制取高纯度氧气的设备。
其内部结构采用了分子筛技术,通过分子筛吸附和脱附的作用,将空气中的氮气等杂质分离出来,从而得到高纯度的氧气。
本文将详细介绍分子筛制氧机内部结构的原理。
一、分子筛的基本原理分子筛是一种由微孔构成的物质,其特点是孔径均匀且能够选择性吸附分子。
在分子筛内部,孔径的大小决定了能够进入和被吸附的分子的大小。
常见的分子筛材料有沸石、硅铝酸盐等。
二、分子筛制氧机的内部结构1. 进气系统:分子筛制氧机的进气系统通常包括进气口、过滤器和压缩机。
进气口用于引入空气,过滤器则用于除去空气中的大颗粒杂质,而压缩机则将空气压缩至一定压力。
2. 分子筛吸附罐:分子筛吸附罐是分子筛制氧机内部最重要的部分。
吸附罐内装有大量的分子筛,通过吸附和脱附作用来分离氮气等杂质。
当压缩空气进入吸附罐时,分子筛会选择性地吸附氮气,而将氧气等其他组分通过。
一段时间后,分子筛达到饱和吸附状态,需要进行再生。
3. 再生系统:再生系统通常包括加热器和冷却器。
当分子筛吸附罐饱和后,需要进行再生以去除吸附的氮气。
加热器会将吸附罐中的分子筛加热至一定温度,从而使吸附在分子筛上的氮气脱附。
脱附后的氮气会通过冷却器冷却,然后排出系统。
4. 出气系统:出气系统用于收集和输出高纯度氧气。
经过分子筛吸附和再生后,氧气会被收集并输出。
此外,为了保证输出氧气的质量,还会设置一些过滤器和调压装置。
三、分子筛制氧机的工作流程1. 进气:空气通过进气口进入系统,通过过滤器去除大颗粒杂质。
2. 压缩:经过过滤后的空气被压缩机压缩至一定压力,提高分子筛吸附效果。
3. 吸附:压缩空气进入分子筛吸附罐,其中的分子筛选择性吸附氮气等杂质,而将氧气等其他组分通过。
4. 再生:分子筛吸附罐饱和后,通过加热器将分子筛加热至一定温度,使吸附在上面的氮气脱附。
脱附的氮气通过冷却器冷却后排出系统。
5. 输出:经过吸附和再生后,高纯度的氧气被收集并输出。
医用制氧机原理

医用制氧机原理
医用制氧机是一种能够从空气中提取氧气,经过处理后供给病人使用的医疗设备。
它的原理是基于分子筛吸附技术和压缩空气工艺。
首先,让我们来了解一下医用制氧机的工作原理。
医用制氧机通过空气分子筛吸附技术将空气中的氮气和其他杂质分离,从而得到高纯度的氧气。
分子筛吸附技术是利用特定的吸附剂对气体分子进行吸附和脱附的物理过程。
在医用制氧机中,空气首先通过预处理系统去除水分和杂质,然后进入分子筛吸附装置。
在分子筛吸附装置中,氮气和其他杂质被吸附下来,而氧气则通过,最终得到高纯度的氧气。
另外,医用制氧机还采用了压缩空气工艺。
在这个过程中,空气被压缩到一定压力后,通过冷却、减压等工艺得到高纯度的氧气。
压缩空气工艺可以有效提高氧气的浓度和产量,保证医用制氧机的稳定运行。
医用制氧机的原理简单清晰,但是在实际应用中需要注意一些问题。
首先是设备的维护保养,定期清洗和更换分子筛吸附装置,保证氧气的纯度和稳定性。
其次是设备的安全运行,医用制氧机需要配备相应的安全防护装置,避免氧气泄漏和设备故障。
另外,操作人员需要接受专业的培训,掌握医用制氧机的正确使用方法,确保病人能够安全、有效地使用氧气。
总的来说,医用制氧机通过分子筛吸附技术和压缩空气工艺,实现了从空气中提取高纯度氧气的原理。
在医疗卫生领域,医用制氧机是一种非常重要的设备,它为有氧疗法和急救抢救提供了可靠的氧气来源。
因此,医用制氧机的原理和应用具有重要的意义,对于提高医疗卫生水平和保障病人健康具有重要意义。
分子筛制氧机工作原理

分子筛制氧机工作原理
分子筛制氧机是一种能够通过分子筛吸附技术将空气中的氧气与氮气分离的设备。
它的工作原理主要是利用分子筛对氧气和氮气的吸附特性进行分离,从而提取纯净的氧气。
下面将详细介绍分子筛制氧机的工作原理。
首先,空气进入分子筛制氧机后,经过预处理系统去除其中的水汽和杂质,然后进入分子筛吸附系统。
在吸附系统中,空气通过分子筛层,由于分子筛对氧气和氮气的吸附能力不同,氧气被分子筛吸附,而氮气则通过分子筛层,从而实现氧气和氮气的分离。
随后,当分子筛吸附一定时间后,需要进行脱附操作。
这时,通过改变系统的压力或温度,使得已吸附的氧气从分子筛上脱附出来,从而得到高纯度的氧气。
而吸附后的分子筛则可以通过再生操作进行再次利用,实现循环使用。
