数据的无量纲化处理及示例

合集下载

数据的无量纲化处理

数据的无量纲化处理

数据的无量纲化处理数据的无量纲化处理是数据预处理的一项重要步骤,它将不同量纲的数据转换为统一的量纲,以便于不同特征之间的比较和分析。

在机器学习和数据挖掘领域,无量纲化处理是一个常见的技术,它可以提高模型的性能和准确性。

一、为什么需要无量纲化处理在实际应用中,不同特征往往具有不同的量纲单位,例如身高、体重和收入等特征具有不同的量纲。

这样的数据在进行比较和分析时会存在问题,因为不同量纲之间的差异会影响模型的训练和预测结果。

为了消除这种差异,我们需要对数据进行无量纲化处理。

二、常见的无量纲化处理方法1. 标准化(Z-score标准化)标准化是一种常见的无量纲化处理方法,它将数据转换为均值为0,标准差为1的分布。

标准化的计算公式如下:z = (x - μ) / σ其中,z是标准化后的值,x是原始数据,μ是均值,σ是标准差。

2. 区间缩放法(Min-Max标准化)区间缩放法将数据缩放到指定的区间范围内,常见的区间范围是[0, 1]或[-1, 1]。

区间缩放的计算公式如下:x' = (x - min) / (max - min)其中,x'是缩放后的值,x是原始数据,min是最小值,max是最大值。

3. 归一化(L1范数归一化和L2范数归一化)归一化是一种将数据转换为单位范数的方法,它可以消除数据的量纲差异。

常见的归一化方法有L1范数归一化和L2范数归一化。

L1范数归一化的计算公式如下:x' = x / ∑|x|L2范数归一化的计算公式如下:x' = x / √(∑x^2)其中,x'是归一化后的值,x是原始数据。

三、无量纲化处理的应用示例为了更好地理解无量纲化处理的应用,我们以一个房屋价格预测的示例来说明。

假设我们有一份房屋数据集,其中包含了房屋的面积、房间数量和房龄等特征。

这些特征具有不同的量纲单位,面积的单位是平方米,房间数量是整数,房龄是年份。

首先,我们可以使用标准化方法将这些特征转换为均值为0,标准差为1的分布。

数据的无量纲化处理及示例

数据的无量纲化处理及示例

数据的无量纲处理方法及示例在对实际问题建模过程中,特别是在建立指标评价体系时,常常会面临不同类型的数据处理及融合。

而各个指标之间由于计量单位和数量级的不尽相同,从而使得各指标间不具有可比性。

在数据分析之前,通常需要先将数据规范化,利用规范化后的数据进行分析。

数据规范化处理主要包括同趋化处理和无量纲化处理两个方面。

数据的同趋化处理主要解决不同性质的数据问题,对不同性质指标直接累加不能正确反应不同作用力的综合结果,须先考虑改变逆指标数据性质,使所有指标对评价体系的作用力同趋化。

数据无量纲化主要解决数据的不可比性,在此处主要介绍几种数据的无量纲化的处理方式。

(1)极值化方法可以选择如下的三种方式:(A )'max min iiix x x R 即每一个变量除以该变量取值的全距,规范化后的每个变量的取值范围限于[-1,1]。

(B)'minminmax mini iix x x R即每一个变量与变量最小值之差除以该变量取值的全距,规范化后各变量的取值范围限于[0,1]。

(C) 'maxiix x ,即每一个变量值除以该变量取值的最大值,规范化后使变量的最大取值为1。

采用极值化方法对变量数据无量纲化是通过变量取值的最大值和最小值将原始数据转换为界于某一特定范围的数据,从而消除量纲和数量级的影响。

由于极值化方法对变量无量纲化过程中仅仅对该变量的最大值和最小值这两个极端值有关,而与其他取值无关,这使得该方法在改变各变量权重时过分依赖两个极端取值。

(2)规范化方法 利用'iix xx 来计算,即每一个变量值与其平均值之差除以该变量的规范差,无量纲化后各变量的平均值为0,规范差为1,从而消除量纲和数量级的影响。

