分式复习(1)
《分式复习》教案

《分式复习》教案一、教学目标:1. 知识与技能:(1)理解分式的概念,掌握分式的基本性质;(2)熟练运用分式的化简、运算和比较大小;(3)能够解决实际问题,运用分式进行合理计算。
2. 过程与方法:(1)通过复习,巩固分式的基本概念和性质;(2)运用举例、讲解、练习等方法,提高学生对分式的理解和运用能力;(3)培养学生独立思考、合作交流的学习习惯。
3. 情感态度与价值观:(2)培养学生勇于探索、积极向上的精神风貌;(3)培养学生运用数学知识解决实际问题的能力。
二、教学内容:1. 分式的概念与基本性质;2. 分式的化简与运算;3. 分式的比较大小;4. 分式在实际问题中的应用。
三、教学重点与难点:1. 重点:分式的概念、基本性质、化简、运算和比较大小;2. 难点:分式的化简与运算,以及分式在实际问题中的应用。
四、教学过程:1. 导入:回顾分式的概念和基本性质,引导学生进入复习状态;2. 新课:讲解分式的化简与运算,通过例题展示解题思路和方法;3. 练习:学生独立完成练习题,教师巡回指导,解答疑难问题;4. 应用:结合实际问题,引导学生运用分式进行计算和解决问题;五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评价学生的学习态度和积极性;2. 练习完成情况:检查学生完成的练习题,评价学生的掌握程度;3. 实际应用:评估学生在解决实际问题时运用分式的准确性和灵活性。
教学资源:教材、PPT、练习题、实际问题案例。
教学时间:1课时。
六、教学步骤:1. 复习分式的概念与基本性质,通过提问方式检查学生对分式知识的掌握情况。
2. 讲解分式的化简与运算,包括分式的乘法、除法、加法和减法,通过例题展示解题思路和方法。
3. 进行分式化简与运算的练习,学生独立完成练习题,教师巡回指导,解答疑难问题。
4. 结合实际问题,引导学生运用分式进行计算和解决问题,培养学生的应用能力。
七、教学方法:1. 采用问题驱动法,通过提问引导学生思考和复习分式的概念与基本性质。
分式复习1

其中A叫做分子,B叫做分母.
分式及其相关概念 强化训练:
1.下列各式中,哪些是分式?
m m 1 2 5 a b xy (1) , , x , , , 8 a 3 x6 2 A 5x 2y
2 2
注意:分式
中,分母 B 中一定要有字
5 a 1 ( 2) , ,a a b
2
母。 温馨提示:
B
分式
A
x 1 无意义的条件
{ B≠0
.
(2)
若分式
3x 6 2x 1 B.
的值为 0,则() X 1 2 C. X 1 2 D. X 2
c
A. X -2
本章知识网络
分 2、分式的基本性质 式
3、分式的运算 4、分式方程
1、分式概念 ⑴分式有意义的条件 ⑵分式的值的情况讨论
(2)若值为0,则x应满足( B )
A、x=2 C、 x
2
B、x =-2 D、x =-1或x =2
2
a b ab A 计算 的结果是() a b a A. a -b b B. ab b C. a -b a D. ab a
x+3 2-x 3 10.学完分式运算后,老师出了一道题“化简: + ”. x+2 x2-4 x+3x-2 x-2 x2+x-6-x-2 x2-8 小明的做法是:原式= - 2 = = 2 ; 2 2 x -4 x -4 x -4 x -4 小亮的做法是:原式=(x+3)(x-2)+(2-x)=x2+x-6+2-x=x2-4; x+3 x-2 x+3 1 x+3-1 小芳的做法是:原式= - = - = =1. x+2 x+2x-2 x+2 x+2 x+2 其中正确的是( ) A.小明 B.小亮 C.小芳 D.没有正确的
分式章节复习

未知派教育版权所有 未经允许 请勿外传 第 1 页未知派教育 打造数学补习最高品质 电话:6083301 地址:海沧区嵩屿北一里33号(未来海岸浪琴湾S5)202分式章节复习【知识点一】分式的概念、分式的值为0、分式有无意义的讨论:(1)分式的判断:关键看分母中是否含有字母。
