桥梁工程病害分析

合集下载

公路桥梁工程常见病害及防治措施

公路桥梁工程常见病害及防治措施

公路桥梁工程常见病害及防治措施公路桥梁工程是现代交通基础设施的重要组成部分,它们在保障道路畅通和安全行车方面起着关键作用。

然而,由于长期受到交通负荷和自然环境的影响,公路桥梁容易出现各种病害。

本文将深入探讨公路桥梁常见的病害,并提供相应的防治措施。

首先,我们来介绍一些公路桥梁常见的病害类型。

公路桥梁病害主要包括裂缝、锈蚀、混凝土结构损坏、钢结构损坏等。

裂缝是最常见的桥梁病害之一,它可以分为水平裂缝、竖向裂缝、横向裂缝等。

裂缝的形成可能是由于建筑材料质量问题、温度变化、地基沉降等导致的。

锈蚀是指桥梁的金属部分出现锈蚀、腐蚀的现象。

混凝土结构损坏是桥梁的混凝土部分出现龟裂、剥落等情况,而钢结构损坏则是指桥梁的钢结构出现断裂、弯曲等情况。

那么,公路桥梁病害是如何形成的呢?公路桥梁的病害形成是一个渐进的过程,由多种因素综合作用导致。

首先,交通负荷是公路桥梁病害形成的主要原因之一。

长期大量的车辆通行会给桥梁造成巨大的荷载,容易引起结构的疲劳和变形。

其次,自然环境也是影响桥梁病害的重要因素。

例如,恶劣的气候条件、酸雨等会加速金属部分的腐蚀。

此外,施工材料质量、施工工艺、设计不合理等也都可能导致桥梁病害的产生。

了解了公路桥梁病害的类型和形成原因后,下面我们来探讨一些常见病害的防治措施。

对于裂缝问题,可以采用各种方法进行修复,如使用高强度的填缝剂进行补救。

此外,根据不同裂缝的特点和原因,可以采取钢板加固、预应力补强等手段进行处理。

对于锈蚀问题,可以考虑使用防腐材料进行涂覆保护,以减缓金属腐蚀的速度。

另外,定期进行防锈处理和维护保养也是有效的方法。

对于混凝土结构损坏问题,可以采用修复涂层、填充剂等进行修复,同时加强结构的质量监控和维护管理。

针对钢结构损坏问题,可以考虑加固钢结构、更换损坏部件等措施。

综上所述,公路桥梁工程常见病害的防治是非常重要的。

通过了解病害的类型和形成原因,以及采取合适的防治措施,可以延长桥梁的使用寿命,提高道路的安全性和可靠性。

公路桥梁工程常见病害与施工处理技术分析

公路桥梁工程常见病害与施工处理技术分析

公路桥梁工程常见病害与施工处理技术分析公路桥梁作为交通运输领域重要的基础设施之一,承载着车辆和行人的巨大压力,因此常常出现各种病害问题。

了解并有效处理这些病害,对于保障公路桥梁的安全运行和延长使用寿命至关重要。

本文将对公路桥梁工程常见病害及其施工处理技术进行分析。

一、常见病害:1.裂缝:公路桥梁常见的裂缝病害有冻融裂缝、收缩裂缝、变形裂缝等。

这些裂缝容易导致桥梁结构的破坏和承载力下降。

2.钢筋锈蚀:钢筋锈蚀是桥梁混凝土结构的常见问题,由于钢筋锈蚀导致混凝土保护层破坏,进而影响桥梁的使用寿命。

3.混凝土表面开裂:混凝土表面开裂不仅影响桥梁的美观,还可能导致混凝土内部结构受损,影响桥梁的承载能力。

4.混凝土疲劳:长期交通载荷的作用下,桥梁混凝土可能会产生疲劳病害,出现裂缝、变形等问题。

5.桥梁底部腐蚀:桥梁底部容易受到水蒸气和化学物质的腐蚀,导致结构失稳和承载能力减弱。

二、处理技术:1.裂缝处理:对于桥梁裂缝,可以采用填充材料填充、粘结剂粘结、防水材料覆盖等方法来加固修复。

2.钢筋锈蚀处理:采用防锈漆、防腐蚀材料等方式对桥梁钢筋进行防护,延长桥梁使用寿命。

3.混凝土表面修补:使用混凝土修补材料进行表面修补,保护混凝土结构并美化桥梁外观。

4.混凝土疲劳处理:采用增加钢筋数量、加固混凝土结构等方法对桥梁进行加固修复。

5.防腐蚀处理:选用耐腐蚀材料、增加防护层厚度等方式对桥梁底部进行防腐蚀处理。

三、施工注意事项:1.施工前需对桥梁进行全面的检测和评估,了解病害的具体情况及原因,为后续处理工作提供准确的依据。

2.选择合适的施工材料和工艺,根据桥梁的具体病害情况进行针对性的处理,确保修复效果和使用寿命。

3.施工过程中要严格按照规范和要求进行操作,避免次生破坏和安全事故的发生。

4.修复完工后要进行检测验收,确保修复效果达到设计要求,并及时制定养护计划,延长桥梁的使用寿命。

公路桥梁工程常见病害及其施工处理技术是一项重要工作,关乎桥梁结构的安全和使用寿命。

桥梁常见的缺陷与病害及成因分析

桥梁常见的缺陷与病害及成因分析

桥梁常见的缺陷与病害及成因分析摘要:随着交通事业的发展,我国的桥梁建设取得了较大的进步,但桥梁设计缺陷是桥梁建设者一直关注的话题。

针对桥梁建设中所发现的问题,通过实地调查,对我国桥梁常见的病害和缺陷的表现形式做了介绍,并分析出现的原因,为今后的加固和维修提供参考。

关键词:桥梁缺陷病害随着时间的推移,已建桥梁的病害将会不断出现,桥梁的维修、加固和改造工作已经成为一项十分重要而艰巨的任务。

为了能够更好地对桥梁进行维修和养护、加固和改造,我们应当注意收集基础资料,充分了解和掌握桥梁常见的缺陷和病害,并分析其形成的原因。

1桥梁常见的缺陷和病害1.1上部构造的缺陷和病害主梁或主拱圈受拉部位开裂、破损、承载力下降;桥面铺装有裂缝、沉陷、龟裂;桥头跳车;防水层排水功能不完善;水渗漏病害引起钢筋锈蚀、混凝土剥离;支座位置不正确或损坏引起倾斜、错台及位移等。

