spss做判别分析

合集下载

SPSS数据分析—判别分析

SPSS数据分析—判别分析

判别分析作为一种多元分析技术应用相当广泛,和其他多元分析技术不同,判别分析并没有将降维作为主要任务,而是通过建立判别函数来概括各维度之间的差异,并且根据这个判别函数,将新加入的未知类别的样本进行归类,从这个角度讲,判别分析是从另一个角度对数据进行归类。

判别分析由于要建立判别函数,因此和回归分析类似,也有因变量和自变量,并且因变量应为分类变量,这样才能够最终将数据进行归类,而自变量可以是任意尺度变量,分类变量需要设置为哑变量。

既然和回归分析类似,那么判断分析也有一定的适用条件,这些适用条件也和回归分析类似1.自变量和因变量的关系符合线性假定违反时,可以使用曲线直线化、二次判别分析等方法2.因变量取值是独立的,并且必须事先就已确定这个很好理解,既然最终要归类,就要实现确定归为哪几类3.自变量服从多元正态分布违反时影响不大4.自变量各组间方差齐性,协方差矩阵齐违反时,可使用经典判别分析、非参数判别分析、距离判别分析5.自变量间不存在共线性违反时可以采用类似于线性回归中对共线性的处理,如逐步判别分析,岭判别分析等,和线性回归一样,共线性可以使判别函数的系数发生变化,但是对于判别结果则影响不大判别分析根据不同的判别准则可以分为经典判别分析、贝叶斯判别分析、非参数判别分析等,SPSS中将其和聚类共用一个过程,下面我们来介绍这几种方法在SPPS中的应用一、经典判别分析收集了一些鸢尾花的数据,其中spno为类别,有三个水平,其余四个为变量,想通过此数据进行判别分析,建立判别函数以对花进行区分,数据组成如下分析—分类—判别二、贝叶斯判别分析贝叶斯体系的主要思想是根据先验概率去推证后验概率也就是实验结果,将其引入判别分析之后,就变成计算后验概率及错判率,用最大后验概率来进行判别,并使错判率最小。

