图像处理和计算机视觉中的经典论文
图像处理和计算机视觉中的经典论文

前言:最近由于工作的关系,接触到了很多篇以前都没有听说过的经典文章,在感叹这些文章伟大的同时,也顿感自己视野的狭小。
想在网上找找计算机视觉界的经典文章汇总,一直没有找到。
失望之余,我决定自己总结一篇,希望对 CV领域的童鞋们有所帮助。
由于自
己的视野比较狭窄,肯定也有很多疏漏,权当抛砖引玉了
1990年之前
1990年
1991年
1992年
1993年
1994年
1995年
1996年
1997年
1998年
1998年是图像处理和计算机视觉经典文章井喷的一年。
大概从这一年开始,开始有了新的趋势。
由于竞争的加剧,一些好的算法都先发在会议上了,先占个坑,等过一两年之后再扩展到会议上。
1999年
2000年
世纪之交,各种综述都出来了
2001年
2002年
2003年
2004年
2005年
2006年
2007年
2008年
2009年
2010年
2011年
2012年。
数字图像处理论文

数字图像处理论文数字图像处理在计算机视觉和图像分析领域中扮演着重要角色。
随着数字图像处理算法的不断发展和改进,对于图像的处理和分析有了更深入的理解。
本篇论文主要介绍了数字图像处理的一些基础概念、方法和应用。
首先,数字图像处理是基于计算机的图像处理技术,旨在改善图像的质量、增强图像的特征以及从图像中提取有用的信息。
数字图像处理的基本步骤包括图像获取、预处理、特征提取和图像重建等。
在图像获取的阶段,通过传感器或数码相机等设备获取图像的原始数据。
在预处理的阶段,对图像进行去噪、平滑和增加对比度等操作,以消除图像中的噪声和提高图像的视觉效果。
在特征提取的阶段,根据图像的特定特征,如边缘、纹理和颜色等,进行特征的提取和描述。
在图像重建的阶段,利用图像处理算法对图像进行重建和恢复。
常见的图像处理算法包括滤波、变换和编码等。
滤波算法主要用于图像平滑和去噪,如均值滤波、中值滤波和高斯滤波等。
变换算法主要用于提取图像的频域特征,如傅里叶变换和小波变换等。
编码算法主要用于图像的压缩和存储,如JPEG、PNG和GIF等。
除了基本的图像处理方法,数字图像处理还有许多应用领域。
其中之一是医学图像处理,包括医学图像的分割、配准和识别等。
另一个应用是遥感图像处理,用于地理信息系统和环境监测等领域。
此外,数字图像处理还在安全和认证、图像检索和图像合成等领域发挥重要作用。
总之,数字图像处理是一门研究如何使用计算机技术对图像进行处理和分析的学科。
通过了解数字图像处理的基本概念、方法和应用,可以更好地理解图像的特性和结构,提高图像处理的效果和精度,并在各个领域中发挥重要作用。
《2024年基于OPENCV的计算机视觉技术研究》范文

《基于OPENCV的计算机视觉技术研究》篇一一、引言计算机视觉技术已成为人工智能领域的重要组成部分,它通过模拟人类的视觉系统,实现对图像和视频的识别、分析和理解。
近年来,随着计算机技术的飞速发展,计算机视觉技术在各个领域得到了广泛应用。
而OPENCV作为一种开源的计算机视觉库,为计算机视觉技术的发展提供了强大的支持。
本文将基于OPENCV的计算机视觉技术进行研究,探讨其应用和未来发展。
二、OPENCV概述OPENCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,包含了大量的图像处理和计算机视觉算法。
它提供了丰富的API接口,方便用户进行二次开发和集成。
OPENCV支持多种操作系统和编程语言,广泛应用于图像处理、目标检测、人脸识别、三维重建等领域。
三、基于OPENCV的计算机视觉技术研究1. 图像处理图像处理是计算机视觉技术的基础,主要包括图像滤波、增强、分割、去噪等操作。
OPENCV提供了大量的图像处理算法,如高斯滤波、中值滤波、边缘检测等。
这些算法可以有效地提高图像的质量和清晰度,为后续的图像分析和识别提供支持。
2. 目标检测目标检测是计算机视觉技术的重要应用之一,主要针对图像中的特定目标进行识别和定位。
OPENCV中包含了多种目标检测算法,如HOG+SVM、Haar特征+Adaboost等。
这些算法可以有效地实现人脸、车辆、行人等目标的检测和跟踪。
3. 人脸识别人脸识别是计算机视觉技术在生物识别领域的重要应用之一。
OPENCV中的人脸识别算法包括特征提取和匹配两个步骤。
首先,通过提取人脸的特征信息(如特征点、面部形状等),然后利用算法对不同人脸的特征进行匹配和比对,从而实现人脸识别。
4. 三维重建三维重建是计算机视觉技术中的一项重要技术,可以通过对多个角度的图像进行采集和处理,实现三维场景的重建。
OPENCV中的三维重建算法包括立体匹配、深度估计等。
计算机视觉论文