(2)分式的值为0:同时满足两个条件:(1)分母不为0(前提)(2)分子为0.(3)分式有无意义的讨论:关键看分母为不为0.【范例选讲】例1、如果分式23273x x --的值为0,则x 的值应为 . 例2、已知分式235x x x a--+: 当x =2时,分式无意义,则a = ;当a =6时,使分式无意义的x 的值共有 个. 例3、若m 为正实数,且13m m -=,221m m -则= 【对应练习】 1、下列式子是分式的是( ) A .2x B .1+x x C . y x +2 D . 3x 2、已知2111=-b a ,则b a ab -的值是( ) A .21 B .-21 C .2 D .-2 3、设m >n >0,m 2+n 2=4mn ,则22m n mn-的值等于( ) A. BCD . 34、已知当x =-2时,分式a x b x +-无意义,当x =6时,此分式的值为0,则=⎪⎭⎫ ⎝⎛a b a . 【知识点二】分式的基本性质、分式的符号法则:1、分式的基本性质:B A =C B C A ⋅⋅=C B C A ÷÷(0≠c )2、分式的符号法则:B A =B A --=-B A -=-BA -未知派教育版权所有 未经允许 请勿外传 第 2 页未知派教育 打造数学补习最高品质 电话:6083301 地址:海沧区嵩屿北一里33号(未来海岸浪琴湾S5)202例1、化简aa a -+-111=________ 例2、若把分式xyy x +中的x 和y 都扩大2倍,那么分式的值( ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍 例3、解分式方程:1233x x x =+--例4、下列等式:①()a b c--=-a b c -;②x y x -+-=x y x -;③a b c -+=-a b c +;④m n m --=-m n m -中,成立的( ) A .①② B .③④ C .①③ D .②④【对应练习】1、填空:() 1932=-+a a 2、将分式yx x +2中的x 、y 的值同时扩大3倍,则 扩大后分式的值( ) A 、扩大3倍; B 、缩小3倍; C 、保持不变; D 、无法确定。
分式复习教案(经典)

分式(一):【知识梳理】 1.分式有关概念(1)分式:分母中含有字母的式子叫做分式。
对于一个分式来说:①当____________时分式有意义。
②当____________时分式没有意义。
③只有在同时满足____________,且____________这两个条件时,分式的值才是零。
(2)最简分式:一个分式的分子与分母______________时,叫做最简分式。
(3)约分:把一个分式的分子与分母的_____________约去,叫做分式的约分。
将一个分式约分的主要步骤是:把分式的分子与分母________,然后约去分子与分母的_________。
(4)通分:把几个异分母的分式分别化成与____________相等的____________的分式叫做分式的通分。
通分的关键是确定几个分式的___________ 。
(5)最简公分母:通常取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
求几个分式的最简公分母时,注意以下几点:①当分母是多项式时,一般应先 ;②如果各分母的系数都是整数时,通常取它们的系数的 作为最简公分母的系数;③最简公分母能分别被原来各分式的分母整除;④若分母的系数是负数,一般先把“-”号提到分式本身的前边。
2.分式性质: (1)基本性质:分式的分子与分母都乘以(或除以)同一个 ,分式的值 .即:(0)A A M A M M BB MB M⨯÷==≠⨯÷其中(2)符号法则:____ 、____ 与__________的符号, 改变其中任何两个,分式的值不变。
即:a a a ab bbb--==-=---3.分式的运算:注意:为运算简便,运用分式的基本性质及分式的符号法则:()nn a b a b c ca c ad bc d bd a c ac d bd a c a d ad dbc bc a a n b⎧±⎧±=⎪⎪⎪⎪⎨±⎪⎪±=⎪⎪⎩⎪⎧⎪⋅=⎪⎪⎪⎨⎨⎪⎪÷=⋅=⎪⎪⎩⎪⎪=⎪⎪⎪⎩n 同分母c 加减异分母b 乘b 分式运算乘除除b 乘方()为整数b①若分式的分子与分母的各项系数是分数或小数时,一般要化为整数。
【2013版新教材】2013-2014学年八年级上数学第一单元分式复习(1)导学案