在SPSS中,贝叶斯判别和经典判别只是设置上稍有不同。

SPSS统计分析第八章聚类分析与判别分析

SPSS统计分析第八章聚类分析与判别分析

SPSS统计分析第八章聚类分析与判别分析聚类分析与判别分析是SPSS统计分析中非常重要的两个方法。

聚类分析是寻找数据之间的相似性,将相似的数据划分为一个簇,从而实现对数据的归类和分组。

判别分析则是寻找数据之间的差异性,帮助我们理解不同因素对于数据的影响程度,从而实现对数据的分类预测。

首先,我们来介绍聚类分析。

聚类分析是根据数据之间的相似性进行归类的一种方法,通过度量数据之间的相似性,将相似的数据归为一类。

它在寻找数据内在组织结构和特点上具有很大的作用。

在SPSS中进行聚类分析的步骤如下:1.载入数据集:在SPSS软件中,选择"文件"->"打开"->"数据",选择需要进行聚类分析的数据集。

2.选择聚类变量:在"分析"->"分类"->"聚类"中,选择需要进行聚类分析的变量。

可以选择一个或多个变量作为聚类变量,决定了聚类的维度。

3.设置聚类参数:在设置参数的对话框中,可以选择使用不同的距离测度和聚类算法。

距离测度可以选择欧氏距离、曼哈顿距离、切比雪夫距离等,而聚类算法可以选择层次聚类、K均值聚类等。

根据具体的数据特点,选择合适的参数。

4.进行聚类分析:点击"确定"按钮,SPSS会自动进行聚类分析,并生成聚类的结果。

聚类结果可以通过树状图、散点图等形式展示,便于我们对数据的理解和分析。

接下来,我们来介绍判别分析。

判别分析是一种通过建立数学模型,根据不同的预测变量对数据进行分类和预测的方法。

判别分析可以帮助我们理解不同因素对于数据分类的重要性,从而进行有针对性的分析和预测。

在SPSS中进行判别分析的步骤如下:1.载入数据集:同样,在SPSS软件中,选择"文件"->"打开"->"数据",选择需要进行判别分析的数据集。

判别分析的一般步骤和SPSS实现

判别分析的一般步骤和SPSS实现

判别分析的一般步骤和SPSS实现判别分析是一种统计学方法,用于确定一组预测变量对于区分不同组别的目标变量的重要性。

它可以帮助我们理解和解释数据,以及预测未来的观察结果。

下面将介绍判别分析的一般步骤和如何使用SPSS软件来实现。

步骤一:数据收集和准备首先,收集需要的数据,并进行数据清洗和整理。

确保数据的完整性和准确性。

此外,还需要对数据进行标准化,以消除不同变量之间的度量单位差异。

步骤二:设定模型确定分析的目标变量和预测变量。

目标变量是我们想要预测或解释的变量,而预测变量则是用来预测目标变量的变量。

根据实际情况,选择适当的判别分析方法,如线性判别分析或二次判别分析。

步骤三:进行判别函数的计算计算出判别函数,用于将样本分成不同的组别。

判别函数是由预测变量的加权和组成的。

对于线性判别分析,判别函数的形式为:D = a1X1 + a2X2 + ... + anXn + c其中,D是判别分数,X是预测变量,a是权重,n是预测变量的数量,c是常数。