在整个工作过程中,分子筛制氧机需要不断地进行吸附和脱附操作,以保证稳定的氧气输出。
同时,控制系统也需要对各个环节进行监测和调节,以确保设备的正常运行。
总的来说,分子筛制氧机的工作原理是基于分子筛对氧气和氮
气的吸附特性进行分离,通过吸附和脱附操作得到高纯度的氧气。
这种技术不仅能够满足工业、医疗等领域对高纯度氧气的需求,而
且还具有节能、环保等优点,因此在各个领域有着广泛的应用前景。
通过以上的介绍,相信大家对分子筛制氧机的工作原理有了更
深入的了解。
分子筛制氧机作为一种高效、可靠的氧气分离设备,
将会在未来发展中发挥越来越重要的作用。
2023医用分子筛制氧机标准

2023医用分子筛制氧机标准摘要:1.医用分子筛制氧机概述2.2023年医用分子筛制氧机标准3.分子筛制氧机的工作原理4.医用分子筛制氧机的技术参数与选型5.分子筛制氧机在医疗领域的应用6.如何选择适合自己的医用分子筛制氧机7.总结正文:一、医用分子筛制氧机概述医用分子筛制氧机是一种采用PSA(变压吸附)原理,以优质制氧分子筛为吸附剂,直接在常温下从空气中分离制取氧气的设备。
这种设备在我国医疗领域得到了广泛的应用,为医疗机构提供了稳定、高品质的氧气供应。
二、2023年医用分子筛制氧机标准根据2023年的医用分子筛制氧机标准,设备应具备以下特点:1.氧气浓度:制氧机输出的氧气浓度应达到93%以上,以确保医疗使用的需求。
2.氧气压力:制氧机的氧气压力应在0.3~1.0MPa范围内,以满足不同医疗设备的使用要求。
3.氧气露点:医用分子筛制氧机的氧气常压露点应低于-43℃,以确保氧气质量。
4.安全性:制氧机应具备良好的安全性能,包括防爆、防泄漏等功能,确保使用过程中的安全。
5.噪音和振动:医用分子筛制氧机的噪音和振动应控制在较低水平,以营造舒适的医疗环境。
三、分子筛制氧机的工作原理分子筛制氧机通过PSA(变压吸附)原理,利用分子筛吸附剂对空气中的氮气、二氧化碳和水份等进行大量吸附,使氧气在气相中富集输出。
当吸附剂吸附达到饱和时,降低压力使分子筛解吸再生,实现连续产出高品质氧气。
四、医用分子筛制氧机的技术参数与选型医用分子筛制氧机的技术参数包括氧气流量、氧气浓度、氧气压力和氧气常压露点等。
根据不同的氧气需求和适用范围,可以选择不同型号的制氧机。
例如,HHO-3Y型制氧机适用于100床的医疗机构,氧气产量为3Nm3/h,装机功率为7.5KW。
五、分子筛制氧机在医疗领域的应用分子筛制氧机在医疗领域具有广泛的应用,包括供氧治疗、呼吸机辅助治疗、氧气吸入器、手术室用氧、急诊科用氧等。
此外,分子筛制氧机还可应用于畜牧业、水产养殖、高原地区居民用氧等领域。
医用制氧机原理

医用制氧机原理
医用制氧机是一种能够将空气中的氧气浓缩到高浓度的装置,主要用于治疗呼吸系统疾病以及提供氧气给有氧气需求的患者。
医用制氧机的原理是利用物理方法将空气中的氧气分离出来。
医用制氧机通常采用分子筛吸附技术。
分子筛是一种特殊的物质,其表面具有特殊的化学性质,能够吸附特定的气体分子。
医用制氧机内部通常安装了一个分子筛吸附器,空气通过该吸附器时,其中的氮气和其他杂质气体会被吸附住,而氧气则相对集中地通过。
医用制氧机具有两个主要的工作环节:吸附和解吸。
在吸附阶段,压缩空气通过分子筛吸附器时,其中的氮气会被分子筛吸附,从而只有富含氧气的空气通过。
随后,在解吸阶段,分子筛吸附器通过降低压力或者加热等方式将被吸附的氮气释放掉,从而恢复分子筛的吸附能力。
此外,医用制氧机还会配备氧气压缩机和压缩空气过滤器。
氧气压缩机主要用于增压,使得制氧机能够提供足够的压力给患者使用。
压缩空气过滤器则用于过滤空气中的杂质和微小颗粒,以保证输送到患者的氧气质量。
总的来说,医用制氧机通过分子筛吸附技术将空气中的氮气和杂质气体分离,从而得到高浓度的氧气供患者使用。
它是一种非常重要的医疗设备,能够为患者提供必要的氧气支持,促进其康复和治疗效果。
分子筛制氧机工作原理

分子筛制氧机工作原理
分子筛制氧机是一种利用分子筛技术来进行氧气分离的设备。
其工作原理主要包括以下几个步骤:
1. 压缩空气进入机器:首先,将压缩空气引入分子筛制氧机中。
这些压缩空气通常经过预处理,去除其中的杂质和含尘物质。
