《分式》单元测试1

合集下载

人教版八年级上册数学《分式》单元综合检测附答案

人教版八年级上册数学《分式》单元综合检测附答案
(1)这项工程的规定时间是多少天?
(2)已知甲队每天的施工费用为5000元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民交通的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成,那么该工程施工费用是多少?
25.我市计划对某地块的1000m2区域进行绿化,由甲、乙两个工程队合作完成.已知甲队每天能完成绿化的面积是乙队的2倍;若两队分别各完成300m2的绿化时,甲队比乙队少用3天.
9.化简 的结果是
A.- B. C. D.
10.使分式 的值为整数,则整数x可取的个数为( )
A.2个B.3个C.4个D.5个
11.王老师坚持绿色出行,每天先步行到离家500米的公共自行车点取车,然后骑车4.5千米到校.某天王老师从手机获知,骑车平均每小时比步行多10千米,共用时24分钟.设步行的平均速度为每小时x千米,则可列方程 ( ).
A.a<b<c<dB.b<a<d<cC.a<d<c<bD.c<a<d<b
【答案】B
【解析】
a=﹣0.32=﹣0.09,b=﹣3﹣2=﹣ , , ,
∵﹣ ,
∴b<a<d<c.
故选B.
点睛:(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
故选A
【点睛】本题考核知识点:分式的定义.解题关键点:理解分式的定义.
2.石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体.石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为( )
A.当x=2时, 的值为零
B.无论x为何值, 的值总为正数

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。

分式单元测试一(附答案)

分式单元测试一(附答案)

分式1、(1)当x 为何值时,分式2122---x x x 有意义?(2)当x 为何值时,分式2122---x x x 的值为零?2、计算:(1)()212242-⨯-÷+-a a a a (2)222---x x x (3)x x x x x x 2421212-+÷⎪⎭⎫⎝⎛-+-+ (4)x yx y x x y x y x x -÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--++-3232 (5)4214121111xx x x ++++++-3、计算(1)已知211222-=-x x ,求⎪⎭⎫⎝⎛+-÷⎪⎭⎫ ⎝⎛+--x x x x x 111112的值。

(2)当()00130sin 4--=x 、060tan =y 时,求y x y xy x y x x 3322122++-÷⎪⎪⎭⎫ ⎝⎛+-222y x xyx -++ 的值。

(3)已知02322=-+y xy x (x ≠0,y ≠0),求xyy x x y y x 22+--的值。

(4)已知0132=+-a a ,求142+a a 的值。

4、已知a 、b 、c 为实数,且满足()()02)3(432222=---+-+-c b c b a ,求c b b a -+-11的值。

5、解下列分式方程:(1)x x x x --=-+222; (2)41)1(31122=+++++x x x x(3)1131222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x (4)3124122=---x x x x6、解方程组:⎪⎪⎩⎪⎪⎨⎧==-92113111y x y x7、已知方程11122-+=---x x x m x x ,是否存在m 的值使得方程无解?若存在,求出满足条件的m 的值;若不存在,请说明理由。

8、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价. 9、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?10、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:11、 建筑学要求,家用住宅房间窗户的面积m 必须小于房间地面的面积n ,但窗户的面积与地面面积的比值越大,采光条件越好。

第1章 分式测试题(一)

第1章 分式测试题(一)