通过计算判别函数,可以根据判别分数将样本分到不同的组别。

步骤四:进行判别分析的检验判别分析的检验包括Wilks' Lambda检验和方差分析。

Wilks' Lambda检验用于检验判别函数是否统计显著,以判断预测变量的组合是否能够显著解释目标变量的变异性。

方差分析用于检验各个预测变量在不同组别之间的差异是否显著。

步骤五:解释和评估结果在判别分析的最后一步,需要对结果进行解释和评估。

根据判别分析的结果,可以判断哪些预测变量对于区分不同组别的目标变量最为重要。

此外,还可以对模型的准确性进行评估,比如使用十折交叉验证等方法。

使用SPSS软件进行判别分析的步骤如下:步骤一:导入数据首先,在SPSS软件中打开数据文件或导入数据。

确保数据的格式正确,包括变量类型、缺失值处理等。

步骤二:设定模型在SPSS中,选择"分析"菜单中的"分类"选项,然后选择"判别分析"。

判别分析的SPSS实现

判别分析的SPSS实现

判别分析的SPSS实现判别分析(Discriminant Analysis)是一种统计分析方法,用于识别和分类不同群体之间的差异。

它通过建立数学模型来寻找最佳判别函数,将样本划入事先定义好的不同类别中。

SPSS是一种流行的统计软件,可以用于进行多种数据分析,包括判别分析。

在SPSS中进行判别分析的步骤如下:1.导入数据:打开SPSS软件,并导入需要进行判别分析的数据集。

选择“文件”-“打开”-“数据”命令,找到数据文件并点击“打开”按钮。

2. 选择变量:从数据文件中选择需要用于判别的变量。

在数据视图中,点击变量名旁边的方框来选定变量。

可以按住Ctrl键并单击多个变量来进行选择。

3.运行判别分析:选择“分析”-“分类”-“判别分析”命令,打开判别分析对话框。

在对话框的“变量”选项卡中,将选择的变量移入“输入变量”框中。

如果有分类变量,可以选择将其移入“说明变量”框中。

4.设置判别函数模型:在对话框的“选项”选项卡中,可以设置判别分析的具体模型。

可以选择线性判别函数或二次判别函数,并设置解释变量和额外变量。

5.运行分析:点击对话框底部的“确定”按钮,运行判别分析。

SPSS将计算出最佳的判别函数,并用于分类和预测。

6.解释结果:判别分析完成后,可以查看结果并进行解释。

SPSS将输出各个变量的判别系数、判别函数结果、群体统计信息等。

可以根据这些结果来理解不同变量对分类的重要性。

7.进行预测:判别分析还可以用于对新样本进行分类和预测。

在对话框的“选项”选项卡中,选择“保存变量”选项,并指定一个新的变量名。

运行分析后,可以查看新变量的值,以得到新样本的分类结果。

8.检验结果:可以使用SPSS提供的各种统计方法来检验判别分析结果的显著性。

例如,可以进行方差分析来检验不同群体之间的差异性。

判别分析是一种有效的统计方法,可以用于各种不同的研究领域。

在SPSS中,通过简单的几个步骤就可以实现判别分析,并得到结果。

同时,SPSS还提供了丰富的数据可视化和结果解释功能,可以帮助用户更好地理解和解释判别分析的结果。

判别分析的SPSS操作

判别分析的SPSS操作

在“Method”选项组中选择进行逐步判别分析的方法,可供 选择的判别分析方法有5种:
1.Wilks’lambda Wilks’lambda方法。默认选项,每步 都是Wilk的概计量最小的进入判别函数。
2.Unexplained variance 不可解释方差方法。选择该项, 表示每步都是使各类不可解释的方差和最小变量进入判别函数。
对已知类别的样品判别分类
对已知类别的样品(通常称 为训练样品)用线性判别函 数进行判别归类,结果如 下表,全部判对。
(5)对判别效果作检验
判别分析是假设两组样品取自不同总体,如果两个总体的均值向量在统计上 差异不显著,作判别分析意义就不大:所谓判别效果的检验就是检验两个正态总体 的均值向量是否相等,取检验的统计量为:
1
《人类发展报告》中公布的。该报告建议,目前对人文发展的衡量应
当以人生的三大要素为重点,衡量人生三大要素的指示分别采用出生
时的预期寿命、成人识字率和实际人均GDP,将以上三个指示指标
的数值合成为一个复合指数,即为人文发展指数。资料来源UNDP
《人类发展报告》1995年。
2 今从1995年世界各国人文发展指数的排序中,选取高发展水平、中 等发展水平的国家各五个作为两组样品,另选四个国家作为待判样品 作判别分析。
单击添加副标题
判别分析的SPSS 操作
§1. 基本原理
§2.实例分析
§1. 基本原理
判别分析的目的是得到体现分类的函数关系式,即判别 函数。基本思想是在已知观测对象的分类和特征变量值的前 提下,从中筛选出能提供较多信息的变量,并建立判别函数; 目标是使得到的判别函数在对观测量进行判别其所属类别时 的错判率最小。
Fisher’s 选择该项,表示可以用于对新样本进行判别分 类的fisher系数,对每一类给出一组系数,并给出该组中判别分数 最大的观测量。

专题16用SPSS进行判别分析

专题16用SPSS进行判别分析

专题16 用SPSS进行判别分析1 用默认方法作判别分析2 选项的设置简介1 用默认方法作判别分析用默认方法作判别分析,可按如下步骤进行。

①建立或读入数据文件在数据窗中输入待分析的数据,或利用File菜单中的Open功能打开已存在的数据文件。

②展开主对话框在SPSS主界面中依次逐层选择“Analyze”、“Classify”、“Discriminant”,展开判别分析主对话框(如图)。

③选择分类变量及其取值范围在如图14.1的主对话框左边的矩形框中选定分类变量,并用上面一个箭头按钮将其移到“Grouping Variable”框中。

然后用其下面的“Define Range”按钮打开如图14.2的对话框。

分别在“Minimum”和“Maximum”后面的矩形框中键入分类变量的最大值与最小值,然后按“Continue”按钮返回主对话框。

分类变量须是数值型的,其值必须是整数,每个值代表一类,如1代表健将、2代表一级运动员、3代表二级运动员。

④选择判别变量在主对话框左边的矩形框中选择判别变量,并用下面一个箭头按钮将它们移到“Independents”矩形框中。

⑤选择是否作逐步判别若不用逐步判别筛选变量,在主对话框中选择“Enter independents together”。

若作逐步判别,则选择“Use stepwise method”。

⑥运行程序检查所选变量是否有误,若选择有误,则选定错误变量,用边上的箭头按钮将其移出。

若变量选择无误,按“OK”按钮即可运行程序。

返回2 选项的设置简介①在主对话框中单击“Statistics”按钮可以打开选择输出统计量的对话框。

●选定“Means”可得到各类的均数、标准差等统计量●选定“Univariate ANOVAs”可得到各单变量的方差分析●选定“Box’s M”可得到各类协差阵相等性的Box检验●选择“Fisher’s”可得到费歇的线性分类函数●选定“Unstandardized”可以得到非标准化的典型判别函数系数●选定“Within-groups covariance”可以得到合并组内协差阵。