分式复习学案一、学习目标: 姓名:1、 灵活运用分式的符号法则,熟练地进行分式的运算;2、 会解可化为一元一次方程的分式方程,并会验根;以及分式方程的应用。
二、学习重点:1、 分式的四则混合运算;2、 解分式方程以及分式方程的应用;三、课前知识梳理:8、分式方程: 的方程;解分式方程的思路:去分母,化分式方程为 ;解分式方程的关键:方程两边同乘以 ;解分式方程易错处:分式方程一定要验根!切记。
四、例题讲解例1、先化简,再求值:321111a a a a a------,其中a=12。
点拨:本题可以看作两个分式与三个整式的和,也可以看作是两个分式与一个整式的和。
通分时,整式看作是分母为的分式,分数线起着括号的作用,应该是211a a ++-,小心! 解:原式=31a a - 211a a ++- 【练习】化简:①35(2)242a a a a -÷+---; =31a a - 2(1)(1)1a a a a -++-- =∴当a=12时,原式= 。
例3、解方程:232t t t t -=+-; 【练习】解方程:21820242x x x ++=+--; 本题转化为整式方程后一定要检验! 解:解:两边同乘以 ,得 解之得检验:把t= 代入 ,∴ 。
例4、当m 取什么值时,关于x 的方程2361x m x x x x++=--有增根? 点拨:先把分式方程去掉分母转化成整式方程,化简整式方程。
因为原方程有增根,那么这个增根就会使分母等于0,故得到增根,代入化简后的整式方程,从而得到m 的值。
解:原方程可化为 ;两边同乘以 ,得 ;整理得 。
∵关于x 的方程2361x m x x x x++=--有增根 ∴x= 或者x= ;当x= 时,代入 ,解得m= ;当x= 时,代入 ,解得m= 。
∴当m 时,关于x 的方程2361x m x x x x++=--有增根。
例6、市政公司承建一条6000米长的防洪大堤,修了30天后,气象部门通知汛期将提前到达,公司增派人手抢建大堤,工效比原来提高20%,工程恰好比原计划提前5天完工。
北师大版八年级数学下册第五章分式单元复习试题1(附答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第五章复习一、填空题 1.当x 时,分式2+x x有意义。
2.在函数y=22-x 中,自变量x 的取值范围是 。
3.当m = 时,关于x 的分式方程213x mx +=--无解4.当x = 时,分式33x x --为0。
5.约分:112--x x = 。
6.化简211xx x -÷的结果是 . 7.方程423532=-+-xx x 的解是 . 8.某市对一段全长1500米的道路进行改造.原计划每天修x 米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了 天。
二.、选择题 9、代数式42,1,3,31nm b a b a ,x -++π中,分式有( ) A 、1个; B 、2个; C 、3个; D 、4个。
10.若分式122--x x 的值为0,则x 的值为( ) A. 1B. -1C. ±1D.211.计算22()ab ab的结果为( ) A.bB .aC.1 D1b12、将分式yx x +2中的x 、y 的值同时扩大3倍,则 扩大后分式的值( )A 、扩大3倍;B 、缩小3倍;C 、保持不变;D 、无法确定。
13.计算()a b a bb a a+-÷的结果为( )A .a b b - B .a b b + C .a b a - D .a ba+ 14、小马虎在下面的计算中只作对了一道题,他做对的题目是( )A 、b a b a 22=⎪⎭⎫ ⎝⎛ B 、23a a a =÷ C 、b a b a +=+211 D 、1-=---y x y x 15.一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )小时. A.11a b +; B.1ab ; C.1a b +; D.aba b+ 三.简答题 16.(212x x --2144x x -+)÷222x x -17、解方程:22221=-+-xxx18.先化简,再求值:221111121x x x x x +-÷+--+,其中31x =.19.(课堂上,李老师出了这样一道题:已知352008x -=,求代数式)1x 3x 1(1x 1x 2x 22+-+÷-+-,小明觉得直接代入计算太繁了,请你来帮他解决,并写出具体过程。