第1章 分式测试题(一)一、选择题(每小题3分,共30分) 1.【导学号81830961】若分式21a +有意义,则a 的取值范围是( ) A .a=0 B .a=1 C .a≠-1D .a≠0 2.【导学号81830343】化简62962-+-x x x 的结果正确的是( )A.23+xB.292+xC.292-x D.23-x3. 【导学号81830960】下列式子:a -b 2,x (x +3)x ,5+x π,a +b a -b,a +1m ,其中是分式的有( ) A .1个 B .2个 C .3个 D .4个 4. 【导学号81830872】下列计算正确的是( )A. 132-⎛⎫- ⎪⎝⎭=32 B. 1a +1b =1a b + C. 22a b a b --=a +b D.320⎛⎫- ⎪⎝⎭=0 5. 【导学号81830977】一份工作,甲单独做需a 天完成,乙单独做需b 天完成,则甲、乙两人合做一天的工作量是( ) A . a+b B .b a +1 C . 2b a + D .ba 11+ 6. 【导学号81830337】分式方程212x x--=0的解是( ) A .x=﹣2 B .x=﹣1 C .x=2 D .x=1 7. 【导学号81830958】计算22222a ab b b aba b ++的结果是( ) A. b a b+ B.b ab C. aa b+ D .a ab8. 【导学号81830956】把12x,123xx,223x通分的过程中,不正确的是( )A. 最简公分母是(x -2)(x+3)2B.2231223x xxxC.2132323x xxx x D .22222323x xxx9. 【导学号81830968】若关于x 的方程x +m x -3+3m3-x =3的解为正数,则m 的取值范围是( )A .m <92B .m <92且m ≠32C .m >-94D .m >-94且m ≠-3410. 【导学号81830952】某人生产一种零件,计划在30天内完成,若每天多生产6个,则25天完成且还多生产10个,问原计划每天生产多少个零件?设原计划每天生产x 个零件,根据题意列方程为( ) A.B . C. D.二、填空题(每小题3分,共18分)11. 【导学号81830975】化简:(1)258x x = ;(2)22357mn n m -= . 12. 【导学号81830876】当a=2017时,分式2224a aa +-的值为 .13. 【导学号81830972】分式方程12x =1x +1的解是_______.14. 【导学号81830777】计算1342+⋅⎪⎭⎫ ⎝⎛+-x xx 的结果是_______. 15. 【导学号81830974】如今步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的热量消耗.对比手机数据发现:小琼步行13500步与小刚步行9000步消耗的热量相同,若每消耗1千卡的热量小琼行走的步数比小刚多15步,则小刚每消耗1千卡热量需要行走 步. 16. 【导学号81830953】若1(2n -1)(2n +1)=a 2n -1+b2n +1,对任意自然数n 都成立,则a= ,b = . 三、解答题(共52分)17.【导学号81830955】(每小题3分,共6分)计算:(1)22a a b b a b a -⋅--;(2)(xy-x 2)÷x y xy-. 18.【导学号81830881】(每小题4分,共8分)解方程:(1)2112x x =-- ;(2) x -2x +2-16x 2-4=1.19. 【导学号81830979】(7分)先化简,再求值:224144x x x ⎛⎫-+ ⎪-+⎝⎭÷x 2x -2,其中x =1.3010256x x -=+3010256x x +=+3025106x x =++301025106x x +=-+20. 【导学号81830951】(9分)某学校为绿化环境,计划种植600棵树,实际劳动中每小时植树的数量比原计划多20%,结果提前2小时完成任务,求:原计划每小时种植多少棵树?21. 【导学号81830963】(10分)先化简,再求值:2214244x x x xx x x +--⎛⎫-÷ ⎪--+⎝⎭,其中x 是不等式3x+7>1的负整数解.22. 【导学号81830976】(12分)“2017年张学友演唱会”于6月3日在贵阳市关山湖奥体中心举办.小张到离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心.已知小张骑车的时间比跑步的时间少用了4分,且骑车的平均速度是跑步的平均速度的1.5倍. (1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分,他能否在演唱会开始前赶到奥体中心?说明理由.附加题(20分,不计入总分)23.【导学号81830978】(1)观察下列算式:;;;由此推断 ; (2)请用含m 的等式表示(1)中算式的一般规律;(3)利用(2)中的规律,解方程:.(拟题 雷成德)111162323==-⨯1111123434==-⨯1111204545==-⨯142=1311(2)(3)(1)(4)(1)(2)4x x x x x x x -+=-------参考答案:一、1. C 2. D 3. C 4. C 5. D 6. A 7. D 8. D 9. B 10. B二、11.(1)83x (2)n m5- 12. 2017201513. x =1 14.32+x x 15. 30 16. 12 -12三、17.(1)a.(2)-x 2y.18. 解:(1)去分母,得2(x -2)=x -1,解得x=3.经检验,x=3是原分式方程的解. (2)方程两边同乘x (x +2)(x -2),得(x -2)2-16=x 2-4,解得x =-2.经检验:当x =-2时,x (x +2)(x -2)=0,因此x =-2不是原分式方程的解.所以原分式方程无解.19. 解:原式=212x x +⎛⎫+⎪-⎝⎭·22x x -=2222x x x x -⋅-=2x .当x =1时,原式=2. 20. 解:设原计划每小时种植x 棵树.根据题意,得()600600120%x x-+=2,解得x =50. 检验:当x =50时,(1+20%)x ≠0,所以x =50是所列方程的解. 答:原计划每小时种植50棵树.21. 解:原式=()()()()()()22212224x x x x x x x x x x ⎡⎤+----⋅⎢⎥---⎣⎦=()()2222424x x x x x x x ---+⋅-- =()()22424x x x x x --⋅--=2x x -.解不等式3x+7>1,得x >﹣2.因为x 是不等式3x+7>1的负整数解,所以x=﹣1. 当x=-1时,原式=121---=3.22. 解:(1)设小张跑步的平均速度为x 米/分,则小张骑车的平均速度为1.5x 米/分. 根据题意,得2520252041.5x x-=,解得x=210. 经检验,x=210是原方程的解.答:小张跑步的平均速度为210米/分.(2)小张跑步到家所需时间为2520÷210=12(分),骑车所用时间为12-4=8(分),小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分).因为25>23,所以小张不能在演唱会开始前赶到奥体中心.23. 解:(1).(2). (3)由原方程,得11111113241214x x x x x x x --++-=-------. 整理,得1234x x =--.方程两边同乘(x -3)(x -4),得x -4=2x -6,解得x=2. 经检验,x=2不是原方程的解,所以原方程无解.1116767=-⨯111(1)1m m m m =-++。