虽然该方法在无量纲化过程中利用了所有的数据信息,但是该方法在无量纲化后不仅使得转换后的各变量均值相同,且规范差也相同,即无量纲化的同时还消除了各变量在变异程度上的差异。

(3)均值化方法 计算公式为:'iiix x x ,该方法在消除量纲和数量级影响的同时,保留了各变量取值差异程度上的信息。

数据的无量纲化处理

数据的无量纲化处理

数据的无量纲化处理引言概述:在数据分析和机器学习领域,数据的无量纲化处理是一项重要的预处理步骤。

通过将数据转化为无量纲的形式,可以消除不同特征之间的量纲差异,使得模型更加准确和稳定。

本文将介绍数据的无量纲化处理的概念、常用方法和应用场景。

一、标准化1.1 Z-score标准化Z-score标准化是一种常用的无量纲化方法。

它通过计算每一个样本特征的标准差和均值,将数据转化为均值为0,标准差为1的分布。

具体步骤如下:1. 计算每一个特征的均值和标准差。

2. 对每一个样本特征进行标准化,即减去均值,再除以标准差。

3. 得到标准化后的数据。

1.2 Min-max标准化Min-max标准化是将数据映射到一个特定的范围内,常见的是[0, 1]。

它可以保留原始数据的分布形态,并且适合于有界数据。

具体步骤如下:1. 计算每一个特征的最小值和最大值。

2. 对每一个样本特征进行标准化,即减去最小值,再除以最大值减最小值。

3. 得到标准化后的数据。

1.3 小数定标标准化小数定标标准化是通过挪移数据的小数点位置,将数据映射到[-1, 1]之间。

具体步骤如下:1. 找到数据中的最大绝对值。

2. 将数据除以最大绝对值。

3. 得到标准化后的数据。

二、正则化2.1 L1正则化L1正则化是一种通过对数据进行约束以减小模型复杂度的方法。

它通过将每一个样本特征的绝对值之和限制在一个固定值以内,将数据映射到一个球面上。

具体步骤如下:1. 计算每一个样本特征的绝对值之和。

2. 对每一个样本特征进行正则化,即除以绝对值之和。

3. 得到正则化后的数据。

2.2 L2正则化L2正则化是一种通过对数据进行约束以减小模型复杂度的方法。

它通过将每一个样本特征的平方和限制在一个固定值以内,将数据映射到一个球面上。

具体步骤如下:1. 计算每一个样本特征的平方和。

2. 对每一个样本特征进行正则化,即除以平方和的平方根。

3. 得到正则化后的数据。

2.3 Max绝对值标准化Max绝对值标准化是一种通过对数据进行约束以减小模型复杂度的方法。

数据的无量纲化处理

数据的无量纲化处理

数据的无量纲化处理数据的无量纲化处理是指将具有不同量纲和取值范围的数据转化为统一的标准格式,以便进行比较和分析。

在数据分析和机器学习中,无量纲化处理是一个重要的预处理步骤,可以提高模型的性能和准确性。

常见的无量纲化处理方法包括标准化、区间缩放和归一化。

1. 标准化标准化是指将数据转化为均值为0,标准差为1的标准正态分布。

标准化的公式如下:z = (x - mean) / std其中,z是标准化后的数据,x是原始数据,mean是原始数据的均值,std是原始数据的标准差。

例如,假设有一组身高数据如下:170, 165, 180, 155, 190首先计算均值和标准差:mean = (170 + 165 + 180 + 155 + 190) / 5 = 172std = sqrt(((170-172)^2 + (165-172)^2 + (180-172)^2 + (155-172)^2 + (190-172)^2) / 5) = 12.81然后将每一个数据进行标准化计算:z1 = (170 - 172) / 12.81 ≈ -0.16z2 = (165 - 172) / 12.81 ≈ -0.55z3 = (180 - 172) / 12.81 ≈ 0.62z4 = (155 - 172) / 12.81 ≈ -1.33z5 = (190 - 172) / 12.81 ≈ 1.41标准化后的数据如下:-0.16, -0.55, 0.62, -1.33, 1.41标准化后的数据具有均值为0,标准差为1的特点,适合于需要对数据进行比较和分析的场景。