初中数学方程与不等式之分式方程知识点总复习附答案解析(1)

初中数学方程与不等式之分式方程知识点总复习附答案解析(1)一、选择题1.关于x 的分式方程230+=-x x a解为4x =,则常数a 的值为( ) A .1a = B .2a =C .4a =D .10a =【答案】D 【解析】 【分析】根据分式方程的解的定义把x=4代入原分式方程得到关于a 的一次方程,解得a 的值即可. 【详解】解:把x=4代入方程230+=-x x a,得 23044a +=-, 解得a=10.经检验,a=10是原方程的解 故选D .点睛:此题考查了分式方程的解,分式方程注意分母不能为0.2.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,则所列方程为( )A .10000x ﹣10=147000(140)0x + B .10000x +10=147000(140)0x + C .100000(140)0x -﹣10=14700x D .100000(140)0x -+10=14700x【答案】B 【解析】 【分析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可. 【详解】解:设第一批购进x 件衬衫,则所列方程为:10000x +10=()1470001400x +.故选B .此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.3.如果关于x 的分式方程11222a x x-+=--有整数解,且关于x 的不等式组43(1)211(1)22x x x x a ≥-⎧⎪⎨-+<-⎪⎩有且只有四个整数解,那么符合条件的所有整数a 的和是( ) A .4 B .-2C .-3D .2【答案】A 【解析】 【分析】分式方程去分母转化为整式方程,表示出整数方程的解,不等式组整理后,由解只有四个整数解,确定出a 的值,求出之和即可. 【详解】解:分式方程去分母得:1-a+2x-4=-1, 解得:22a x +=,且222a +≠,a 为偶数, 即2a ≠,a 为偶数,不等式组整理得:34x a x ≥-⎧⎪⎨⎪⎩<,由不等式组只有四个整数解,得到x=-3,-2,-1,0,可得0<4a≤1,即0<a≤4,即a=1,2,3,4, 经检验a=4, 则和为4, 故选:A . 【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.4.已知关于x 的分式方程211x k x x-=--的解为正数,则k 的取值范围为( ) A .20k -<< B .2k >-且1k ≠- C .2k >-D .2k <且1k ≠【答案】B 【解析】 【分析】先用k 表示x ,然后根据x 为正数列出不等式,即可求出答案.解:211x k x x-=--Q, 21x kx +∴=-, 2x k ∴=+,Q 该分式方程有解,21k ∴+≠, 1k ∴≠-, 0x Q >, 20k ∴+>, 2k ∴>-,2k ∴>-且1k ≠-, 故选:B . 【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.5.对于非零实数a 、b ,规定a ⊗b =21a b a-.若x ⊗(2x ﹣1)=1,则x 的值为( ) A .1 B .13 C .﹣1D .-13【答案】A 【解析】 【分析】 【详解】解:根据题中的新定义可得:()21x x ⊗-=21121x x x-=-, 解得:x=1,经检验x=1是分式方程的解, 故选A . 【点睛】本题考查了新定义、解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.6.若关于x 的分式方程233x mx x -=--有增根,则m 的值是( ) A .1- B .1C .2D .3【答案】B 【解析】根据分式方程的增根的定义得出x-3=0,再进行判断即可. 【详解】 去分母得:x-2=m , ∴x=2+m ∵分式方程233x mx x -=--有增根, ∴x-3=0, ∴x= 3, ∴2+m=3, 所以m=1, 故选:B . 