计算机视觉论文1000字计算机视觉是指计算机利用图像处理、模式识别、计算几何、人工智能等技术实现对图像的理解与分析,从而使计算机从图片、视频等视觉信息中获取更丰富的信息,并利用这些信息完成人们所需要的各种功能和任务。
下面介绍几篇比较经典的计算机视觉论文。
1. R-CNN: Object Detection via Region-based Convolutional Networks这篇论文由Ross Girshick等人在2014年提出,是深度学习在目标检测领域的开山之作。
该方法将传统的滑动窗口式检测方式替换成针对提取候选区域的局部卷积神经网络(region-based convolutional network, R-CNN)。
此方法首先提取一系列候选框(region proposals),然后将这些框区域输入到卷积神经网络中进行分类和回归。
该模型最终能够实现高准确率的目标检测,同时也大大缩短了计算时间。
2. Deep Residual Learning for Image Recognition这篇论文由Kaiming He等人于2016年提出。
该论文主要研究了深度网络的深度和精度之间的矛盾,并提出了残差学习的思路。
残差学习通过增加跨层连接,将网络的前后输出进行直接相加,从而使得网络学习到不同的特征时不会失去过多原有的信息。
这种方法的应用不仅能够提高深度网络的精度,还能够帮助深度网络降低梯度消失等问题。
3. Generative Adversarial Networks该论文由Ian Goodfellow等人于2014年提出。
这是一种生成式模型,通过在训练过程中,同时训练一个生成器网络并一个判别器网络,从而实现高效的数据生成。
该方法的创新之处在于将生成式模型的随机噪声与判别式模型的决策结合起来,通过互相博弈的方式逐渐提升网络的表现。
该方法不仅能够生成高质量、多样性的样本数据,也可以在图像修复、语音识别等任务中得到广泛应用。
数字图像处理技术的探究论文_数字图像处理课程论文

数字图像处理技术的探究论文_数字图像处理课程论文数字图像处理技术的探究论文篇一《数字图像处理技术的探究》【摘要】目前,图像处理技术得到较好的发展,本文以数字图像处理技术为研究对象,对其发展与应用现状进行简述,并对此技术的优缺点以及制约因素进行系统的分析,概述了此项技术在日后发展中的应用范围。
通过对数字图像处理技术的分析,让我们更深入的了解此项技术,为日后的研究提供一定的理论基础。
【关键词】数字图像处理技术发展就图像处理技术而言,可分为模拟图像与数字图像处理两大类。
数字图像处理技术在发展的过程中,涉及多门学科,其中包括生物学、计算机、信息科学等。
因此,数理与边缘学科与图像处理技术的关系越来越密切。
在最近几年中,数字图像处理技术逐步趋于完善,在遥感、人工智能等多个领域中被广泛使用,并促进相关学科得到较好的发展。
1数字图像处理技术的发展与应用在上世纪六十年代,随着VLS与计算机的发展产生了数字图像处理技术,并不断完善、成熟的一项新技术。
不管是在理论还是实际方面,都取得了较好的进步。
在早期,图像处理主要是为了使图片的质量更加完善。
输入图像的质量较低,而输出图片的质量较高,通常采用复原、压缩等方式进行处理。
此项技术首次应用成功是在美国的喷气推进实验室中。
此后,在航空领域中得到很好的应用,促进了此门学科的发展。
除此之外,数字图像处理技术在医学上也得到了很好的应用。
自上世纪七十年代中期之后,计算机与智能化得到很好的发展,也促进了图像处理技术的进步。
人们开始研究怎样通过计算机,对图像进行系统的解释,这被称作计算机视觉或图像理解。
上世纪几十年代,数字图像处理技术得到大力发展。
截止目前,此项技术在医疗设备、地理信息系统等多个领域中被广泛使用。
2数字图像处理技术的特点2.1优点(1)再现性较好。
数字图像处理技术不会因为各种变换操作而造成图片出现质量退化的现象,始终确保图像可以真实的再现。
(2)处理精度高。
根据当前技术,基本上能够把一副模拟的图像通过数字化做各种二维数组,与图像数字化设备能力有直接的关系。
计算机图形与图像处理相关的论文