2. 区间缩放区间缩放是指将数据缩放到指定的区间范围内。

常见的区间缩放方法有最小-最大缩放和按百分位缩放。

最小-最大缩放的公式如下:x_scaled = (x - min) / (max - min)其中,x_scaled是缩放后的数据,x是原始数据,min是原始数据的最小值,max是原始数据的最大值。

数据的无量纲化处理

数据的无量纲化处理

数据的无量纲化处理数据的无量纲化处理是指将不同量纲的数据转化为统一的量纲,以便于进行比较和分析。

在数据分析和机器学习中,无量纲化处理是一个常见的预处理步骤,可以有效地提高模型的性能和准确性。

常见的无量纲化处理方法包括标准化和归一化。

下面将详细介绍这两种方法的原理和应用场景。

1. 标准化标准化是将数据转化为均值为0,标准差为1的分布。

标准化的方法有多种,其中最常用的是Z-score标准化方法。

该方法的计算公式如下:Z = (X - μ) / σ其中,Z是标准化后的值,X是原始数据,μ是原始数据的均值,σ是原始数据的标准差。

标准化的应用场景包括:- 当特征的取值范围差异较大时,可以使用标准化方法将数据转化为统一的量纲,以避免某些特征对模型的影响过大。

- 在某些机器学习算法中,如K近邻算法和支持向量机,需要对数据进行标准化处理,以确保不同特征对模型的影响权重相等。

2. 归一化归一化是将数据缩放到0和1之间的范围。

归一化的方法有多种,其中最常用的是Min-Max归一化方法。

该方法的计算公式如下:X' = (X - Xmin) / (Xmax - Xmin)其中,X'是归一化后的值,X是原始数据,Xmin是原始数据的最小值,Xmax是原始数据的最大值。

归一化的应用场景包括:- 当特征的取值范围较大时,可以使用归一化方法将数据缩放到0和1之间的范围,以避免某些特征对模型的影响过大。

- 在某些机器学习算法中,如神经网络算法,需要对数据进行归一化处理,以确保不同特征对模型的影响权重相等。

除了标准化和归一化,还有其他一些无量纲化处理方法,如对数函数转化、指数函数转化等,可以根据具体的数据分布和需求选择合适的方法。

无量纲化处理的优点包括:- 提高模型的性能和准确性:通过将数据转化为统一的量纲,可以避免某些特征对模型的影响过大,提高模型的性能和准确性。

- 加快模型的训练速度:无量纲化处理可以使得数据的分布更加接近正态分布,从而加快模型的训练速度。

数据的无量纲化处理

数据的无量纲化处理

数据的无量纲化处理数据的无量纲化处理是数据预处理的重要步骤之一,它通过对原始数据进行数学变换,将不同单位或者量纲的数据转化为统一的无量纲数据,以消除不同量纲对数据分析和建模的影响。

本文将介绍数据的无量纲化处理的常用方法,包括标准化、区间缩放和归一化。

一、标准化标准化是将数据转化为均值为0,标准差为1的分布。

标准化方法常用于对数据的分布进行调整,使得数据更易于比较和分析。

标准化的公式如下:\[x' = \frac{x - \mu}{\sigma}\]其中,\(x\)表示原始数据,\(x'\)表示标准化后的数据,\(\mu\)表示原始数据的均值,\(\sigma\)表示原始数据的标准差。

标准化后的数据服从标准正态分布,即均值为0,标准差为1。

二、区间缩放区间缩放是将数据按比例缩放到一个特定的区间内,常用的区间为[0, 1]或者[-1, 1]。

区间缩放的公式如下:\[x' = \frac{x - \min(x)}{\max(x) - \min(x)}\]其中,\(x\)表示原始数据,\(x'\)表示区间缩放后的数据,\(\min(x)\)表示原始数据的最小值,\(\max(x)\)表示原始数据的最大值。

三、归一化归一化是将数据按比例缩放到一个特定的范围内,常用的范围为[0, 1]。

归一化的公式如下:\[x' = \frac{x - \min(x)}{\max(x) - \min(x)}\]其中,\(x\)表示原始数据,\(x'\)表示归一化后的数据,\(\min(x)\)表示原始数据的最小值,\(\max(x)\)表示原始数据的最大值。