【点睛】本题考查了对分式方程的增根的定义的理解和运用,能根据题意得出方程x-3=0是解此题的关键,题目比较典型,难度不大.7.从4-,2-,1-,0,1,2,4,6这八个数中,随机抽一个数,记为a .若数a 使关于x 的一元二次方程()22240x a x a --+=有实数解.且关于y 的分式方程1311y a y y+-=--有整数解,则符合条件的a 的值的和是( ) A .6- B .4- C .2- D .2【答案】C 【解析】 【分析】由一元二次方程()22240x a x a --+=有实数解,确定a 的取值范围,由分式方程1311y a y y+-=--有整数解,确定a 的值即可判断. 【详解】方程()22240x a x a --+=有实数解,∴△=4(a −4)2−4a 2⩾0, 解得a ⩽2∴满足条件的a 的值为−4,−2,−1,0,1,2方程1311y a y y+-=-- 解得y=2a+2 ∵y 有整数解 ∴a=−4,0,2,4,6综上所述,满足条件的a 的值为−4,0,2, 符合条件的a 的值的和是−2 故选:C 【点睛】本题考查了一元二次方程根据方程根的情况确定方程中字母系数的取值范围;以及分式方程解的定义:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫分式方程的解.8.把分式方程11122x x x--=--,的两边同时乘以x-2,约去分母,得( ) A .1-(1-x)=1 B .1+(1-x)=1C .1-(1-x)=x-2D .1+(1-x)=x-2【答案】D 【解析】 【分析】本题需要注意的有两个方面:①、第二个分式的分母为2-x ,首先要化成x -2;②、等式右边的常数项不要漏乘. 【详解】 解:11122x x x--=-- 11+122x x x -=-- 两边同时乘以x-2,约去分母,得1+(1-x)=x-2 故选:D 【点睛】本题考查解分式方程.9.某一景点改造工程要限期完成,甲工程队独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,若设工程期限为x 天,则下面所列方程正确的是( ) A .4116x x x +=+- B .416x x x =-+ C .4116x x x +=-- D .4116x x x +=-+ 【答案】D 【解析】 【分析】首先根据工程期限为x 天,结合题意得出甲每天完成总工程的11x -,而乙每天完成总工程的16x +,据此根据题意最终如期完成了工程进一步列出方程即可. 【详解】∵工程期限为x 天,∴甲每天完成总工程的11x -,乙每天完成总工程的16x +, ∵由两工程队合做4天后,余下的由乙工程队独做,正好如期完成, ∴可列方程为:4116x x x +=-+, 故选:D. 【点睛】本题主要考查了分式方程的实际应用,根据题意正确找出等量关系是解题关键.10.为有效落实党中央“精准扶贫”战略决策,某市对农村实施“户户通”修路计划,已知该市计划在某村修路5000m ,在修了1000m 后,由于引入新技术,工作效率提高到原来的1.2倍,结果提前5天完成了任务.若设原来每天修路 m x ,则可列方程为( ) A .50004000100051.2x x x=+- B .5000100040005 1.2x x x +=+ C .5000400010005 1.2x x x -=+ D .5000100040005 1.2x x x-=+ 【答案】D 【解析】 【分析】本题依题意可知等量关系为原计划工作时间-实际工作时间=5,根据等量关系列出方程即可.【详解】设原来每天修路xm ,引入新技术后每天修路1.2xm ,实际工作天数为(100040001.2x x+),原计划工作天数为5000x天,根据题意得, 5000100040005 1.2x x x -=+, 故选D. 【点睛】本题考查了由实际问题抽象出分式方程,理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.11.对于实数a 、b ,定义一种新运算“⊗”为:23a b a ab⊗=-,这里等式右边是通常的四则运算.若32x x ⊗⊗(﹣)=,则x 的值为( )A .-2B .