(完整版)分式章节测试(附答案)

(完整版)分式章节测试(附答案)

分式章节测试
一、选择题(每题3分, 共30分)
1.若分式/的值为零, 则/的值为()
A. /
B. /
C. /
D. /
2.要使分式/有意义, 则x的取/值范围是()
A. x≠1
B.x>1
C. x<1
D.x≠-1
3.已知//, 则//的值为()
A. //
B. //
C. //
D. //
4、若分式/的值为0, 则/等于()
A.-1
B.1
C.-1或1
D.1或2
5.分式/可变形为()
A. /
B. /
C. /
D. /
二、填空题(每空5分, 共30分)
6.下列各式: /其中分式共有_______ 个。

7、若分式/的值为0, 则x的值为 .
8、当分式/的值为零时, x的值为 .
9、若分式/的值为负数, 则x的取值范围是__________。

10、如果分式/的值为零, 则a的值为____________
三、计算题(17题、18题各8分, 19题、20题各10分, 21题、22题各12分, 共计60分)
11.约分: /.
12.先化简, 再求值: /, 其中/.
13.先化简, 再求值;
14.请你先将分式/化简, 再求出当a=9999时, 该代数式的值.。

分式单元测试题7套

分式单元测试题7套

分式单元测试题1一、选择题 1.在式子,,,,中,分式有( )A .1个B .2个C .3个D .4个2.分式无意义的条件是( ) A .x≠—3 B . x=-3 C .x=0 D .x=3 3.下列各分式中与分式的值相等是( ) A . B . C . D .—4.计算(—)·的结果是( )A . 4B . -4C .2aD .-2a5.分式方程的解是( ) A .x=-2 B .x=2 C . x=±2 D.无解 6.把分式中的,都扩大3倍,那么分式的值( ) A .扩大为原来的3倍 B .缩小为原来的C .扩大为原来的9倍D .不变 7.若分式的值为0,则x 的值为( ) A .3 B .3或-3 C .-3 D .08.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求需提前5 天交货.设每天应多做x 件,则x 应满足的方程为 ( )A .B .C .D . 二、填空题 9.当x= 时,分式值为零. 10.计算.= . 11.用科学记数法表示0.002 014= .12.分式的最简公分母是____ ______.13.若方程无解,则__________________. 14.已知-=,则的值为________________.15.若=+(R 1≠R 2),则表示R 1的式子是________________. 16.某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产.若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果用33天完成任务.问:甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为________________. 三、解答题17.计算:(1)(2x -3y 2)-2÷(x -2y )3; (2) ÷ +.x y 3πa 13+x 31+x aa 232+x xb a a --b a a --b a a +-a b a -ab a-2-a a 2+a aaa 24-2114339x x x +=-+-(0)xyx y x y+≠+x y 1334922+--x x x 72072054848x -=+72072054848x +=+720720548x -=72072054848x-=+22x x --2323()a b a b --÷222439xx x x --与322x mx x -=--m =a 1b 121ba ab-R 111R 21R 21+-x x 41222-+-x x x 11-x18.先化简,再求值:,其中. 19.解方程.20.先仔细看(1)题,再解答(2)题. (1)a 为何值时,方程= 2 + 会产生增根? 解:方程两边乘(x-3),得x = 2(x-3)+a①.因为x=3是原方程的增根,•但却是方程①的解,所以将x=3代入①,得3=2×(3-3)+a ,所以a=3. (2)当m 为何值时,方程-=会产生增根?25.贵港市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,求原计划每小时修路 的长度.26.荷花文化节前夕,我市对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,市政局根据甲、乙两队的投标书测算,有三种施工方案. (1)甲队单独做这项工程刚好如期完成.(2)乙队单独做这项工程,要比规定日期多5天.(3)若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成. 在确保如期完成的情况下,你认为哪种方案最节省工程款,通过计算说明理由.211122x x x -⎛⎫-÷ ⎪++⎝⎭2x =21124x x x -=--3x x -3ax -1y y -2m y y -1y y-分式单元测试题2一、选择题 1.在,,,中,是分式的有( ). A .1个 B .2个 C .3个D .4个2.如果把分式中的x 和y 都扩大2倍,那么分式的值( ). A .不变B .扩大2倍C .扩大4倍D .缩小2倍3.分式有意义的条件是( ). A .x ≠0 B .y ≠0 C .x ≠0或y ≠0 D .x ≠0且y ≠0 4.下列分式中,计算正确的是( ).A .B .C .D . 5.化简的结果是( ). A . B .a C .a -1 D .6.化简·(x -3)的结果是( ). A .2B .C .D . 7.化简,可得( ).A .B .C .D . 8.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x 棵,则根据题意列出的方程是( ).A .B .C .D .二、填空题9.当x =__________时,分式无意义.10.化简:=__________. 11.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7 mm 2,这个数用科学记数法表示为__________ mm 2.12.已知x =2 012,y =2 013,则(x +y )·=__________. 13.观察下列各等式:,,,…,根据你发现的规律计算:=__________(n 为正整数). 14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务,设甲计划完成此项工作的天数是x ,则x 的值是__________.15.含有同种果蔬但浓度不同的A ,B 两种饮料,A 种饮料重40千克,B 种饮料重60千克,现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是__________千克.16.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天铺设管道的长度比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设x m 管道,那么根据题意,可得方程__________.2a b -(3)x x x +5πx +a ba b+-2xx y+22x yx y-+2()23()3b c a b c a +=+++222a b a b a b +=++22()1()a b a b -=-+2212x y xy x y y x -=---211a a a a --÷1a 11a -21131x x x +⎛⎫- ⎪--⎝⎭21x -23x -41x x --1111x x -+-221x -221x --221xx -221xx --80705x x=-80705x x =+80705x x=+80705x x =-13x -22x y x y x y---2244x y x y+-1111212=-⨯1112323=-⨯1113434=-⨯2222122334(1)n n +++⋅⋅⋅+⨯⨯⨯+三、解答题17.化简:.18.已知x -3y =0,求·(x -y )的值. 19.(1); (2).20.已知y =.试说明不论x 为任何有意义的值,y 的值均不变.21.为抗旱救灾,某部队计划为驻地村民新修水渠3 600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?32322222b b ab b a b a a b ab b a ++÷--+-2222x yx xy y+-+271326x x x +=++11222x x x-=---222693393x x x x x x x+++÷-+--分式单元测试题31. 当x=______时,分式212+-x x 有意义;当 x=_____时,分式)2)(1(12+--x x x 的值为0.2.根据分式的性质填空 (1)22()()x yy x y -=-; (2) 22()1a a a a -=--- 3.约分:21545x x -=_________;ayax yx --=_____________.4.分式21,,234y x x y xy的最简公分母是______________. 5.用科学记数法表示: 0.00000980 =____________________. 6. 计算:222x xy y ⎛⎫÷= ⎪-⎝⎭______________. 7.在3x π-,2a b +,13m +,2a a 中分式的个数是________个. 8. 关于x 的方程311x m x x -=--产生增根,则m 的值为 。

人教版八年级数学上册 第 15 章《分式》 单元测试题(配套练习附答案)