注意:裂缝是桥梁最常见的缺陷和主要病害,而桥梁的病害往往也是从裂缝形成而开始的。

因此,我们应对桥梁裂缝病害引起高度重视。

1.2下部墩台及基础的病害基础的缺陷和病害主要表现为:承载力不足而使基础不均匀沉陷;基础的滑移和倾斜,以及基底局部冲空;基础结构物的异常应力和开裂。

桥墩、桥台缺陷和病害主要表现为:水平、竖向和网状裂缝;混凝土脱落、空洞、材料老化;受外力冲击产生破坏;钢筋外漏和锈蚀;结构变形、位移等。

2缺陷与病害的成因分析桥梁缺陷和病害关键原因还是桥梁承载力不足。

造成桥梁承载力不足的原因很多,归纳起来主要是因为桥梁设计荷载偏低、设计原因、施工原因和外界因素等造成。

2.1桥梁设计荷载偏低设计荷载偏低的原因是由历史局限性、设计规范不完整和公路桥梁设计荷载的演变等三方面引起。

2.1.1历史局限性在我省公路事业的发展过程中,大量的桥梁是在当时的经济环境下建设的,已经不适应当今国民经济快速发展的需要。

当年,在修建公路的时候,对于仅作为人行桥或马车使用的古代和近代的桥梁,未作任何改造就加以利用。

空心板梁桥的结构特点及常见病害分析

空心板梁桥的结构特点及常见病害分析

空心板梁桥的结构特点及常见病害分析空心板梁桥是一种常见的桥梁结构形式,它具有许多独特的特点和优势。

本文将详细介绍空心板梁桥的结构特点,并对其常见的病害进行分析。

一、空心板梁桥的结构特点1. 受力均匀:空心板梁桥的上、下翼板以及腹板可以合理承担桥梁受力,使得各个承力构件能够充分发挥作用。

2. 自重轻:相较于实心板梁桥,空心板梁桥的自重轻,降低了对桥梁基础的要求,并且可以减小桥梁整体结构的荷载。

3. 施工方便:空心板梁桥的施工过程相对简单,不需要专门的模板,既方便快捷又能节省成本。

4. 阻尼效应较好:由于板身的发挥作用,空心板梁桥具有较好的阻尼效应,能够降低地震等外力对桥梁的破坏程度。

5. 空间利用率高:空心板梁桥的空腹处可以用于通设各类管线等,提高了桥梁空间的利用率。

二、空心板梁桥的常见病害分析1. 腹板开裂:由于静荷载等因素,腹板可能发生开裂,严重时可能影响桥梁的承载力和安全性。

2. 伸缩缝老化:空心板梁桥的伸缩缝存在老化腐蚀的问题,如果未及时维修,则可能引发水泄露、结构松动等安全隐患。

3. 设计不合理:部分空心板梁桥在设计过程中忽视了荷载和地震等因素,导致桥梁结构存在隐患,容易发生倒塌事故。

4. 防腐蚀措施不当:空心板梁桥通常需要进行防腐蚀处理,若防腐措施不当或未及时检修,则可能导致钢筋锈蚀、混凝土开裂等问题。

5. 地基沉降:桥梁的地基由于工程施工、地下水位等原因可能出现沉降,导致桥梁整体不平衡,进而引发病害。

为了保障空心板梁桥的安全性和使用寿命,必须采取一系列的预防和维护措施。

首先,在设计阶段,应综合考虑荷载、地震等因素,确保桥梁结构合理牢固。

其次,加强对结构腐蚀、伸缩缝等关键部位的定期检修和维护,及时发现并处理潜在问题。

此外,加强桥梁地基的监测,及时采取加固措施,防止地基沉降引发的不平衡。

综上所述,空心板梁桥具有受力均匀、自重轻、施工方便、阻尼效应好等结构特点。

然而,腹板开裂、伸缩缝老化等常见病害仍需引起重视。

桥梁工程质量通病及防治措施

桥梁工程质量通病及防治措施

桥梁工程质量通病及防治措施The document was prepared on January 2, 2021桥梁工程质量通病及防治措施一、钻孔灌注桩断桩防治(一)原因分析:1.骨料集配差,砼和易性差造成离析卡管2.浇筑时间过长:泥浆指标未达标、钻机基础不平稳、钻架摆幅过大、钻杆上端无导向设备、基底土质差甚至出现流沙层,导致扩孔或塌孔引起的浇筑时间过长搅拌设备故障且无备用设备引起砼浇筑时间过长3.砼浇筑间歇时间超过砼初凝时间4.砼浇筑过程中导管埋置深度偏小,管内压力过小5.导管埋深过大,管口砼凝固(二)防治措施:1.设备材料:关键设备砼搅拌设备、发电机、运输车要有备用材料砂、石、水泥等要准备充足,保证砼连续灌注2.坍落度控制:砼和易性好,坍落度18-22cm若灌注时间较长,经过监理工程师同意可在砼中加入缓凝剂,防治先期砼初凝,堵塞导管3.钢筋笼制作:一般采用对焊,保证焊口平顺采用搭接焊时,要保证焊缝不在钢筋笼内形成错台,以防钢筋笼卡住导管4.导管:导管直径应根据桩径和石料的最大粒径确定,尽量采用大直径导管每节导管进行组装编号,安装完毕后要建立复核和检验制度导管使用前,对导管进行检漏和抗拉力试验,防止导管渗漏5.