四、示例为了更好地理解数据的无量纲化处理,我们以一个示例来说明。

假设我们有一组身高和体重的数据,如下所示:身高(cm)体重(kg)160 50170 60180 70我们可以使用标准化、区间缩放和归一化三种方法对这组数据进行无量纲化处理。

数据的无量纲化处理

数据的无量纲化处理

数据的无量纲化处理数据的无量纲化处理是指将不同量纲的数据转化为统一的标准,以便于数据分析和建模。

在实际应用中,由于不同变量的单位和量级不同,直接使用原始数据进行分析会导致结果的不许确性。

因此,无量纲化处理是数据预处理的重要环节之一。

常用的无量纲化处理方法包括标准化、区间缩放和归一化等。

下面将逐一介绍这些方法的原理和具体步骤。

1. 标准化标准化是将数据转化为均值为0,标准差为1的标准正态分布。

这种方法适合于数据符合正态分布的情况。

标准化的计算公式如下:X' = (X - mean) / std其中,X'为标准化后的数据,X为原始数据,mean为原始数据的均值,std为原始数据的标准差。

2. 区间缩放区间缩放是将数据限定在一个特定的区间内,常见的区间为[0, 1]或者[-1, 1]。

这种方法适合于数据不符合正态分布的情况。

区间缩放的计算公式如下: X' = (X - min) / (max - min)其中,X'为区间缩放后的数据,X为原始数据,min为原始数据的最小值,max为原始数据的最大值。

3. 归一化归一化是将数据映射到[0, 1]的范围内,常用的归一化方法有线性归一化和非线性归一化。

线性归一化的计算公式如下:X' = (X - min) / (max - min)其中,X'为归一化后的数据,X为原始数据,min为原始数据的最小值,max 为原始数据的最大值。

无量纲化处理的步骤如下:1. 采集原始数据。

2. 计算原始数据的均值、标准差、最大值和最小值等统计量。

3. 根据选择的无量纲化方法,使用相应的公式对原始数据进行处理。

4. 得到无量纲化后的数据。

下面通过一个具体的示例来说明无量纲化处理的步骤。

假设我们有一份数据集,包含了身高和体重两个变量的数据。

我们希翼对这些数据进行无量纲化处理。

首先,我们采集了1000个人的身高和体重数据。

然后,我们计算了身高和体重的均值、标准差、最大值和最小值:身高:均值为170cm,标准差为5cm,最大值为190cm,最小值为150cm。

2.3数据的无量纲化处理及示例

2.3数据的无量纲化处理及示例

数据的无量纲处理方法及示例在对实际问题建模过程中,特别是在建立指标评价体系时,常常会面临不同类型的数据处理及融合。

而各个指标之间由于计量单位和数量级的不尽相同,从而使得各指标间不具有可比性。

在数据分析之前,通常需要先将数据标准化,利用标准化后的数据进行分析。

数据标准化处理主要包括同趋化处理和无量纲化处理两个方面。

数据的同趋化处理主要解决不同性质的数据问题,对不同性质指标直接累加不能正确反应不同作用力的综合结果,须先考虑改变逆指标数据性质,使所有指标对评价体系的作用力同趋化。

数据无量纲化主要解决数据的不可比性,在此处主要介绍几种数据的无量纲化的处理方式。

(1)极值化方法可以选择如下的三种方式:(A )'max min iiix x x R 即每一个变量除以该变量取值的全距,标准化后的每个变量的取值范围限于[-1,1]。

(B) 'minminmax mini iix x x R即每一个变量与变量最小值之差除以该变量取值的全距,标准化后各变量的取值范围限于[0,1]。

(C) 'maxiix x ,即每一个变量值除以该变量取值的最大值,标准化后使变量的最大取值为1。

采用极值化方法对变量数据无量纲化是通过变量取值的最大值和最小值将原始数据转换为界于某一特定范围的数据,从而消除量纲和数量级的影响。

由于极值化方法对变量无量纲化过程中仅仅对该变量的最大值和最小值这两个极端值有关,而与其他取值无关,这使得该方法在改变各变量权重时过分依赖两个极端取值。

(2)标准化方法 利用'iix xx 来计算,即每一个变量值与其平均值之差除以该变量的标准差,无量纲化后各变量的平均值为0,标准差为1,从而消除量纲和数量级的影响。