人教版八年级数学上册 第 15 章《分式》 单元测试题(配套练习附答案)
【答案】 ,
【解析】
【分析】
原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.
【详解】解:原式
当x=1时,原式= .
【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的化简求值.
19.开学初,小芳和小亮去学校商店购买学习用品,小芳用30元钱购买钢笔的数量是小亮用25元钱购买笔记本数量的2倍,已知每支钢笔的价格比每本笔记本的价格少2元
11.当a=______时, 的值为零.
【答案】﹣1.
【解析】
【分析】
根据分式的值为零的条件列式计算即可.
【详解】由题意得:a2﹣1=0,a﹣1≠0,
解得:a=﹣1.
故答案为:﹣1.
【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子为0;②分母不为0.这两个条件缺一不可.
(1)求每支钢笔和每本笔记本各是多少元;
(2)学校运动会后,班主任再次购买上述价格的钢笔和笔记本共50件作为奖品,奖励给校运动会中表现突出的同学,总费用不超过200元.请问至少要买多少支钢笔?
【答案】(1)每支钢笔3元,每本笔记本5元;(2)至少要买25支钢笔.
【解析】
【分析】
(1)根据小芳用30元钱购买钢笔的数量是小亮用25元钱购买笔记本数量的2倍,已知每支钢笔的价格比每本笔记本的价铬少2元,可以得到相应的方程,解方程即可求得每支钢笔和每本笔记本各是多少元;
2018-2019年人教版八年级数学上册 第 15 章《分式》经典题型单元测试题
第Ⅰ卷(选择题)
一.选择题(每小题3分,共10小题)
1.若把 变形为 ,则下列方法正确的是
A.分子与分母同时乘 B.分子与分母同时除以

《第十五章 分式》单元测试卷含答案(共6套)

《第十五章 分式》单元测试卷含答案(共6套)