下导管:底口距孔底控制在25-40cm之间注意导管口不能埋入沉淀层中要能保证首批砼灌注后能埋住导管>1m在随后的灌注过程中,导管的埋深控制在2-6m范围内6.提拔导管:要通过测量砼的灌注深度及已拆下导管长度,计算提拔导管的长度严禁不经测量和计算盲目提拔导管7.堵管处理:导管堵塞可采用拔插抖动导管注意不可将导管拔出砼面堵塞长度较短,可以用型钢插入导管疏通,也可以在导管上固定附着式振动器疏通导管内砼8.钢筋笼卡住导管,可用转动导管,使之脱离钢筋笼二、钢筋砼梁桥预拱度偏差防止(一)原因分析:1.现浇梁:支架形式多样,地基沉陷、支架弹性变形、砼梁挠度计算所依据的参数是建立在经验值上的,造成预拱度计算值与实际值有偏差2.预制梁:(1)第一方面施工:砼强度的差异、砼弹性模量不稳定:导致梁的起拱值不稳定施加预应力时间差异、架梁时间不一致:导致预拱度计算时各种假定条件与实际情况不一致,造成预拱度偏差(2)第二方面理论与实际的差异:计算公式建立在一些试验数据基础上,理论计算与实际存在偏差标准养护砼试块弹性模量作为施加预应力条件,当试块强度达到设计张拉强度时,由于养护条件不同,梁板弹性模量尚未达到设计值,会导致起拱度过大计算采用的钢绞线弹性模量值>实际弹性模量值,则计算伸长量偏小,造成实际预应力不够计算采用的钢绞线弹性模量值>实际弹性模量值,则计算伸长量偏大,造成超张拉实际预应力超过设计预应力,易引起梁的起拱度过大,出现裂缝(3)第三方面施工工艺:波纹管竖向偏位过大,造成零弯矩轴偏位,则最大正弯矩发生变化较大,导致起拱过大或过小(二)预防措施预拱度设置的考虑因素:1.支架拆除后,上部结构+活载×1/2,所产的的挠度2.支架在荷载作用下的弹性压缩3.支架在荷载作用下的非弹性压缩4.支架基底在荷载作用下的非弹性沉陷5.由砼收缩及温度变化引起的挠度(三)治理措施:1.支架、模板:提高支架基础、支架、模板的施工质量按要求进行预压,确保模板标高偏差在允许范围内2.加强施工控制,及时调整预拱度误差3.砼强度:严格控制张拉时的砼强度,控制张拉的试块应与梁板同条件养护对于预制梁还需控制砼的弹性模量4.预应力张拉:严格控制预应力筋的位置,波纹管的安装定位要精确控制张拉时的应力值,并按要求时间持荷5.钢绞线伸长值的计算应采用同批钢绞线弹性模量的实测值6.预制梁的存放时间不宜过长三、箱梁两侧腹板砼厚度不均防治(一)原因分析:1.箱梁模板设计不合理2.模板强度不足,或箱梁内模没有固定牢固,内模与外模相对水平位置发生偏差3.箱梁内模刚度不够,在浇筑砼过程中发生变形4.砼没有对称浇筑,由于单侧压力过大,使内模偏向另一侧(二)预防措施:1.内模要坚固,刚度符合施工规范要求2.箱梁内模要固定牢固,使其上下左右均不能移动3.内模与外模在两侧腹板部位设置支撑4.浇筑腹板砼时,两侧应对称进行四、钢筋砼结构构造裂缝的防治(一)原因分析:构造裂缝:结构非荷载原因产生的砼结构物表面裂缝1.材料原因:(1)水泥质量不好如水泥安定性不合格等,浇筑后产生不规则的裂缝(2)骨料含泥料过大,砼干燥收缩后出现不规则的花纹状裂缝(3)骨料为风化性材料,形成以骨料为中心的锥形剥落2.施工原因:(1)砼搅拌和运输时间过长,导致整个结构产生细裂缝(2)模板移动鼓出使砼浇筑后不久产生与模板移动方向平行的裂缝(3)支架模板:基础与支架的强度、刚度、稳定性不够引起支架下沉、不均匀下沉脱模过早,导致砼浇筑后不久产生裂缝,裂缝宽度较大(4)接头处理不当,导致施工缝变成裂缝(5)养护问题:塑性收缩状态会在砼表面发生方向不定的收缩裂缝这类裂缝在大风、干燥天气最为明显(6)砼高度突变以及钢筋保护层较薄部位,由于振捣或析水过多造成沿钢筋方向的裂缝(7)大体积砼:未采用缓凝和降低水泥水化热的措施、使用了早期水泥的砼,受水化热影响浇筑后2-3d导致结构中产生裂缝同一结构的不同部位温差大,导致砼凝固时收缩产生的收缩应力超过砼极限抗拉强度内外温差大,表面拉应力超过砼极限抗拉强度而产生裂缝(8)水灰比大的砼,由于干燥收缩,在龄期2-3个月内产生裂缝(二)防治措施:1.使用优质水泥及骨料2.配合比:合理设计砼配合比改善骨料级配、降低水灰比、掺加粉煤灰等掺合料、掺加缓凝剂在满足工作条件下,尽可能采用较小水灰比及较低坍落度的砼3.避免砼搅拌时间过长4.加强模板施工质量,避免出现模板移动、鼓出等问题5.支架模板:基础与支架应有较好的强度、刚度、稳定性并采用预压措施,防止支架下沉和模板不均匀沉降避免过早脱模6.砼浇筑要充分振捣,砼浇筑后要及时养护7.