spss判别分析

spss判别分析

判别分析1.基本理解判别分析用于处理已知分类情况的数据集,将未知分类数据归入已知的分类中。

判别分析过程基于对变量的函数组合,变量应能够充分地体现各个类别之间的差异。

从已知变量类别的样本中拟合判别函数,后根据判别函数将新样本进行类别归类。

在P维空间中,有K个相关已知类别的总体G1,G2,G3,....Gk,单个的预测样本记为Xi =(Xi1,Xi2,Xi3,....,Xip),i=1,2,3,....n,样本属于K个总体的一个,P个变量为判别指标,判别函数就是确定样本属于哪一类别。

判别函数的两种判别方法:(1)贝叶斯判别:是一种概率型的判别函数,开始需要知道各个类别的先验概率或分布密度,后计算每个样本属于某个类别的最大概率或最小错判损失,并以此归类。

类别概率计算公式:P(Gi|D)=P(D|Gi)P(Gi)/ΣP(D|Gi)P(Gi),其中P(Gi)为属于i类的先验概率,P(D|Gi)为在第i类中得D分的条件概率,而P(Gi|D)为在第i类中得D分的后验概率。

(2)Fisher判别:是一种依据方差分析原理建立的判别方法,基本思路为投影。

对P维空间中的点Xi =(Xi1,Xi2,Xi3, (X)in),i=1,2,3,....,n,找到一组线性函数Ym (Xi)=×B,m=1,2,3,....,m,一般m<p,依据组间均方差与组内均方差之比最大的原则,选择最优的线性函数。

判别分析的一般步骤:(1):依据已知类别的观测集建立分类规则或判别规则。

(2):运用所建规则对样本进行分类检验,得到各样本的判别准确率。

(3):选择拥有较高准确率的判别规则,应用于新样本的类别判断。

2.判别分析操作步骤判别函数第一步:首先将已确定分类情况的数据到spss软件中,点击分析、分类、判别式。

图1第一步第二步:进入判别分析勾选框后首先将变量列表中的变量放入右侧的变量框中,将因变量(已知分组情况变量)放入分组变量框并定义好范围,点击继续,将自变量放入自变量框中。