2. 分子筛吸附:压缩空气进入分子筛吸附塔。
分子筛是一种特殊的材料,具有高度的选择性和吸附能力。
其中的分子筛由许多微小的孔隙组成,可以吸附空气中的氧气,并排出富含氮气的气体。
3. 氮气排放:当分子筛塔吸附饱和后,需要进行再生。
这时,通过向分子筛塔供给一定量的干燥空气或压缩氧气,可以将吸附的氮气释放出来。
同时,释放的氮气会通过其他出口排出。
4. 氧气收集和输出:在分子筛塔吸附时,富氧气体逐渐积聚。
当分子筛塔进行再生时,富氧气体将被释放出来并收集。
通过适当的管道和阀门控制,将纯净的氧气输送到需要的地方。
整个过程是通过不同的分子筛塔进行交替操作来实现的。
这样,分子筛制氧机可以在连续运转中提供稳定的氧气产量。
同时,由于氮气是通过分子筛吸附释放出来的,使得氧气的纯度更高。
值得注意的是,分子筛制氧机不适用于高含湿度的空气,因为水分会影响分子筛的吸附能力。
另外,分子筛制氧机需要定期
更换、清洁和保养分子筛塔,以确保其正常工作和提供高质量的氧气。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
4
PSA制氧机工作原理
PSA医用小型制氧机一般采用加压吸附常压解吸(HP)方法,流 程为两塔。原料空气由压缩机加压后,经过空气预处理装置除去油、 尘埃等固体杂质及水,并冷却至常温,经过处理后的压缩空气由进气阀 进入装有分子筛的吸附塔,空气中的氮气、二氧化碳等被吸附,流出 的气体即为高纯度的氧气,当吸附塔达到一定的饱和度后,进气阀关 闭,冲洗阀打开,吸附塔进入冲洗阶段,过后冲洗阀关闭,解吸阀打开 进入解吸再生阶段,这样即完成了一个循环周期。由两只吸附塔分别 进行相同的循环过程,从而实现连续供气。全系统由单片机全自动控 制。
氧生产企业必须具有:《药品生产许可 具有:《药品生产许可证》、《药品GMP证 得《医疗器械注册许可证》后即可向医疗
a
5
医用制氧机特性
1.原理先进:采用沸石分子筛,变压吸附技术(PSA)将空气中的 氧气与氮气分离,滤除了空气中的有害物质,从而获取符合医用氧标准 的高纯度氧气。
2.制氧成本低:以空气为原料,无须任何添加剂,无残渣和污染排放, 耗电量小。
3.使用方便:有电则可产氧,操作简单,氧浓度稳定,氧流量可调,可 随用随制,也可制好配用,可24小时持续供氧。
• 当设备有报警信息产生时会自动将信息发送到远程数据中心,并且会 发送一封邮件到本地设备维护工程师的邮箱里,可以及时的在远程和 本地共同维护设备。
• 设备运行状态、数据可远程实时监控。
• 设备远程调试与升级。
• 医用分子筛制氧机维护和仪表校准简单、易行。例行维护和保养仅限 于空压机的正常维护和所配过滤器中滤芯的定时更换。
a
11
DMO医用分子筛中心制氧系统与液态氧、瓶装氧的综合对比
• (请往后翻)
a
12
氧源 国家法规
瓶装氧
液态氧
医用分子筛中心制氧系统
执行国家强制标准(GB8982-1998)和 执行国家强制标准(GB8982-1998)和《中国药 根据《中华人民共和国医疗器械分类目
《中国药典》(2005)版中的标准,瓶装 典》(2005)版中的标准,液氧生产企业必须 录》,医用制氧设备属二类医疗器械,获
• 可选择多功能控制系统,通过友好的用户触摸屏界面, 提供所有过程信息。系统可设定和显示包括纯度、流量和 压力等相关参数,可发出运行故障报警确保操作者及时做 出设备调整,可定期提醒操作者做设备定期保养和维护以 及定时更换过滤器芯等。
a
10
可选择远程无线监控
• 在传统的应用方式找中,设备一旦安装到使用现场后设计人员将很 难跟踪维护,出现问题也不能及时调试和升级。现在可以为设备加装 GPRS职能无线传输设备(Wi-Ctrl),改造为无线升级方案,实现了 对设备实行实时和动态的监控,实现自动化控制和设备高效运行的目 的。本方案使用互联网服务通过无限方案对工业现场的设备进行远程 控制与监视,不受距离和组网的限制。
医用分子筛制氧机的原理以及特性
东亮医疗整理,仅供分享
a
1
什么是医疗器械设备
医疗器械设备可想而知就是在医院里需要用的机械设备,辅助医生更好 的观察病人情况的医疗机械设备。那大家又具体知道有哪些医疗器械设备吗? 要怎样正确的去认识医疗器械设备呢?