计算机图形与图像处理相关的论⽂ 伴随着计算机技术的不断发展,计算机图形学与图形图像处理技术逐渐成熟。
下⾯是店铺给⼤家推荐的计算机图形与图像处理相关的论⽂,希望⼤家喜欢! 计算机图形与图像处理相关的论⽂篇⼀ 《计算机图形学与图形图像处理技术浅析》 摘要:伴随着计算机技术的不断发展,计算机图形学与图形图像处理技术逐渐成熟。
计算机图形学与图形图像处理技术在现代各领域中的应⽤越来越重要,从⽽逐渐受到了⼈们的⼴泛关注。
本⽂通过分析计算机图形学的系统组成、功能以及应⽤领域等内容,详细分析了计算机图形学与图形图像处理技术的特点。
关键字:图形学图形图像处理技术 计算机技术在近年来的发展速度极为迅速,如今在各个领域中都应⽤了计算机技术。
从20世纪50年代开始,⼈们开始利⽤计算机技术处理图形,⽽随着计算机技术的不断发展与成熟,⼈们开始利⽤计算机技术处理图形与图像信息,随着这种图形与图像处理技术的不断成熟与完善,最终形成了备受⼈们重视的新型学科。
这种计算机图形学与图形图像处理技术的应⽤,对于各个领域的发展有很重要的意义,因此对计算机图形学与图形图像处理技术进⾏研究分析,对各领域的发展⾮常重要。
1 计算机图形学概述 1.1 计算机图形学的主要内容 计算机图形学中的研究内容包含了许多⽅⾯,其中包含了图形硬件、图形交互技术、曲⾯曲线建模、虚拟实现以及实物造型等。
这是⼀种利⽤数学算法将相应⼆维与三维图形转化到计算机中显⽰出来。
计算机图形学学科成⽴的主要⽬的是为了让计算机转换出来的图像更加的真实,⽽要让计算机转化的图形具备更强的真实感,就必须要建⽴图形描述场景的⼏何表⽰,从中计算出虚拟的光源、纹理以及材质属性产⽣的效果。
因此计算机图形学与⼏何设计学的联系⾮常紧密。
在计算机图形学中,主要的研究内容包括⼏何场景中的曲线曲⾯造型技术以及实体造型技术。
⽽由计算机转化出的图形,通常都需要对图形进⾏再⼀次的处理,因此计算机图形学与相应的图形图像处理技术需要紧密联系起来,这样才能够产⽣更好的图形真实感。
图像处理毕业论文

图像处理毕业论文图像处理毕业论文图像处理是计算机科学与技术领域中的一个重要研究方向,随着数字图像的广泛应用,图像处理技术的发展也愈发迅猛。
作为一名即将毕业的学生,我选择了图像处理作为我的毕业论文课题,旨在探索图像处理技术在实际应用中的潜力和挑战。
首先,我将介绍图像处理的基本概念和原理。
图像处理是指对数字图像进行各种算法和方法的处理,以获得更好的图像质量或实现特定的目标。
其中,图像增强、图像分割、图像压缩等是图像处理的基本任务。
图像增强通过改善图像的亮度、对比度和清晰度等方面,使图像更加清晰可见。
图像分割则是将图像划分为不同的区域或物体,以便进一步分析和处理。
而图像压缩则是通过减少图像的数据量,以实现存储和传输的效率提升。
接下来,我将探讨图像处理技术在实际应用中的一些典型案例。
首先是医学影像的图像处理应用。
医学影像是一种重要的诊断工具,通过对医学影像进行图像处理,可以提取出更多的有用信息,辅助医生进行疾病诊断和治疗。
例如,通过图像分割技术可以将医学影像中的肿瘤区域分割出来,帮助医生进行肿瘤的定位和评估。
此外,图像处理技术还可以应用于安防领域,通过对监控摄像头拍摄的图像进行实时分析和处理,实现人脸识别、行为检测等功能,提高安防系统的效率和准确性。
在研究中,我将重点关注图像增强和图像分割这两个方面。
在图像增强方面,我将探索不同的算法和方法,如直方图均衡化、自适应增强等,以提高图像的可视性和质量。
在图像分割方面,我将研究基于区域的分割方法和基于边缘的分割方法,比较它们的优缺点,并根据实际应用需求选择合适的方法。
此外,我还将尝试将深度学习技术应用于图像处理中。
深度学习是近年来兴起的一种机器学习方法,通过构建多层神经网络模型,可以实现对大规模数据的高效处理和分析。
在图像处理中,深度学习可以应用于图像分类、目标检测等任务,通过训练模型,使其具备自动学习和识别图像特征的能力。
我将尝试使用深度学习技术对图像进行分类和识别,以提高图像处理的准确性和效率。
计算机图像处理论文范文