《第十五章 分式》单元测试卷(一)(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分) 1.下列各式中,分式的个数为( ),,,,,,.A. B. C. D. 2.要使分式有意义,则应满足( )A .≠-1B .≠2C .≠±1D .≠-1且≠23.化简:( )A.0B.1C.D.4.将分式中的,的值同时扩大到原来的2倍,则分式的值( )A.扩大到原来的倍B.缩小到原来的C.保持不变D.无法确定5.若分式的值为零,则的值为( )A.或B.C.D.6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( ) A. B. C.D. 3x y -21a x -3a b -12x y +12x y +2123x x =-+5432211x xx x -=--x 1x x -2x x y +x y 221122+--x x x 60045050x x =+60045050x x =-60045050x x =+60045050x x =-7.对于下列说法,错误的个数是( )①是分式;②当时,成立;③当时,分式的值是零;④;⑤;⑥. A.6 B.5 C.4 D.3 8.把,,通分的过程中,不正确的是( ) A .最简公分母是(-2)(+3)2 B . C . D .9.下列各式变形正确的是( )A. B. C.D.10.若,则w=( ) A. B. C. D.二、填空题(每小题3分,共24分) 11.化简的结果是 . 12.将下列分式约分:(1) ;(2).13.计算= .14. 有一个分式,三位同学分别说出了它的一些特点,甲:分式的值不可能为0;乙:分式有意义时的取值范围是≠±1;丙:当=-2时,分式的值为1.请你写出满足上述全部特点的一个分式: .15.已知,则________.1x ≠2111x x x -=+-33x x +-11a b a a b ÷⨯=÷=2a a a x y x y +=+3232x x-⋅=-x y x y x y x y -++=---22a b a bc d c d--=++0.20.03230.40.0545a b a b c d c d --=++a b b ab c c b--=--241142w a a ⎛⎫+⋅= ⎪--⎝⎭2(2)a a +≠-2(2)a a -+≠2(2)a a -≠2(2)a a --≠-2211121x x x x +⎛⎫+÷ ⎪--+⎝⎭258xx 22357mnn m -2223362cab b c b a ÷222n m m n m n n m m ---++16.若,则=_____________.17.代数式有意义时,应满足的条件是_____________. 18.为改善生态环境,防止水土流失,某村拟在荒坡地上种植960棵树, 由于青年团员的支持,每日比原计划多种20棵,结果提前4天完成任务,问原计划每天种植多少棵树?设原计划每天种植棵树,根据题意可列方程__________________.三、解答题(共46分)19.(6分)约分:(1);(2).20.(4分)通分:,. 21.(10分)计算与化简:(1);(2);(3);(4); (5). 22.(5分)先化简,再求值:,其中,. 23.(6分)若, 求的值.24.(9分)解下列分式方程: (1);(2);(3). 25.(6分)“母亲节”前夕,某商店根据市场调查,用3 000元购进第一批盒装花,上市后很快售完,接着又用5 000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花的盒数的2倍,且每盒花的进价比第一批的进价少50544≠==zy x z y x y x 32+-+11x -x 22444a a a --+22211m m m -+-21x x -2121x x --+222x y y x ⋅22211444a a a a a --÷-+-22142a a a ---211a a a ---()()222142y x x y xy x y x +-÷⋅-222693bab a aba +--x1y 1y xy x y xy x ---+2232730100+=x x 132543297=-----x x x x 21212339x x x -=+--元.求第一批盒装花每盒的进价.参考答案1.C 解析:由分式的定义,知,,为分式,其他的不是分式.2. D 解析:要使分式有意义,则 (+1)(-2)≠0,∴ +1≠0且-2≠0, ∴ ≠-1且≠2.故选D .3. C 解析:原式=-== =x .点拨:此题考查了同分母分式相减,分母不变,分子相减.4.A 解析:因为,所以分式的值扩大到原来的2倍.5.C 解析:若分式的值为零,则所以6. A 解析:若原计划平均每天生产x 台机器,则现在每天可生产(x +50)台,根据现在生产600台机器所需时间与原计划生产450台机器所需时间相同,从而列出方程. 