数学 华师大一课一练 单元测试五(A卷)

合集下载

华师大版 八年级数学下册 分式及其基本性质试题 一课一练(含答案)

华师大版 八年级数学下册 分式及其基本性质试题 一课一练(含答案)

16.1 分式及其基本性质注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考 生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、 姓名是否一致.2.选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改 动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用 0.5 毫米黑色墨水签字 笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用 2B 铅笔画出,确定后必须用 0.5 毫米黑色墨水签字笔描黑.一、填空题:1.不改变分式的值,使分式的首项分子与分式本身都不含“-”号:2a b a b ---=________;(2)2a b a b----=___________. 2.当a=_______时,分式2232a a a -++ 的值为零.3.当分式44x x --=-1时,则x__________.4. 若分式11x x -+的值为零,则x 的值为 .5.当x________时, 1x x x -- 有意义.6.不改变分式的值,把分式0.420.51x x +- 中分子、分母各项系数化成整数为________.7.小明参加打靶比赛,有a 次打了m 环,b 次打了n 环, 则此次打靶的平均成绩是________环.8. 当x=___时,分式22943x x x --+的值为0.9. 当x______时,分式11x x +-有意义. 10. 已知:212212+=⨯,323323+=⨯,434434+=⨯,……,若10ba10b a +=⨯ (a 、b 都是正整数),则a+b 的最小值是______.二、选择题 11. 使分式24xx -有意义的x 的取值范围是( ) A. 2x = B.2x ≠ C.2x =- D.2x ≠- 12. 已知两个分式:244A x =-,1122B x x=++-,其中2x ≠±,则A 与B 的关系是( )A.相等B.互为倒数C.互为相反数D.A 大于B 13. 下列各式从左到右变形正确的是( )A.13(1)223x y x y ++=++; B.0.20.03230.40.0545a b a dc d c d --=++; C.a b b a b c c b --=--; D.22a b a bc d c d --=++ 14. 下列各式,正确的是( )A.0x y x y +=+;B.22y y x x=; C.1x y x y -+=--; D.11x y x y =--+- 15. 下列等式中,不成立的是( )A.22x y x y x y -=--; B.222x xy y x y x y-+=--; C.2xy y x xy x y =--; D.22y x y xxy x y-=- 16.下列各式32222211,,,,,2455x a b m a x y x x a +-+中,是分式的有( ) A.1个 B.2个 C.3个 D.4个 17.当x=-3时,在下列各分式中,有意义的有( ) (1)33(2)(3)(2)(3),(2),(3),(4)33(2)(3)(2)(3)x x x x x x x x x x x x +-+++--+---+. A. 只有(1); B. 只有(4); C.只有(1)、(3); D.只有(2)、(4) 18.下列分式中最简分式是( )A.a b b a --;B.22a b a b ++;C.222m m a a ++;D.2121a a a --+- 19.对于分式11x + 的变形永远成立的是( )A.1212x x =++; B.21111x x x -=+-; C.2111(1)x x x +=++; D.1111x x -=+- 20.将3aa b- 中的a 、b 都扩大到3倍,则分式的值( ) A.不变 B.扩大3倍; C.扩大9倍 D.扩大6倍 三、解答题21.要使分式221y x x -+的值为零,x 和y 的取值范围是什么?22.x 取什么值时,分式)3)(2(5+--x x x :(1)无意义?(2)有意义?(3)值为零?23.约分:(1)3232105a bc a b c -; (2)2432369x xx x x --+.24.通分:(1)2342527,,2912c a a b a b --; (2)2142,,242x x x x+--.25.若分式2223n n ++ 的值为正数,求n 的取值范围.26. 已知:b a b a +=+111,求baa b +的值.四、探索问题:27.(1)请你写出五个正的真分数, , , , , ,给每个分数的分子和分母加上同一个正数得到五个新分数: , , , , . (2)比较原来每个分数与对应新分数的大小,可以得出下面的结论:一个真分数是a b (a 、b 均为正数),给其分子分母同加一个正数m ,得a mb m++,则两个分数的大小关系是a m b m ++ ab . (3)请你用文字叙述(2)中结论的含义:(4)你能用图形的面积说明这个结论吗?(5)解决问题:如图1,有一个长宽不等的长方形绿地,现给绿地四周铺一条宽相等的路,问原来的长方形与现在铺过小路后的长方形是否相似?为什么?(6)这个结论可以解释生活中的许多现象,解决许多生活与数学中的问题.请你图1小路 小 小路 路小路绿地再提出一个类似的数学问题,或举出一个生活中与此结论相关例子.第二课时一、选择题1.在代数式32,252,43,32,1,32222-++x x x x xy x x 中,分式共有( ).(A)2个(B)3个(C)4个(D)5个2.下列变形从左到右一定正确的是( ).(A)22--=b a b a(B)bc ac b a =(C)b a bx ax = (D)22ba b a =3.把分式yx x+2中的x 、y 都扩大3倍,则分式的值( ). (A)扩大3倍(B)扩大6倍 (C)缩小为原来的31(D)不变4.下列各式中,正确的是( ).(A)y x yx y x y x +-=--+-(B)y x yx y x y x ---=--+-(C)yx yx y x y x -+=--+-(D)yx yx y x y x ++-=--+-5.若分式222---x x x 的值为零,则x 的值为( ).(A)-1 (B)1(C)2(D)2或-1二、填空题6.当x ______时,分式121-+x x 有意义. 7.当x ______时,分式122+-x 的值为正.8.若分式1||2--x xx 的值为0,则x 的值为______.9.分式22112m m m -+-约分的结果是______. 10.若x 2-12y 2=xy ,且xy >0,则分式yx yx -+23的值为______. 11.填上适当的代数式,使等式成立:(1)b a b a b ab a +=--+)(22222; (2)xxx x 2122)(2--=-;(3)a b ba b a-=-+)(11; (4))(22xy xy =. 三、解答题12.把下列各组分式通分:(1);65,31,22abca b a - (2)222,b a aab a b--.13.把分子、分母的各项系数化为整数:(1);04.03.05.02.0+-x x(2)b a ba -+32232.14.不改变分式的值,使分式的分子与分式本身不含负号:(1)yx yx ---22; (2)ba b a +-+-2)(.15.有这样一道题,计算))(1()12)((2222x x x x x x x --+-+,其中x =2080.某同学把x =2080错抄成x =2008,但他的计算结果是正确的.你能解释其中的原因吗?16.已知311=-y x ,求分式yxy x y xy x ---+2232的值.17.当x 为何整数时,分式2)1(4-x 的值为正整数.18.已知3x -4y -z =0,2x +y -8z =0,求yz xy z y x +-+222的值.第一课时参考答案一、 1.b a ba ab b a ----22,2 2. 2 3. x < 4 4. 1; 5. x < 0 6. 105204-+x x 7. b a bn am ++ 8. -3 9. x ≠1 10. 19二、 11. B 12. C 13. C 14. D 15. A 16. C 17. C 18. B 19. C 20. A 三、 21. x =-1且y ≠±122. ①x =2或x =-3,②x ≠2且x ≠-3,③x =5. 23.(1) 22a b c -;(2)213x x-. 24. 最简公分母是36a 4b 3. 3434234333621,368,3690ba bcb a a b a b a -- (2)最简公分母是(x+2)(x-2),442,44,42222-+----x x x x x x 25. n>-32.26. -1四、27. 解答:(1)答案略;(2)bam b m a >++.; (3)给一个正的真分数的分子、分母同加一个正数,得到的新分数大于原来的分数;(4)思路1:如图2所示,由a b <,得12s s s s +>+,即am ab bm ab +>+,).()(m a b m b a +=+,可推出a m ab m b+>+; 思路2:构造两个面积为1的长方形(如图3),将它们分成两部分,比较右侧的两个长方形面积可以发现:b a b b a -=-1,m b a b m b m a +-=++-1, 因为a 、b 、0>m ,且a b <,故b a -1m b m a ++->1,即bam b m a >++ (5)不相似.因为两个长方形长与宽的比值不相等; (6)数学问题举例:m mab b as=ab s 1=bm s 2=am 图2图3①若b a 是假分数,会有怎样的结论?(答:b am b b a <++) ②a 、b 不是正数,或不全是正数,情况如何?第二课时参考答案一、选择题1.B . 2.C . 3.D . 4.A . 5.A . 二、填空题 6.21≠. 7.21-<. 8.0. 9.⋅+--11m m 10.1. 11.(1)a +2b ; (2)2x 2; (3)b +a ; (4)x 2y 2. 三、解答题12.(1);65,62,632223bc a abc a bc bc a c a - (2)⋅-+-++))((,))(()(2b a b a a a b a b a a b a b 13.(1);2152510+-x x (2)⋅-+ba ba 6491214.(1);22x y y x -- (2)⋅-+ba ba 2 15.化简原式后为1,结果与x 的取值无关.16.⋅5317.x =0或2或3或-1.18.⋅23。