计算机图像处理论文范文计算机图像处理技术在社会生产生活的许多方面都得到了较为广泛的应用,下面是小编为大家整理的计算机图像处理论文,希望对大家有帮助。
浅析计算机图像处理技术作者:未知摘要随着市场经济的不断发展,计算机图像处理技术在社会生产生活的许多方面都得到了较为广泛的应用。
计算机图像处理技术,主要是指计算机对图像信息以及数据信息的进行处理的技术。
本文将对计算机图像处理技术的概念进行分析,了解其在社会生产生活各方面的应用,并对其发展趋势进行研究和探讨。
【关键词】计算机技术图像处理应用技术分析研究计算机图像处理技术在社会生产生活的许多领域都有着较为广泛的应用,提高着相关活动的效率,便利着社会的生产生活。
在工业、农业、建筑业以及广告传媒等行业,计算机图像处理技术都发挥着重要的作用,具有广阔的发展前景,推动着生产效率与人们生活水平的提升。
1 计算机图像处理技术的概念与内容计算机图像处理技术,主要是能够通过计算机的图像处理能力及数据运算处理能力,对需要处理的图像信息进行数据处理,使其能够通过图像成像等方式达到使用目的。
计算机图像处理技术在早期主要应用于航天事业中,通过成像数据处理技术服务航天使用需求。
计算机图像处理技术能够将图像信息数字化,对图像进行加强、修复、分析和编码等。
计算机图像处理技术也能够通过实现对图像信息的几何转换、建立工程的设计图样、以及图像的色彩变化达到使用目的。
在现今的社会活动中,计算机图像处理技术应用于计算机技术教育、计算机动画设计、计算机广告传媒等领域,在工农业生产中也得到了较为广泛的应用,促进着相关行业的进步与发展。
2 计算机图像处理技术在实际中的应用分析2.1 计算机图像处理技术在农业生产加工中的应用计算机图像处理技术在农业农产品的加工收获方面,有着极为广泛的应用。
通过计算机图像处理技术的应用,能够经过图像技术处理,实现对农业农产品的自动采摘与加工,使农业生产活动趋于高效,避免人力的过度投入,使人力使用成本得到控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言:最近由于工作的关系,接触到了很多篇以前都没有听说过的经典文章,在感叹这些文章伟大的同时,也顿感自己视野的狭小。
想在网上找找计算机视觉界的经典文章汇总,一直没有找到。
失望之余,我决定自己总结一篇,希望对CV领域的童鞋们有所帮助。
由于自己的视野比较狭窄,肯定也有很多疏漏,权当抛砖引玉了,如果你觉得哪篇文章是非常经典的,也可以把相关信息连带你的昵称发给我,我好补上。
我的信箱tc@
文章主要来源:PAMI, IJCV, TIP, CVIU, PR, IVC, CVGIU, CVPR, ICCV, ECCV, NIPS, SIGGRAPH, BMVC 等
主要参考网站: Google scholar, citeseer, cvpapers, opencv中英文官方网站
主要参考书籍:
数字图像处理第三版冈萨雷斯等
图像处理,分析和机器视觉第三版Sonka等(非常非常好的一本书)
学习OpenCV
计算机视觉:算法与应用
文章按时间排序,排名不分先后,^_^。
每一行最后一栏是我自己加的注释,如果不喜欢可以无视之,如果有不对的地方还请告诉我,免得继续出丑。
给出的文章有些是从google scholar 或者citeseer上拷贝下来的,所以有链接。
所有的文章在网上都很容易找到。
有空的时候我会把它们全部整理出来,逐步上传到
由于整理的很仓促,时间也很短,还有很多不完善的地方。
我会不断改进,并不时上传新版本。
上传地址为/u/2252291285/ish?folderid=775855
最后更新:2012/3/14
1990年之前
1990年
1991年
1992年
1993年
1994年
1995年
1996年
1997年
1998年
1998年是图像处理和计算机视觉经典文章井喷的一年。
大概从这一年开始,开始有了新的趋势。
由于竞争的加剧,一些好的算法都先发在会议上了,先占个坑,等过一两年之后再扩展到会议上。
1999年
2000年
世纪之交,各种综述都出来了
2001年
2002年
2003年
2004年
2005年
2006年
2007年
2008年
2009年
2010年
2011年
2012年。