7.B 解析:不是分式,故①不正确;当时,成立,故②正确; 当 时,分式的分母,分式无意义,故③不正确;④,故④不正确;,故⑤不正确; ,故⑥不正确.8. D 解析:A.最简公分母为(-2)(+3)2,正确; B.(分子、分母同乘,通分正确; C.(分子、分母同乘),通分正确;D.通分不正确,分子应为2×(-2)=2-4.故选D .9.D 解析:,故A 不正确;,故B 不正确; ,故C 不正确;,故D 正确.21a x -3ab-12x y +()()y x x y x x y x x y x x +⨯=+=+=+22222224222122+--x x x 60045050x x=+1x ≠2111x x x -=+-33x x +-10. D 解析:∵ , ∴ .11.x -1 解析:原式=÷ =× =x -1.12.(1) (2)解析:(1);(2). 13. 解析: 14.(答案不唯一) 解析:由题意,可知所求分式可以是,,等,答案不唯一.15. 解析:因为,所以,所以16.解析:设则所以17.x ≠±1 解析:由题意知分母不能为0,∴ |x |-1≠0,∴ ,则x ≠±1.18. 解析:根据“原计划完成任务的天数实际完成任务的天数”列方程即可.依题意列方程为. 19.解:(1); (2) ()()()()41211222222a w w w a a a a a a ⎛⎫-++⋅=⋅=-⋅=⎪⎪-+--++⎝⎭()22w a a =---≠83x n m5-258x x 83x 22357mn nm -nm5-c b a 323.36262322223322233cb a abc b c b a c ab b c b a =⋅=÷79n m 34=()()()()()()()()n m n m m n m n m n m n n m n m n m m n m m n m n n m m -+--+++-+-=---++2222()()()().799734342222222==⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-+=-+-++-=n n n n n n n n m n m n n m n m m n mn mn m 118544≠===k z y x .11811815844432==+-+=+-+k k k k k k k z y x y x 420960960=+-x x 420960960=+-x x 22444a a a --+()22)2(222-+=-+-=a a a a a )(22211m m m-+-()().111)1()1(1)1()1(22m m m m m m m m +-=+--=+--=20.解:因为与的最简公分母是 所以; . 21.解:(1)原式=. (2)原式=.(3)原式==.(4)原式====.(5)原式=. 22.解: 当,时, 原式23.解:因为所以所以24.解:(1)方程两边都乘,得. 解这个一元一次方程,得. 检验:把代入原方程,左边右边. 所以,是原分式方程的根.21x x -2121x x --+21x x-()211)1(1--=-=x x x x x 2121x x --+()221)1(1--=--=x x x x 4y()()()()()2221112a a a a a a +--⋅+--()()212a a a +=+-()()()()()()2222222222a a a a a a a a a a +---=-+-+-+()()21222a a a a -=-++2111a a a +--()()2111a a a a -+--2211a a a -+-11a -()()()12222xy x y x y y x y x x y +-⋅⋅=-+--()().3336932222b a ab a b a a b ab a ab a -=--=+--.49162498212483==---=-ba ax 1y 1().41422342)(322232=--=--+-=--+-=---+xy xy xy xy xy xy xy y x xy y x y xy x y xy x(2)方程两边都乘,得. 整理,得.解这个一元一次方程,得. 检验:把代入原方程,左边右边. 所以,是原分式方程的根. (3)方程两边都乘,得. 整理,得.解这个一元一次方程,得. 检验可知,当时,.所以,不是原分式方程的根,应当舍去.原分式方程无解. 25. 解:设第一批盒装花的进价是x 元/盒,则 2×=,解得 x =30. 经检验,x =30是原分式方程的根. 答:第一批盒装花每盒的进价是30元.点拨:本题考查了分式方程的应用.注意:分式方程需要验根,这是易错的地方.《第十五章 分式》单元测试卷(二)一、选择题:(每小题3分,共30分) 二、1.下列各式,,,,,中,是分式的共有( )A.1个B.2个C.3个D.4个2.