首先为大家来解析下什么是医疗器械,医疗器械是指直接或者间接用于 人体的仪器、设备、器具、体外诊断试剂及校准物、材料以及其他类似或者 相关的物品,包括所需要的计算机软件。
4.安全可靠:全套气路均为低压系统程序控制,性能稳定,噪音低。
a
6
医用分子筛制氧机的优势
医用分子筛制氧机是为医院中心供氧系统设计和制造 的现场制氧设备。该制氧机的应用将结束您依赖于传统液 氧供氧和瓶氧配送的费用昂贵的日子。医用分子筛制氧机 的安全性、经济性、便捷性在应用中得到了充分的证实。
a
7
安全性
• 医用分子筛制氧机严格按照GB,GB/T,YY以及ISO10083 1982 相关标准设计和生产。制取的氧气符合美国药典( USP)对医用呼吸纯度为大于93%的氧气要求,并符合各医
院对医用氧气的特殊要求。医用分子筛册证》、《医疗器械
管理认证》。
•
多功能监控系统,LCD屏幕,实现气体流量、纯度、
而这些医疗器械设备的目的是为了更准确的诊断疾病、预防、治疗或者 缓解;更具有损伤的诊断、监护、治疗、缓解或者是补偿功能;检查人体的 生理结构或者生理过程、替代、调节或者支持;生命的支持或者是维持(诸 多医疗器械设备拥有起到关键作用);妊娠控制;对人体样本进行检查,为 医疗或者诊断目的提供信息。
a
2
以医用分子筛制氧机医疗器械设备为例,做的主要 器械设备就是医用制氧系统,其医用制氧系统在全 国市场上都有很大的优势。其医用制氧系统主要是 用于病人在医院吸氧的作用,属于住院病房中不可 缺少的医疗器械设备。
压力等在线全屏显示。
a
8
经济性
• 1.直接从空气中制取氧气,仅消耗电能。 • 2.医用分子筛制氧机每立方米氧气制取耗电平均仅为1.1-
1.3KW。 • 3.能源效用系统使您轻松实现按需生产,降低运行成本。
a
9
便捷性
• 医用分子筛制氧机全自动运行,对氧气使用需求可做出 快捷和直接的响应,交钥匙工程,所有系统都经过预调试 。
医疗器械行业会涉及到医药、机械、电子和塑 料等多个行业,这是一个较多学科的交叉、知识性 密集、资金也密集的高技术产业,因为其产品技术 含量高,利润高,是各科技大国和国际大型公司相 互竞争的制高点。从而诸多公司都想进攻这一制高 点,谋取更多的利益。
a
3
医用分子筛制氧机厂的制氧过程
医用制氧机空气(制氧原料)通过空气压 缩机加压,经冷干、过滤后的洁净空气(无 水、无油、无微粒)输入制氧主机的两个吸 附塔,吸附塔内装满了医用分子筛,在自动 控制程序中,将空气中的氮气和其他气体吸 附,氧气被富集起来,经过净化处理后成为 医用氧气,输送到氧气罐内贮存,在减压时 将所吸附的氮气和其他气体排放至机外,在 下一次加压时又可以吸附氮气和其他气体并 制取氧气。医用制氧机两个吸附塔交替重复 加、减压程序,便能源源不断地制取氧气。 这个过程是物理过程,分子筛并不消耗,制 取的医用氧气来自于环境空气中,除了耗电, 不需要再耗费其他原料。