-1C .1D .2【答案】B 【解析】 【分析】利用题中的新定义变形已知等式,然后解方程即可. 【详解】根据题中的新定义化简得:339342x x=+-,去分母得:12﹣6x =27+9x ,解得:x =﹣1,经检验x =﹣1是分式方程的解. 故选B . 【点睛】本题考查了新定义和解分式方程,利用了转化的思想,解分式方程注意要检验.12.已知关于x 的分式方程213x mx -=-的解是非正数,则m 的取值范围是( ) A .3m ≤ B .3m <C .3m >-D .3m ≥-【答案】A 【解析】 【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m 的范围即可 【详解】213x mx -=-, 方程两边同乘以3x -,得23x m x -=-,移项及合并同类项,得3x m =-,Q 分式方程213x mx -=-的解是非正数,30x -≠,30(3)30m m -≤⎧∴⎨--≠⎩, 解得,3m ≤, 故选:A . 【点睛】此题考查分式方程的解,解题关键在于掌握运算法则求出m 的值13.如果关于x 的分式方程2ax 423x x 3++=--有正整数解,且关于y 的不等式组()3y 34yy a⎧-⎨≥⎩>无解,那么符合条件的所有整数a 的和是( ) A .﹣16 B .﹣15C .﹣6D .﹣4【答案】D 【解析】 【分析】先根据分式方程有正整数解确定出a 的值,再由不等式组无解确定出满足题意的a 的值,求出之和即可. 【详解】解:分式方程去分母得:2+ax ﹣2x+6=﹣4, 整理得:(a ﹣2)x =﹣12(a ﹣2≠0), 解得:x 12a 2=--, 由分式方程有正整数解,得到a =1,0,﹣1,﹣2,﹣4,﹣10, 当a =﹣2时,x =3,原分式方程无解, 所以a =1,0,﹣1,﹣4,﹣10, 不等式组整理得:y<9y a-⎧⎨≥⎩,由不等式组无解,即a≥﹣9,∴符合条件的所有整数a 有1,0,﹣1,﹣4, ∴a =1,0,﹣1,﹣4,之和为﹣4, 故选:D . 【点睛】此题考查了分式方程的解,解一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.14.若关于x 的分式方程2233x mx x -=--有增根,则m 的值为( ). A .3 B.CD.【答案】D 【解析】解关于x 的方程2233x mx x -=--得:26x m =-, ∵原方程有增根,∴30x -=,即2630m --=,解得:m = 故选D.点睛:解这类题时,分两步完成:(1)按解一般分式方程的步骤解方程,用含待定字母的式子表示出方程的根;(2)方程有增根,则把(1)中所得的结果代入最简公分母中,最简公分母的值为0,由此即可求得待定字母的值.15.关于x的方程2111axx x-=++的解为非正数,且关于x的不等式组22533a xx+⎧⎪+⎨⎪⎩„…无解,那么满足条件的所有整数a的和是()A.﹣19 B.﹣15 C.﹣13 D.﹣9【答案】C【解析】解:分式方程去分母得:ax﹣x﹣1=2,整理得:(a﹣1)x=3,由分式方程的解为非正数,得到31a-≤0,且31a-≠﹣1,解得:a<1且a≠﹣2.不等式组整理得:224axx-⎧≤⎪⎨⎪≥⎩,由不等式组无解,得到22a-<4,解得:a>﹣6,∴满足题意a的范围为﹣6<a<1,且a≠﹣2,即整数a的值为﹣5,﹣4,﹣3,﹣1,0,则满足条件的所有整数a的和是﹣13,故选C.点睛:此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.16.2017年,全国部分省市实施了“免费校车工程”.小明原来骑自行车上学,现在乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.已知小明家距学校5千米,若校车速度是他骑车速度的2倍,设小明骑车的速度为x千米/时,则下面所列方程正确的为()A.5x+16=52xB.5x=52x+16C.5x+10=52xD.5x-10=52x【答案】B【解析】【分析】设小明骑车的速度为x千米/小时,校车速度为2x千米/小时,等量关系为:小明骑车所走的时间减去校车所走的时间=10分钟,据此列方程.【详解】设小明骑车的速度为x千米/小时,校车速度为2x千米/小时,由题意得, 5x=52x+16所以答案为B.