判别分析的SPSS实现

判别分析的SPSS实现

判别分析的SPSS实现判别分析是一种常用的统计方法,也是一种分类的机器学习方法。

它的目的是使用已知的分类信息来训练一个分类模型,然后根据这个模型来预测新的未知实例的分类。

SPSS是一种常用的统计软件,提供了方便易用的界面来进行判别分析。

下面将介绍如何在SPSS中进行判别分析。

首先,打开SPSS软件并加载要进行判别分析的数据。

可以通过"File"->"Open"来打开数据文件,或者直接将数据文件拖动到SPSS界面中。

然后,选择"Analyze"->"Classify"->"Discriminant",进入判别分析的界面。

在界面中,需要选择要进行判别分析的变量,包括一个或多个预测变量和一个分类变量。

预测变量是判别分析模型的输入,而分类变量是判别分析模型的输出。

可以使用鼠标将变量从"Available"列表拖动到"Predictors"和"Target"列表中。

接下来,可以点击"Statistics"按钮来选择统计量。

在判别分析中,有几个常用的统计量可以选择。

例如,可以选择"Wilks' lambda"来衡量判别分析模型的预测准确率,或者选择"Group centroids"来了解不同分类的均值差异。

然后,点击"Options"按钮来设置其他选项。

在"Options"界面中,可以选择是否标准化变量,即将变量标准化为均值为0和标准差为1的形式。

标准化可以使得不同变量的尺度一致,有助于提高判别分析的性能。

此外,还可以选择输出判别函数的系数和判别函数值,以及设定分类概率的阈值等。

最后,点击"OK"按钮开始进行判别分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.3 分层聚类(Hierarchical Cluster)
分层聚类方法:
分解法:先视为一大类,再分成几类 凝聚法:先视每个为一类,再合并为几大类
可用于观测量(样本)聚类(Q型)和变量聚类(R型) 一般分为两步(自动,可从Paste的语句知道,P359): Proximities:先对数据进行的预处理(标准化和计算距离等) Cluster:然后进行聚类分析 两种统计图:树形图(Dendrogram)和冰柱图(Icicle) 各类型数据的标准化、距离和相似性计算P348-354
Agglomeration Schedule 凝聚状态表 Proximity matrix:距离矩阵 Cluster membership:Single solution:4 显示分为4类时,各观测
量所属的类
Method: Cluster (Furthest Neighbor), Measure-Interval (Squared Euclidean distance), Transform Value (Range 01/By variable (值-最小值)/极差)
上面啤酒分类问题data14-02。
Analyze→Classify →Hierarchical Cluster:
Variables: calorie,sodium,alcohol, cost 成分和价格 Cluster:Variable, R聚类 Method:
Cluster Method :Furthest Neighbor Measure-Interval:Pearson Correlation Transform Values:Z Score (By Variable)
14.1.3 聚类分析与判别分析的SPSS过程
在AnalyzeClassify下:
1. K-Means Cluster: 观测量快速聚类分 析过程
2. Hierarchical Cluster:分层聚类(进行 观测量聚类和变量聚类的过程
3. Discriminant:进行判别分析的过程
14.2 快速样本聚类过程(Quick Cluster)
Plots: Dendrogram 树型图 Statistics:Proximity matrix:相关矩阵
比较有用的结果:根据相关矩阵和树型图,可知calorie(热量)和alcohol(酒 精含量)的相关系数最大,首先聚为一类。从整体上看,聚为三类是比较好 的结果。至于热量和酒精含量选择哪个作为典型指标代替原来的两个变量, 可以根据专业知识或测度的难易程度决定。
Analyze→Classify →Hierarchical Cluster:
Variables: calorie,sodium,alcohol, cost 成分和价格 Label Case By: Beername Cluster:Case, Q聚类 Display: 选中Statistics,单击Statistics
14.3.6 变量聚类实例2 P368
有10个测试项目,分别用变量X1-X10表示, 50名学生参加测试。想从10个变量中选择几 个典型指标。data14-03
Analyze→Classify →Hierarchical Cluster:
Variables: X1-X10 Cluster:Variable, R聚类 Method:
第14章 聚类分析与判别分析
介绍: 1、聚类分析 2、判别分析
分类学是人类认识世界的基础科学。聚类分析 和判别分析是研究事物分类的基本方法,广泛地应 用于自然科学、社会科学、工农业生产的各个领域。
14.1.1 聚类分析
根据事物本身的特性研究个体分类的方法,原 则是同一类中的个体有较大的相似性,不同类 中的个体差异很大。
定距变量、分类变量、二值变量 标准化方法p353:Z Scores、Range -1 t分层聚类法进行观测量聚类实例P358
对20种啤酒进行分类(data14-02),变量包括:Beername(啤酒名