虽然该方法在无量纲化过程中利用了所有的数据信息,但是该方法在无量纲化后不仅使得转换后的各变量均值相同,且标准差也相同,即无量纲化的同时还消除了各变量在变异程度上的差异。

(3)均值化方法 计算公式为:'iiix x x ,该方法在消除量纲和数量级影响的同时,保留了各变量取值差异程度上的信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据的无量纲处理方法及示例
在对实际问题建模过程中,特别是在建立指标评价体系时,常常会面临不同类型的数据处理及融合。

而各个指标之间由于计量单位和数量级的不尽相同,从而使得各指标间不具有可比性。

在数据分析之前,通常需要先将数据规范化,利用规范化后的数据进行分析。

数据规范化处理主要包括同趋化处理和无量纲化处理两个方面。

数据的同趋化处理主要解决不同性质的数据问题,对不同性质指标直接累加不能正确反应不同作用力的综合结果,须先考虑改变逆指标数据性质,使所有指标对评价体系的作用力同趋化。

数据无量纲化主要解决数据的不可比性,在此处主要介绍几种数据的无量纲化的处理方式。

(1)极值化方法
可以选择如下的三种方式:
(A )'
max min i
i
i
x x x R 即每一个变量除以该变量取值的全距,规范化后的每个变量的取值范围限于[-1,1]。

(B)'
min
min
max min
i i
i
x x x R
即每一个变量与变量最小值之差除以该变量取值的全距,规范化后各变量的取值范围限于[0,1]。

(C) '
max
i
i
x x ,即每一个变量值除以该变量取值的最大值,规范化后使变量的最大取值为1。

采用极值化方法对变量数据无量纲化是通过变量取值的最大值和最小值将原始数据转换为界于某一特定范围的数据,从而消除量纲和数量级的影响。

由于极值化方法对变量无量纲化过程中仅仅对该变量的最大值和最小值这两个极端值有关,而与其他取值无关,这使得该方法在改变各变量权重时过分依赖两个极端取值。

(2)规范化方法 利用'i
i
x x
x 来计算,即每一个变量值与其平均值之差除以该变量的规范差,无量
纲化后各变量的平均值为0,规范差为1,从而消除量纲和数量级的影响。

虽然该方法在无量纲化过程中利用了所有的数据信息,但是该方法在无量纲化后不仅使得转换后的各变量均值相同,且规范差也相同,即无量纲化的同时还消除了各变量在变异程度上的差异。

(3)均值化方法 计算公式为:'
i
i
i
x x x ,该方法在消除量纲和数量级影响的同时,保留了各变量取值差异程度上的信息。

(4)规范差化方法 计算公式为:'i
i
x x 。

该方法是规范化方法的基础上的一种变形,两者的差别仅在无
量纲化后各变量的均值上,规范化方法处理后各变量的均值为0,而规范差化方法处理后各变量均值为原始变量均值与规范差的比值。

综上所述,针对不同类型的数据,可以选择相应的无量纲化方法。

如下的示例就是一个典型的评价体系中无量纲化的范例。

示例:近年来我国淡水湖水质富营养化的污染日益严重,如何对湖泊水质的富营养化进行综合评价与治理是摆在我们面前的任务,下面两个表格分别为我国5个湖泊的实测数据和湖泊水质评价规范。

表2-2 全国五个主要湖泊评价参数的实测数据
表2-3 湖泊水质评价规范
要求:(1)试用以上数据,分析总磷,耗氧量,透明度,总氨这4个指标对湖泊水质评价富营养化的作用。