大体积砼:使用矿渣水泥等低水化热水泥采用遮阳棚、布置冷却水管等降温措施,降低砼水化热、推迟水化热峰值出现时间同一结构物的不同位置温差应满足设计规范要求五、悬臂浇筑钢筋砼箱梁的施工挠度控制(一)原因分析1.悬臂浇筑砼箱梁的施工合龙标高误差:由于梁体采用节段悬臂浇筑施工,施工中立模标高的计算采用的参数与实际有差异计算公式为经验公式2.影响因素:(1)砼重力密度的变化、截面尺寸的变化(2)砼弹性模量随时间的变化(3)砼的收缩徐变规律与环境的影响(4)日照及温度变化引起的挠度变化(5)张拉有效预应力的大小(6)结构体系转换以及桥墩变位对挠度的影响(7)施工临时荷载对挠度的影响(二)防治措施:1.挂篮:对挂篮进行加载试验,消除非弹性变形向监测人员提供非弹性变形值及挂篮荷载—弹性变形曲线2.相对坐标系:在0号块箱梁顶面建立相对坐标系,以此相对坐标控制立模标高值施工过程中及时采集观测断面标高值提供给监控人员3.温度控制:梁体上布置温度观测点进行观测掌握箱梁截面内外温差和温度在界面上的分布情况,获得较准确的温度变化规律4.挠度观测:在一天中温度变化相对较小的时间在箱梁的顶底板布置测点测立模时、砼浇筑前后、预应力束张拉前后的标高5.应力观测:在梁体合理布置测试断面和测点在施工过程中测试截面的应力变化与分布情况验证各施工阶段被测梁段的应力值和仿真分析的吻合情况6.严格控制施工过程中不平衡荷载的分布及大小六、桥面铺装病害的防治(一)原因分析:1.梁体预拱度过大,桥面铺装设计厚薄难以调整施工允许误差2.施工质量控制不严,桥面普通砼质量差3.桥头跳车和伸缩缝破坏引起的连锁破坏4.桥梁结构大变形引起沥青砼铺装层破坏5.水害引起沥青砼铺装的破坏6.铺装防水层破损导致桥面铺装的破坏7.桥面铺装常规性破坏与翼板路面破坏原理相同(二)防治措施:1.常规破坏同路面通病防治2.加强对主梁的施工质量控制,避免出现预拱度过大3.加强桥面铺装施工质量控制,严格控制钢筋网的安装4.提高桥面防水砼的强度,避免出现防水砼层破坏5.加强桥面排水设计和必要的水量计算6.优化桥面铺装的砼配合比设计,选用优质骨料,提高桥面铺装的施工和养护质量七、桥梁伸缩缝病害的防治(一)原因分析:1.交通流量增大,超载车辆增多,超出设计2.设计原因:(1)伸缩缝的预埋筋锚固的桥面板刚度薄弱(2)伸缩设计量不足,导致伸缩缝选型不当(3)设计对伸缩装置两侧的填充砼、锚固钢筋设置、质量标准未做明确规定(4)对于大跨径桥梁伸缩缝结构设计技术不成熟(5)对于锚固件胶结材料选择不当,使金属结构锚件锈蚀,最终损坏伸缩缝装置3.施工原因:(1)施工工艺缺陷(2)锚件焊接内在质量,赶工期忽视质量检查(3)伸缩装置两侧填充砼的强度、养护时间、粘结性、平整度未能达到设计标准(4)伸缩缝安装不合格4.管理维护原因:(1)通行期间,填充到伸缩缝内的杂物未能及时清除,限制伸缩缝伸缩导致额外内力形成(2)轻微的损害未能及时维修,加速了伸缩缝的破坏(3)超重车辆上桥行驶,给伸缩缝的耐久性造成损害(二)预防措施:1.设计方面,精心设计,选择合理的伸缩装置2.提高对桥梁伸缩装置施工工艺的重视程度,严格按施工工序和工艺标准的要求施工3.提高锚固件焊接质量4.提高后浇砼或填缝料的施工质量,加强填缝砼的振捣密实,确保砼达到设计强度标准,及时养护,无空隙、空洞5.伸缩装置两侧的砼与桥面系的相邻部位结合紧密八、桥头跳车的防治(一)原因分析:1.台后地基强度与桥台地基强度不同、台后填料自然固结压缩2.桥头路堤及锥坡范围内地基填筑前处理不彻底3.台后压实度达不到标准,高填土引道路堤本身出现的压缩变形、4.路面水渗入路基,路基土软化,水土流失造成桥头路基引道下沉5.回填不及时积水引起的桥头回填土压实度不够6.沉降大于设计容许值7.台后填土材料不当,或填土含水量过大8.软基路段:软基路段台前预压长度不足软基路段桥头堆载预压卸载过早软基路段桥头处软基处理深度不到位,质量不符合要求(二)防治措施:1.重视桥头地基处理,采用先进的台后填土施工工艺.选用合适的压实机具,确保台后及时回填,回填压实度达到要求2.软基处理:改善地基性能,提高地基承载力,减少差异沉降保证足够的台前预压长度连续进行沉降观测,保证桥头沉降速率达到规定范围内再卸载确保桥头软基处理深度符合要求,严格控制软基处理质量3.有针对性选择台后填料,提高桥头路基压实度.如采用砂石料等固结性好,变形小的填筑材料处理桥头填土4.做好桥头路堤的排水、防水工程,设置桥头搭板5.优化设计方案,采用新工艺加固路堤。