【点睛】本题考查了分式方程,解题的关键是根据实际问题列出分式方程.17.《九章算术》中记录的一道题目译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天,如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x天,则可列方程为()A.900900213x x⨯=+-B.900900213x x=⨯+-C.900900213x x⨯=-+D.900900213x x=⨯-+【答案】A【解析】【分析】设规定时间为x天,可得到慢马和快马需要的时间,根据快马的速度是慢马的2倍的速度关系即可列出方程.【详解】解:设规定时间为x天,则慢马需要的时间为(x+1)天,快马的时间为(x-3)天,∵快马的速度是慢马的2倍∴900900213 x x⨯=+-故选A.【点睛】本题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.18.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.1806x+=1206x-B.1806x-=1206x+C.1806x+=120xD.180x=1206x-【答案】A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:1806 x+=1206x-.故选A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.19.从4-,1-,0,2,5,8这六个数中,随机抽一个数,记为a,若数a使关于x的不等式组0331016x a x -⎧<⎪⎨⎪+≥⎩无解,且关于y 的分式方程2233y a y y -+=--有非负数解,则符合条件的a 的值的个数是( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】由不等式组无解确定出a 的一个取值范围、由分式方程其解为非负数确定a 的一个取值范围,综上可确定a 的最终取值范围,根据其取值范围即可判定出满足题意的值.【详解】 解:0331016x a x -⎧<⎪⎨⎪+≥⎩①②解①得,x a <解②得,2x ≥∵不等式组无解∴2a ≤ ∵2233y a y y-+=-- ∴83a y -= ∵关于y 的分式方程2233y a y y -+=--有非负数解 ∴803a y -=≥且833a -≠ ∴8a ≤且a≠-1∴综上所述,2a ≤且1a ≠-∴符合条件的a 的值有4-、0、2共三个.故选:C【点睛】本题考查了不等式(组)的解法、分式方程的解法,能根据已知条件确定a 的取值范围是解决问题的关键.20.若关于x 的方程244x a x x =+--有增根,则a 的值为( ) A .-4B .2C .0D .4【答案】D【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.让最简公分母x-4=0,得到x=4.再将x=4代入去分母后的方程即可求出a=4.【详解】解:由分式方程的最简公分母是x-4,∵关于x 的方程244x a x x =+--有增根, ∴x-4=0,∴分式方程的增根是x=4. 关于x 的方程244x a x x =+--去分母得x=2(x-4)+a, 代入x=4得a=4故选D .【点睛】 本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.。
分式计算复习专题课教案(提高版)

分式计算复习专题课教案(提高版)第一章:分式的概念与基本性质1.1 分式的定义解释分式的含义:分子与分母都为整式,分母不为零的代数表达式。
强调分式中的各个元素:分子、分母、分界线。
1.2 分式的基本性质复习分式的基本性质,如:分式的值不随分子、分母的符号变化而变化。
演示分子与分母乘以(或除以)同一个非零整式,分式的值不变。
第二章:分式的运算2.1 分式的加减法讲解分式加减法的运算规则:通分后分子相加(减),分母保持不变。
举例说明如何进行分式的加减运算,并强调通分的重要性。
2.2 分式的乘除法解释分式乘除法的运算规则:分子与分子相乘,分母与分母相乘。