(2)对这5个湖泊的水质综合评价,确定水质等级。

在进行综合评价之前,首先要对评价的指标进行分析。

通常评价指标分成效益型,成本型和固定型指标。

效益型指标是指那些数值越大影响力越大的统计指标(也称正向型指标);成本型指标是指数值越小越好的指标(也称逆向型指标);而固定型指标是指数值越接近于某个常数越好的指标(也称适度型指标)。

如果每个评价指标的属性不一样,则在综合评价时就容易发生偏差,必须先对各评价指标统一属性。

建模步骤
(ⅰ)建立无量纲化实测数据矩阵和评价规范矩阵,其中实测数据矩阵和等级规范矩阵如下,
13010.30.35 2.7610510.7
0.4 2.0
20 1.4
4.5
0.2230 6.260.25 1.672010.130.50.23
X
,1423110660
0.090.36 1.87.1027.137
12
2.4
0.550.170.020.060.31
1.2
4.6
Y

然后建立无量纲化实测数据矩阵A 和无量纲化等级规范矩阵B ,其中
/3max /3
min ij ij
j
ij
ij ij
j
x x j a x x j
/3max /3
min kt kt
k
kt
kt kt
k
y y k b y y k
得到
1.00000.96260.7143 1.00000.8077 1.00000.62500.72460.15380.13080.05560.07970.23080.5850 1.00000.60510.15380.94670.50000.0833
A

0.00150.00610.03480.1667 1.00000.00330.01330.06640.2620 1.00000.00460.01420.07080.3091 1.00000.00430.01300.06740.2609 1.0000
B。

(ⅱ)计算各评价指标的权重
计算矩阵B 的各行向量的均值和规范差,
5
2
5
1
1
()1,,1,2,3,45
4
ij
i
j i
ij i
j b b s i
然后计算变异系数
/
i i i
w s ,
最后对变异系数归一化得到各指标的权重为
0.27670.24440.23470.2442w
(ⅲ)建立各湖泊水质的综合评价模型
通常可以利用向量之间的距离来衡量两个向量之间的接近程度,在Matlab 中,有以下的函数命令来计算向量之间的距离;
dist(,w p ): 计算w 中的每个行向量和p 中每个列向量之间的欧式距离; mandist(,w p ):绝对值距离。

计算A 中各行向量到B 中各列向量之间的欧氏距离,
4
2
1
()ij
ik
ik k d a
b 若15
min{}ik
ij j d d ,则第i 个湖泊属于第k 级。

1.8472 1.8312 1.7374 1.37690.2881 1.5959 1.5798 1.4859 1.12710.50340.21850.20450.13670.3383 1.79171.3201 1.3038 1.20820.83920.95911.0793 1.0650
0.9867
0.7328
1.3450
d
这说明杭州西湖,武汉东湖都属于极富营养水质,青海湖属于中营养水质,而巢湖和滇池属于富营养水质。

同时也可以计算A 中各行向量到B 中各列向量之间的绝对值距离
4
1
||ij
ik ik i D a b ,
若15
min{}ik
ij j D D ,则第i 个湖泊属于第k 级。

3.6631 3.6303 3.4374 2.67830.32313.1436 3.1108 2.9178 2.15870.84270.40620.37340.21100.5787 3.58002.4071 2.3743 2.1814 1.4223 1.57911.6701 1.6374
1.4444
1.0660
2.3161
D
其评价结果与利用欧氏距离得到的评价结果完全一样。

所以,从上面的计算可以看出,尽管欧氏距离和绝对值距离的意义完全不一样,但对湖泊水质的评价等级是一样的,这表明了方法的稳定性。

程序:
X=[130 。

105 2。

20 30 。

20 ]。

Y=[1 4 23 100 660。

37 12 。

]。

B1=Y(1,:)./660。

B2=Y(2,:)./。

B3=./Y(3,:)。

B4=Y(4,:)./。

B=[B1。

B2。

B3。

B4]。

A1=X(:,1)./130。

A2=X(:,1)./。

A3=./X(:,3)。

A4=X(:,4)./。

A=[A1 A2 A3 A4]。

B=B’。

t=std(b)./mean(b)。

w=t/sum(t)。

jd=dist(A,B)。

mjd=mandist(A,B)。

相关文档
最新文档