桥梁常见病害成因分析及维修加固建议

桥梁常见病害成因分析及维修加固建议

桥梁常见病害成因分析及维修加固建议摘要:随着交通量的增长、汽车载重量的增加和桥梁运营时间的增长,一些公路桥梁结构构件已出现不同程度的破损,对于桥梁改造和维修以及加固工作是当前我国交通部门的重要工作内容。

了解使用中的公路桥梁的病害及发生的原因,及时掌握桥梁的损坏实际状况,严格按照一定的加固手段,对当前存在的病害问题有针对性的预防和解决,才能够延长桥梁的使用寿命,实现我国交通道路事业的快速发展。

关键词:桥梁;病害;维修加固引言1桥梁中容易出现的病害问题1.1上部结构主要病害类型裂缝是主梁(板)的最常见病害,主要发生的位置在跨中、梁(板)端、梁(板)侧以及梁(板)底等,不同位置的裂缝其发生的原因也大不相同。

一般来说:跨中竖向及梁(板)端斜裂缝主要是结构性受力裂缝,其余位置处的裂缝主要是非结构性裂缝。

横向裂缝:大多数情况下梁(板)底横向裂缝病害主要是由于梁(板)在荷载作用下产生的正弯矩裂缝,也有部分横向裂缝是由于梁(板)底保护层厚度不足,梁(板)体内箍筋锈胀所致。

纵向裂缝:纵向裂缝的产生原因主要有: ①早期空心板梁设计由于经济因素制约,其底板厚度较薄,薄壁结构在纵向受力时其截面将发生畸变变形,同时在底板上下缘产生畸变弯曲应力,当畸变拉应力超过混凝土的抗拉强度,势必导致底板产生纵向开裂。

若底板横向构造配筋较少,则钢筋无法限制纵向裂缝的扩展,这也是底板纵向裂缝宽度一般较大的原因之一。

②施工工艺引起空心板梁底板产生纵向裂缝的因素较多,其中预应力因素较为关键。

正常状态下施加预应力,预应力将对截面产生轴向压力和弯矩,由于混凝土材料的泊松效应,在轴向压力作用下底板将产生横向拉应力,此应力与截面的畸变应力组合后往往大于混凝土的抗拉强度,这就是产生纵向裂缝较为普遍的原因之一。

③此外,空心板梁混凝土质量较差、振捣不密实、内模下沉导致底板厚度偏薄等因素均可引起底板产生纵向裂缝。

主梁(板)常见裂缝情况表空心板(或普通钢筋混凝土T梁)板(或梁)间铰缝开裂、脱落、渗水,桥面有大量反射纵缝,单板受力趋势明显。

桥梁结构的典型病害及原因分析

桥梁结构的典型病害及原因分析

164YAN JIUJIAN SHE桥梁结构的典型病害及原因分析Qiao liang jie gou de dian xing bing hai ji yuan yin fen xi张宇桥梁结构病害的类型多样,造成桥梁病害的原因较为复杂,桥梁病害不仅影响桥梁结构的稳定性,而且也会造成较大的使用安全隐患,影响着桥梁的使用寿命。

应当加大桥梁隐患的排查修复工作,形成综合性的桥梁病害分析防控体系,达到有效控制桥梁病害问题的效果。

一、桥梁结构的典型病害类型分析1.混凝土病害我国大部分桥梁建设都使用的是混凝土结构,我国是世界上建设混凝土桥梁占比最大的国家,近些年来混凝土结构的桥梁病害事故不断增加,混凝土结构桥梁危害要比其它类型桥梁的危害更严重,而且修复的费用较高,混凝土桥梁结构病害得到全世界的广泛关注。