称)、calorie(热量)、sodium(钠含量)、alcohol(酒精含量)、 cost(价格)
聚类分析
对于一个数据,人们既可以对变量(指标)进 行分类(相当于对数据中的列分类),也可以对 观测值(事件,样品)来分类(相当于对数据 中的行分类)。
比如学生成绩数据就可以对学生按照理科或文 科成绩(或者综合考虑各科成绩)分类,
当然,并不一定事先假定有多少类,完全可以 按照数据本身的规律来分类。
本章要介绍的分类的方法称为聚类分析 (cluster analysis)。对变量的聚类称为R 型聚类,而对观测值聚类称为Q型聚类。这两 种聚类在数学上是对称的,没有什么不同。
Variables: x1,x2,x3 Label Case By: no Number of Cluster: 4 比较有用的结果:聚类结果形成的最后四类中心点(Final
Cluster Centers) 和每类的观测量数目(Number of Cases in each Cluster) 但不知每个运动员究竟属于哪一类?这就要用到Save选项
14.4 判别分析P374
判别分析的概念:是根据观测到的若干变量值,判断 研究对象如何分类的方法。 要先建立判别函数 Y=a1x1+a2x2+...anxn,其中:Y为 判别分数(判别值),x1 x2...xn为反映研究对象特征的变 量,a1 a2...an为系数 SPSS对于分为m类的研究对象,建立m个线性判别函 数。对于每个个体进行判别时,把观测量的各变量值 代入判别函数,得出判别分数,从而确定该个体属于 哪一类,或计算属于各类的概率,从而判别该个体属 于哪一类。还建立标准化和未标准化的典则判别函数。
数据同上(data14-01a):以四个四类成绩突出者的数据为初始 聚类中心(种子)进行聚类。类中心数据文件data14-01b(但缺一 列Cluster_,不能直接使用,要修改)。对运动员的分类(还是分 为4类) AnalyzeClassifyK-Means Cluster Variables: x1,x2,x3 Label Case By: no Number of Cluster: 4
14.1.2 判别分析
判别分析是根据表明事物特点的变量值和它们 所属的类,求出判别函数。根据判别函数对未 知所属类别的事物进行分类的一种分析方法。
在自然科学和社会科学的各个领域经常遇到需 要对某个个体属于哪一类进行判断。如动物学 家对动物如何分类的研究和某个动物属于哪一 类、目、纲的判断。
不同:判别分析和聚类分析不同的在于判别分 析要求已知一系列反映事物特征的数值变量的 值,并且已知各个体的分类(训练样本)。
具体见下面吴喜之教授有关判别分析的讲义
补充:聚类分析与判别分析
以下的讲义是吴喜之教授有关 聚类分析与判别分析的讲义, 我觉得比书上讲得清楚。 先是聚类分析一章 再是判别分析一章
聚类分析
分类
俗语说,物以类聚、人以群分。 但什么是分类的根据呢? 比如,要想把中国的县分成若干类,就有很 多种分类法; 可以按照自然条件来分, 比如考虑降水、土地、日照、湿度等各方面; 也可以考虑收入、教育水准、医疗条件、基 础设施等指标; 既可以用某一项来分类,也可以同时考虑多 项指标来分类。
使用 k 均值分类法对观测量进行聚类 可使用系统的默认选项或自己设置选项,如分为几类、 指定初始类中心、是否将聚类结果或中间数据数据存 入数据文件等。 快速聚类实例(P342,data14-01a):使用系统的默认 值进行:对运动员的分类(分为4类) AnalyzeClassifyK-Means Cluster
根据分类对象的不同,分为样品(观测量)聚 类和变量聚类两种:
样品聚类:对观测量(Case)进行聚类(不同的目的 选用不同的指标作为分类的依据,如选拔运动员与 分课外活动小组)
变量聚类:找出彼此独立且有代表性的自变量,而 又不丢失大部分信息。在生产活动中不乏有变量聚 类的实例,如:衣服号码(身长、胸围、裤长、腰 围)、鞋的号码。变量聚类使批量生产成为可能。
14.3.5 用分层聚类法进行变量聚类
变量聚类,是一种降维的方法,用于在 变量众多时寻找有代表性的变量,以便 在用少量、有代表性的变量代替大变量 集时,损失信息很少。 与进行观测量聚类雷同,不同点在于:
选择Variable而非Case Save选项失效,不建立的新变量
14.3.6 变量聚类实例1 P366
Cluster Method :Furthest Neighbor Measure-Interval:Pearson Correlation
Plots: Dendrogram 树型图 Statistics:Proximity matrix相关矩阵
比较有用的结果:可以从树型图中看出聚类过程。具体聚为几类最为合理, 根据专业知识来定。而每类中的典型指标的选择,可用p370的相关指数公 式的计算,然后比较类中各个变量间的相关指数,哪个大,就选哪个变量作 为此类的代表变量。
饮料数据(drink.sav )
16种饮料的热量、咖啡因、钠及价格四种变量
如何度量远近?
如果想要对100个学生进行分类,如果仅仅知 道他们的数学成绩,则只好按照数学成绩来 分类;这些成绩在直线上形成100个点。这样 就可以把接近的点放到一类。
如果还知道他们的物理成绩,这样数学和物 理成绩就形成二维平面上的100个点,也可以 按照距离远近来分类。
14.2 快速样本聚类过程(Quick Cluster) 中的选项
使用快速聚类的选择项:
类中心数据的输入与输出:Centers选项 输出数据选择项:Save选项 聚类方法选择项:Method选项 聚类何时停止选择项:Iterate选项 输出统计量选择项:Option选项
相关文档
最新文档