如果分式的值等于0,那么( )A. B. C. D.x 000 350005-x 2b a -x x 3+πy +5()1432+x b a b a -+)(1y x m-242--x x 2±=x 2=x 2-=x 2≠x3.与分式相等的是( ) A. B. C. D. 4.若把分式中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍5.化简的结果是( )A.B. C. D. 6.下列算式中,你认为正确的是( ) A .B. C . D . 7.甲乙两个码头相距千米,某船在静水中的速度为a 千米/时,水流速度为b 千米/时,则船一次往返两个码头所需的时间为( )小时. A.B. C. D. 8.甲、乙两班学生参加植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树棵,则根据题意得出的方程是( )A .B .C .D . 9.分式方程若有增根,则增根可能是( ) A .1 B . C .1或 D .010.若三角形三边分别为a 、b 、c ,且分式的值为0,则此三角形一定是( )A. 不等边三角形B. 腰与底边不等的等腰三角形C. 等边三角形D. 直角三角形 二、填空题:(每空2分,共18分)ba ba --+-b a b a -+b a b a +-b a b a -+-ba b a +--xyyx 2+2293m mm --3+m m 3+-m m 3-m m m m-31-=---a b a b a b 11=⨯÷baa b 3131aa -=b a b a b a b a +=--⋅+1)(1222s b a s +2b a s -2b s a s +ba sb a s -++x 80705x x =-80705x x =+80705x x =+80705x x =-214111x x x +-=--1-1-ca b bc ac ab --+-211.当x ________时,分式有意义. 12.利用分式的基本性质填空: (1)(2) 13.计算:__________. 14. 计算:= . 15. 分式的最简公分母是 . 16. 当x= 时,分式的值等于 .17. 生物学家发现一种病毒的长度约为0.000 043毫米,用科学记数法表示为_____________米. 18. 已知,则分式的值为 ___ . 三、解答题:(每题5分,共25分) 19.计算:(1) (2)(3) (4)20. 先化简,再求值: ,其中.xx2121-+())0(,10 53≠=a axy xy a ()1422=-+a a =+-+3932a a a abba b ab -÷-)(2abb a 65,43,322x x +-5121311=-y x yxy x yxy x ---+2232x y y x y x y x -+-+-+212222222)(ab a ab b ab a a ab -⋅+-÷-1111-÷⎪⎭⎫ ⎝⎛--x x x 32232)()2(b a c ab ---÷x x x x x x 11132-⋅⎪⎭⎫ ⎝⎛+--2=x四、解分式方程:(每题6分,共12分) 21. 22.五、列方程解应用题:(每题6分,共12分)23. 某工人原计划在规定时间内恰好加工1500个零件,改进了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个零件时,比原计划提前了5小时,问原计划每小时加工多少个零件?24. 学校在假期内对教室内的黑板进行整修,需在规定期限内完成.如果由甲工程小组做,恰好如期完成;如果由乙工程小组做,则要超过规定期限3天.结果两队合作了2天,余下部分由乙组独做,正好在规定期限内完成,问规定期限是几天?六、解答题:(共3分) 25.为何值时,关于的方程会产生增根. 答案:1、C2、C3、B4、C5、B6、D7、D8、D9、C 10、B87176=-+--x x x 1412112-=-++x x x m x 223242mx x x x +=--+11、 12、(1) (2) 13、 14、 15、 16、 -117、 18、19、 (1)0 (2) (3) 1 (4) 20、 21、822、 是增根,原方程无解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 分式
单元测试
A 卷(基础层 共100分)
一、选择题:(每小题3分,共30分)
1、若a ,b 为有理数,要使分式b
a 的值是非负数,则a ,
b 的取值是 ( ) (A)a ≥0,b ≠0; (B)a ≥0,b>O ;
(C)a ≤0,b<0; (D)a ≥0,b>0或a ≤0,b<0
2、下列各式:()x
x x x y x x x 2
225 ,1,2 ,34 ,151+---π其中分式共有( )个。