混凝土结构桥梁的病害主要在结构内部,具体表现为混凝土结构的裂缝、混凝土钢筋锈蚀和混凝土结构稳定性差等方面。

这些问题主要是由于混凝土结构的桥梁强度与设计强度有差异,钢筋保护层厚度不足,以及桥梁运营中监管不足,以及存在混凝土结构的空洞或掉块之类问题造成的隐患。

2.缆索承重桥梁危害缆索承重桥梁主要用于大跨度桥梁的建设,一般跨海、跨江大桥,系杆拱桥、县索桥等使用缆索承重方式。

这种桥梁一般处在高应力状态下,桥梁的缆索对外界环境较敏感,因极端特殊天气情况会对桥梁的缆索造成较大的影响。

桥梁使用缆索检查起来不方便,一些维护人员使用的维护手段不足,因此影响了桥梁的正常维护。

缆索防护是桥梁防护的重要任务之一,缆索防护能力直接的影响桥梁的功能和寿命,缆索承重是桥梁的生命线。

修建悬索斜拉桥时会发现缆索使用10年左右会出现严重的锈蚀现象,影响悬索大桥使用寿命的主要原因都在拉索耐久性不足。

例如,广州海印大桥仅使用了10年时间,济南的黄河公路大桥从使用到更换悬索仅用了13年时间。

斜拉索的材料质量问题已经是制约悬索桥使用寿命的主要原因,耐久性防护水平直接影响悬索桥的正常使用。

分析桥梁工程的常见病害及施工处理技术

分析桥梁工程的常见病害及施工处理技术

分析桥梁工程的常见病害及施工处理技术随着桥梁年限的增长,桥梁工程中病害问题也日益突出。

常见的桥梁病害有混凝土开裂、钢筋锈蚀、板缝开裂、钢结构变形等。

下面将详细介绍常见桥梁病害,并介绍针对这些病害的施工处理技术。

1. 混凝土开裂混凝土开裂是桥梁工程中常见的一种病害。

混凝土开裂的原因有多种,如混凝土自身收缩、外界温度变化、荷载变化引起的变形等。

混凝土开裂会严重影响桥梁的承载能力和使用寿命。

施工处理技术:对于混凝土开裂的桥梁,施工处理技术大多采用补修和加固的方法。

具体操作上,先要对混凝土进行清理,再用修补材料进行填补。

对于较大的开裂部位,可采用加固材料进行包围、加固。

在施工时,必须保证加固材料的质量,并且保证其与原混凝土的粘接性。

2. 钢筋锈蚀钢筋锈蚀也是桥梁工程中常见的一种病害,发生的原因有很多,比如湿度、氧气和二氧化碳的侵蚀作用,以及外界腐蚀因素的作用等。

若不及时加以处理,会引起桥梁的断裂和倒塌。

施工处理技术:钢筋锈蚀的治理是一个较为复杂的过程。

常用的方法是通过耐腐蚀的涂层进行保护,并在钢筋表面涂抹防锈漆进行防护。

对于已经受到严重腐蚀的钢筋,只能进行更换。

在施工时,要保证钢筋表面的清洁,防止污染物的侵入,以及防止与涂层之间的气泡和空隙。

3. 板缝开裂施工处理技术:针对板缝开裂的桥梁,常采用封缝剂进行填充或者使用橡胶缝隙封口材料进行填充。

在施工时,应先对板缝进行清理,将污垢和灰尘等物体清除干净。

填充材料应选用合适的材料,并均匀地填充进去。

填充完毕后,需等待一段时间,让材料充分硬化和贴合,然后进行检查和测试。

4. 钢结构变形钢结构变形也是桥梁工程中常见的一种病害,其原因可以是荷载超重、铰缝紧固不足等。

钢结构变形会严重影响桥梁的承载能力和使用寿命。

施工处理技术:针对钢结构的变形,可采取补偿板加固的方法。

具体来说,就是在变形位置附加钢板,在受力处进行加固。

对于一些严重变形的钢结构,可采用调整、更换重构等手段进行处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

桥梁工程病害分析作者:赵厚森来源:《商品与质量·学术观察》2013年第03期摘要:本文通过对桥梁病害种类及其引起病害的主要成因等方面展开了具体分析,并提出了相应的维修加固方法及处理措施。

关键词:桥梁病害成因分析处理措施1、桥梁病害种类及成因分析1.1由环境作用引起的病害1.1.1混凝土的碳化混凝土的碳化是指混凝土中NaOH与渗透进混凝土中的CO2或其他酸性气体发生化学反应的过程。

一般情况下混凝土呈碱性,在钢筋表面形成碱性薄膜,保护钢筋免遭酸性介质的侵蚀,起到了“钝化”保护作用。

碳化的实质是混凝土的中性化,使混凝土的碱性降低,钝化膜破坏,在水分和其它有害介质侵入的情况下,钢筋就会发生锈蚀。

1.1.2氯离子的侵蚀氯离子对混凝土的侵蚀是氯离子从外界环境侵入进已硬化的混凝土造成的。

海水是氯离子的主要来源,另外北方寒冷地区冬季道路、桥面撒盐化雪除冰都有可能使氯离子渗入混凝土中。

氯离子对混凝土的侵蚀属于化学侵蚀,对结构的危害是多方面的,最终表现还是钢筋的锈蚀。

1.1.3碱-骨料反应碱-骨料反应一般指水泥中的碱和骨料中的活性硅发生反应,生成碱-硅酸盐凝胶,并吸水产生膨胀压力,造成混凝土开裂。

碱-骨料反应引起的混凝土结构破坏程度,比其他耐久性破坏发展更快,后果更为严重。

碱-骨料反应一旦发生,很难加以控制,所以有时也称碱骨料反应是混凝土结构的“癌症”。

碱-骨料反应破坏的最重要特征之一是混凝土表面开裂,裂缝的形态与结构中钢筋形成的限制和约束状态有关:钢筋限制、约束力强的混凝土形成顺筋裂缝;钢筋限制约束作用弱的混凝土形成网状裂缝,在裂缝处有白色凝胶物渗出。

碱-骨料反应裂缝与其他原因裂缝的主要区别是:1)碱-骨料反应引起混凝土局部膨胀,裂缝的两个边缘出现不平是碱-骨料反应裂缝的特有现象;2)碱-骨料反应与环境湿度有关,在同一工程中潮湿部位出现裂缝,而干燥部位却安然无恙,是碱-骨料反应裂缝区别与其他原因裂缝的外观特征差别之一;3)从裂缝出现的时间来判断,碱-骨料反应裂缝出现的时间较晚,而混凝土收缩裂缝出现的时间较早,一般在施工后若干天内出现。