演示如何进行分式的乘除运算,并提示约分的技巧。
第三章:分式的化简与求值3.1 分式的化简介绍分式化简的常见方法:约分、因式分解。
举例说明如何化简分式,并强调化简的目的:简化表达式,便于计算。
3.2 分式的求值讲解如何求解分式的值:将变量代入分式中,进行计算。
强调求值时需要注意的问题:确保代入的变量值使分母不为零。
第四章:分式的应用4.1 分式在实际问题中的应用介绍分式在实际问题中的应用场景,如:比例计算、分段函数等。
演示如何将实际问题转化为分式问题,并解决。
4.2 分式的综合应用案例分析提供一些综合性的案例,让学生练习分式的应用。
引导学生运用分式的知识解决实际问题,培养其应用能力。
第五章:分式的复习与拓展5.1 分式的复习要点总结分式的概念、运算规则、化简与求值等关键知识点。
强调学生需要掌握的分式计算的基本技能。
5.2 分式的拓展与提高介绍一些分式的拓展知识,如:分式的极限、分式函数等。
提供一些提高性的练习题,激发学生对分式计算的兴趣与深入学习。
第六章:分式的综合题型6.1 分式的混合运算讲解分式的混合运算,包括加减乘除以及括号的运用。
提供混合运算的例题,引导学生逐步解决复杂分式问题。
6.2 分式的复合运算介绍分式的复合运算,如:先乘除后加减、先化简后求值等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3( x 5) 3( x 5) 无意义。 当 x=_____时, =0 ( x 1) x 2 ( x 1) x 2
a 1 1) 2 a 1 a 2a 1
例 2 请你先化简,再选一个你喜欢的 a 的值代入求值。 ( 例 3 已知 x
1 x2 4, 求 4 的值 。 x x x2 1
n
1 (a 0, n是正整数) , an
a 1
1 (a 0) a
n
③整数指数幂有哪些运算法则:设 a 0,m,n 都是整数,则:
a m a n a m n, am amn , ab anbn
n
二 例题精讲 例 1 填空: 当 x=_____,分式
学 案 设 计
主备课人:
课 题:分式复习(1)
执教者:
执教时间 201 年 月 累计 节
日 (第
周 星期 ) 节教完,本节为 第 节
教学目标: 1 使学生系统了解本章的知识体系及知识内容; 2 进一步了解分式的基本性质、分式的运算法则以及整数指数幂,会熟练地进行分 式的运算。 教学重点:梳理知识内容,形成知识体系。 教学难点:熟练进行分式的运算。 教学用具与教学方法: 教学准备: 个人调整与补充 内容 课型:新课
三 课堂练习,巩固提高 1、若分式
x 1 的值为 0,那么 x 的值为____. x 1
1 x x2 4 2 x x 2x
2、2、化简: x 1
四 反思小结,拓展提高这节课你有什么收获? 作业布置: P39 复习题 1 A 1,2,3,4,5,6
教后梳理或反思:
一 知识结构与知识要点 设 f、g 都是整式,且 g 中含有字母, 我们把 f 除以 g 所得的商记作
f f ,把 叫做分式。 g g
f f h g g h
(2)分式基本性质设 h 0,则
(3)分式的符号变换法则是什么?
f f f f f , g g g g g
(4)分式的运算法则 ①分式的乘法:
分式的概念 约分 1 浏览第 2 章目录, 阅读 p 61---63 复 分式的性质 通分 习与小结。 分式的符号变号法则 2 这章学习了哪些内容? 分式 乘除法 分式的运算 乘方 加减法 3 你还记得下面知识要点吗? 分式方程的解法 (1)什么叫分式? 分式方程 分式方程的应用
形象的理解为:分式的分子分母的符号可以移动
f u f u 可以先把分子、分母分别相乘再约分,也可以先约分 g v g v
再分子、分母分别相乘。 ②分式的除法:
Hale Waihona Puke f u f v f v g v g u g u
③分式加减法:同分母:
f h f h ,分母不变,分子相加减。 g g g
异分母:先通分,化为同分母的分子然后相加减。 怎样找最简公分母?系数:取各分母的系数最少公倍数。字母因式:取所有的,指 数最高的。 (5)整数指数幂的运算法则 ①同底数的幂的除法: am an amn (m、n都是正整数,m>n,a 0) ② 零 次 幂 和 负 整 数 指 数 幂 : a 0 1(a 0) , a