(A)2 (B)3 (C)4 (D)5
3、下列各式,正确的是 ( ) (A)326
x x
x =; (B)b a x b x a =++; (C))(1y x y
x y x ≠-=-+-; (D)b a b a b a +=++22; 4、要使分式2
||1-x 有意义,x 的值为 ( ) (A)x ≠2; (B)x ≠-2;
(C)-2<x<2; (D)x ≠2且x ≠-2;
5、下列判断中,正确的是( )
(A)分式的分子中一定含有字母;
(B)对于任意有理数x ,分式2
52+x 总有意义 (C)分数一定是分式;
(D)当A=0时,分式
B
A 的值为0(A 、
B 为整式) 6、如果x>y>0,那么x y x y -++11的值是 ( ) (A)零; (B)正数; (C)负数; (D)整数;
7、若a
b b a s -+=,则b 为 ( )
(A)1++s as a ; (B)1+-s as a ; (C)2-+s as a ; (D)1
-+s as a ; 8、在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每
小时V 2千米,则他在这段路上、下坡的平均速度是每小时( )。

(A)221v v +千米; (B)2121v v v v +千米; (C)2
1212v v v v +千米; (D)无法确定 9、若把分式xy
y x 2+中的x 和y 都扩大3倍,那么分式的值( ) (A)扩大3倍; (B)缩小3倍; (C)缩小6倍; (D)不变;
10、A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆
流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( ) (A)
9448448=-++x x ; (B)9448448=-++x
x ; (C)9448=+x ; (D)9496496=-++x x ; 二、填空题:(每小题3分,共30分)
1.在分式
1
1||+-x x 中,x =_______时,分式无意义;当x =_________时,分式的值为零.
2、①())0(,10 53≠=a axy xy a ②约分:=+--96922x x x __________。

3.若去分母解方程
x x x --=-3323时,出现增根,则增根为________. 4.在分式1
23-x 中,当x =________时,分式的值为1;当x 的值________时,分式值为正数.
5.在公式1=--+V
b b V a V 中,已知a ,b 且a ≠0,则V =________. 6、若0≠-=y x xy ,则分式=-x
y 11__________。

7、一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这
项工程需要__________小时。

三、计算题:(每小题4分,共16分)
1、
ab b a ab b a 3339+-+ 2、4
23222--+--+x x x x x x
3、1111-÷⎪⎭⎫ ⎝⎛--x x x
4、1530119632222--+-⋅+--x x x x x x x x
四、解下列分式方程:(每小题4分,共8分)
1、
132+=x x 2、9
17161101-+-=-+-x x x x
五、(6分)解应用题:某顾客第一次在商店买若干件小商品花去4元,第二次
再去买该小商品时,发现每一打(12件)降价0.8元,购买一打以上可以拆零买,这样,第二次花去4元买同样小商品的件数量是第一次的1.5倍。

问他第一次买的小商品是多少件?
B 组(能力层,共20分)
一、填空题:(每小题3分,共12分)
1、若分式
212x x m
-+不论x 取何实数总有意义,则m 的取值范围为__________。

2、已知b a b a b a ab b a -+>>=+则且,0622=__________。

3、若=++=+1
,31242
x x x x x 则__________。

4、已知
2313212x A B x x x x
-=+-+--,则A= B = 。

二、(本题4分)如果abc=1,求证1111111=++++++++c ac b bc a ab .
三、(本题4分)如表:方程1、方程2、方程3……是按照一定规律排列的一列方程: 序号
方程 方程的解 1
1216=--x x 4,321==x x 2
1318=--x x 6,421==x x 3
14110=--x x 8,521==x x …… ……
……
(1) 若方程11=--b
x x a )(b a >的解是10,621==x x ,求a 、b 的值,该方程是不是表中所给方程系列中的一个,如果是,它是第几个方程?
(2) 请写出这列方程中第n 个方程和它的解
参考答案
A 卷(基础层 共100分)
一、选择题
DACDB BDCBA
二、填空题
1、-1,1;
2、2
36,3x a x +-; 3、3; 4、2,x>12; 5、2
b a -; 6、1; 7、xy x y
+ ; 三、1、2b ab 2、12x -- 3、1 4、33x -- 四、1、x =2 2、x =8
B 组(能力层,共20分)
一、填空题
1、m>1
2、2
3、18
4、-2,-5 二、左边=11abc b ab a abc bc b abc bc b ++=++++++1(1)11abc b a b bc bc b bc b
++++++++=1 三、(1)a =12,b =5,是第四个方程
(2)2(2)11(1)
n x x n +-=-+;122,2(1)x n x n =+=+;其中n 为非0自然数。

相关文档
最新文档