1.1.4冻融循环破坏渗入混凝土中的水在低温下结冰膨胀,从内部破坏混凝土的微观结构。

经多次冻融循环后,损伤积累将使混凝土剥落,强度降低。

冻融循环破坏的混凝土剥落,开始时在混凝土表面出现粒径为2~3mm的小片剥落,随着使用年限的增加,剥落量及剥落块直径增大,剥落由表及里,发展速度很快。

一经发现冻融引起的混凝土剥落,必需密切注意剥落的发展情况,及时采取修补措施。

1.1.5钢筋锈蚀混凝土中钢筋腐蚀的首要条件是钝化膜破坏,混凝土的碳化及氯离子侵蚀都会造成覆盖钢筋表面的碱性钝化膜的破坏,加之有水分和氧的侵入,就可能引起钢筋的腐蚀。

钢筋腐蚀伴有体积膨胀,使混凝土出现沿钢筋的纵向裂缝,造成钢筋与混凝土之间的黏结力破坏,钢筋截面面积减少,使结构构件的承载力降低,变形和裂缝增大等一系列不良后果,并随着时间的推移,腐蚀会逐渐恶化,最终可能导致结构的完全破坏。

需要注意的是,上述所有侵蚀混凝土和钢筋的作用都需要有水作介质。

另一方面,几乎所有的侵蚀作用对混凝土结构的破坏都与侵蚀作用引起的混凝土膨胀,最终导致混凝土的开裂有关。

而且当混凝土结构开裂后,腐蚀速度将大大加快,形成导致混凝土结构的耐久性进一步退化的恶化循环。

因此,对新建结构,提高混凝土结构耐久性的基本途径是增强混凝土的密实度,防止和控制混凝土开裂,阻止水分的侵入;加大混凝土保护层的厚度,防止由于混凝土保护层碳化引起钢筋钝化膜破坏。

对于在役结构,提高混凝土结构耐久性的基本思路是在清除病害根源的基础上,封堵裂缝,修补破损混凝土;增设防水层,防止水分的侵入。

1.2由荷载作用或设计施工不当造成的病害1.2.1桥梁设计荷载偏低旧桥大多是在过去的经济环境下建设的,已不适应当今国民经济快速发展的需要。

当年,在修建公路桥梁的时候,对于仅作为人行桥或马车使用的古代和近代的桥梁未作任何改造就加以利用,尽管大都有一定潜力可挖,对于当时荷载等级要求不高,行车密度较稀的交通状况是能够适应的。

但是,随着交通事业高速发展,相当部分老桥面临荷载等级偏低,承载能力不足的状况,导致病害日益严重,成为危桥。

另外一个很重要的原因则是设计规范不完善。

1.2.2结构不合理桥梁设计方案的选择,是由当地的水文地质条件,施工技术和方法,经济指标和使用要求等诸多因素所决定的。

桥梁结构形式,构件施工方式,桥梁截面形式,还有桥梁跨径的划分和墩高的处理等,如果这些结构选择或布局不合理,都会使桥梁在运营过程中出现这样那样的缺陷。

1.2.3施工原因施工是设计的实现过程,设计正确性与否,是否完善,在施工中都会得到检验。

同时,施工的质量优劣,也将影响桥梁的整体性能。

在桥梁建设中,尽管设计正确,但施工方法不当,施工质量控制不严,施工过程中遇到一些非预见性灾害,如洪水、地震等,常常导致桥梁承载能力降低,不能达到设计的预期目的。

由于施工原因,导致日后桥梁承载能力不足。

1.2.4材料质量问题施工中使用的混凝土,钢筋,沙砾等材料质量达不到规范要求是导致结构产生各种质量缺陷的内因。

1.2.5其他原因车流量加大,重车增多,交通碰撞事故,地震,洪水的破坏,环境恶劣,化学腐蚀,周边出现不均匀沉降等都会使桥梁产生损坏。

2、桥梁主要病害分析我国早期修建的高速公路上的桥梁多为中小跨径的混凝土简支梁桥,存在的一些常见病害有:桥面铺装开裂、钢筋锈蚀、伸缩缝损坏、支座破坏和桥梁墩台基础的病害等。

2.1桥面铺装开裂混凝土桥面铺装层的病害随处可见,主要表现为较规则的纵、横向裂缝,不规则的网状裂缝及较严重的破裂等病害。

产生病害的主要原因是桥面板刚度不足,在重载或冲击荷载作用下产生较大变形,从而导致桥面板的铺装层出现裂缝,且发展较快。

其次,铺装层与桥面板和主体结构变形不协调,产生附加内力也会引起纵、横向裂缝。

另外,早期修建的桥梁,由于当时人们对铺装功能、病害认识有限,往往存在配筋量偏小,钢筋直径过细,铺装与承载构件的界面连续不牢靠等问题。

铺装层的病害在高速公路上的危害性非常严重。

首先,铺装层破损会使车辆冲击荷载进一步增大;其次,防水功能失效后,雨水渗入主梁中,使主梁受力钢筋锈蚀,这一点对于钢筋混凝土结构而言,危害尤其严重;最后,铺装层的破坏会改变设计荷载的横向分布状态,使得横向刚度变小,各梁板受力不均,并使主梁实际高度变小,纵向刚度减弱,挠度增大。

2.2钢筋锈蚀引起钢筋锈蚀的主要原因是混凝土的密实性不够以及钢筋保护层厚度不足或遭到破坏。

另外,海洋环境、大气中的酸性气体及潮湿环境等,都是促进钢筋锈蚀的客观因素。

我国南方地区,因工业污染形成的“酸雨”普遍存在,加上气候潮湿,为桥梁钢筋的锈蚀提供了合适的外部环境。

北方地区冬季普遍采用撒盐的方法防止桥面冰冻,富含氯离子的盐水渗入结构混凝土体内,大大加速了钢筋的锈蚀。

钢筋发生锈蚀时,锈蚀部分的体积可膨胀至原来体积的10倍以上,从而对周围混凝土形成挤压,造成混凝土开裂、剥蚀,使截面有效尺寸减小,导致结构承载能力下降。

锈蚀的直接后果是钢筋断面积减小,对于以钢筋作为抗拉材料的桥梁来说,断面积的减小会直接影响结构抗拉和抗弯能力。

钢筋锈蚀还会降低混凝土对钢筋的握裹力。

锈蚀物外流,在结构表面形成锈迹,影响结构美观。

由此可见,钢筋锈蚀对桥梁的危害是十分严重的,有时甚至是致命的。

由此可见,钢筋锈蚀是影响桥梁结构寿命和安全的一个重要因素。

由于种种原因,桥梁结构钢筋的锈蚀广泛存在,为了维持桥梁的正常运营,需要对出现钢筋锈蚀的桥梁进行维修。

2.3伸缩缝损坏根据目前的调查和研究认为,造成伸缩缝破坏的原因主要有以下几个方面:1)由于设计不周引起的伸缩缝损坏;2)由于选型不当引起的伸缩缝损坏;3)由于桥墩台施工及梁(板)预制尺寸误差导致实际板端预留间隙与设计间隙悬殊而引起的伸缩缝损坏;4)设计与实际伸缩量不符引起的伸缩缝损坏;5)板式橡胶伸缩缝由于施工误差或橡胶板破坏引起的伸缩缝处严重跳车;6)板式橡胶伸缩缝或钢板伸缩缝由于伸缩装置混凝土施工先于两端沥青混凝土路面面层而引起伸缩缝尾端跳车;7)“反开槽法”施工操作不认真引起伸缩缝处跳车;8)材料选用不当引起的伸缩缝损坏。

伸缩缝的完好程度将直接影响桥梁结构的服务质量,伸缩缝的缺陷会向结构主体进一步发展,而且严重者会引起交通事故,所以,伸缩缝出现病害必须及时维修或更换。

2.4支座破坏支座是桥梁上部结构的重要组成部分,它的首要功能是“承上启下”,即上部结构的荷载及行车荷载是通过支座传递给下部的桥梁墩台;其次,支座还要承受温度、风荷载引起的水平力。

根据桥梁检查的统计资料分析,桥梁支座的破坏主要有以下几个方面的原因:1)小跨径桥梁采用的简易垫层支座油毛毡老化破裂,从而失去作用;2)切线弧形支座滑动面、滚动面因锈蚀作用导致的无法正常转动;3)摆式支座的混凝土摆柱脱皮、漏筋或其他异常现象;4)支座的滑动面不平整,轴承有裂纹、切口,滚轴偏移和下降;5)滑动钢盆橡胶支座的固定螺栓因剪切作用而破坏,螺母松动;6)橡胶支座因时间和环境的作用出现橡胶老化、变质现象,上部结构梁体失去自由伸缩能力;7)支座垫石混凝土强度较低造成的支座座板混凝土压坏、剥离、掉角;8)支座边部翘起、断裂、扭曲,座板贴角焊缝开裂;9)滑动面、滚动面夹杂尘埃和异物以及排水装置、防水装置的缺陷引起的漏水、溢水等。

支座相对于桥梁工程整体来讲是一个小部件,但它的功能性作用却非常大,支座的破坏会导致桥梁上部结构的加速破坏,因此支座出现病害以后要及时维修及更换。

2.5桥梁墩台基础的病害桥梁墩台基础在常年使用过程中,除了承受上部构造荷载外,还将承受土压力、风力、流水压力、冰压力和浮力等等各种力的作用。

另外,自然界各种因素(如大气、雨水、洪水等)的影响作用;以及由于过桥车辆的日益重型化,墩台基础经常受到过重活荷载的作用,因此,桥梁墩台将会出现不同程度的损坏。

桥梁墩台基础易产生的病害有:1)基础结构:基础不均匀沉降;基础的滑移和倾斜,以及基底局部冲空;基础结构物的异常应力和开裂等;2)墩、台身:各种水平、竖向和网状裂缝;混凝土剥落、空洞和老化;钢筋外露、锈蚀;结构变形、移位等。

这些病害不仅影响桥梁的美观,也影响桥梁的使用。

3、常见桥梁病害的维修加固方法随着我国交通运输事业的不断发展,原有公路由于技术标准低、通行能力低,不能适应国民经济的发展。

随着交通量的增大及其他一些使用原因,造成桥梁破坏或承载力及耐久性降低。

为提高桥梁荷载等级,延长桥梁服务年限,旧桥的加固、维修已成为迫在眉睫的专项工程。

3.1桥面铺装层病害的预防措施及维修加固方法3.1.1桥面铺装层病害的预防措施:(1)设计上可采取的预防措施根据桥梁桥面铺装层病害的调查统计情况发现,较早施工的桥梁桥面铺装层钢筋多采用HPB235直径8mm或10mm盘元条钢筋,因钢筋直径较细、圆钢与铺装层混凝土握裹力较小、钢筋的抗拉强度偏低等原因造成桥面铺装层混凝土病害情况较为严重。

相关文档
最新文档