华中师大一附中七年级数学下册第五单元《不等式与不等式组》测试卷(含答案解析)

华中师大一附中七年级数学下册第五单元《不等式与不等式组》测试卷(含答案解析)

一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( ) A .a <3 B .a ≥3C .a >3D .a ≤3 2.某商品进价为800元,出售时标价为1200元,后来由于该商品积压,准备打折销售,若要保证利润率不低于5%,则最多可打几折( )A .6B .7C .8D .93.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( ) A .3a ≤- B .3a <- C .3a > D .3a ≥ 4.已知点()3,2P a a --关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是( ).A .B .C .D .5.不等式()31x -≤5x -的正整数解有( )A .1个B .2个C .3个D .4个6.在数轴上表示不等式2(1﹣x )<4的解集,正确的是( )A .B .C .D .7.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( ) A .1162a -<- B .116a 2-<<- C .1162a -<- D .1162a -- 8.若a b >,则下列不等式中,不成立的是( )A .33a b ->-B .33a b ->-C .33a b > D .22a b -+<-+ 9.不等式组21x x ≥-⎧⎨<⎩的解集在数轴上表示正确的是( ) A . B .C .D .10.不等式()2x 13x -≥的解集是( )A .x 2≥B .x 2≤C .x 2≥-D .x 2≤-11.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( )A .2m >-B .2m >C .3m >D .2m <-12.若关于x 的不等式组327x x a-<⎧⎨<⎩的解集是x a <,则a 的取值范围是( ). A .3a B .3a > C .3a D .3a <二、填空题13.“鼠去牛来辞旧岁,龙飞凤舞庆明时.”在新年的钟声敲响之际,南开中学初2022级举行了元旦晚会.在晚会前,一、二、三班都组织购买了 A 、B 、C 三类糖果.已知一班分别购买 A 、B 、C 三类糖果各3千克、2千克、5千克,二班分别购买A 、B 、C 三类糖果各 2千克、1千克、4千克,且一班和二班购买糖果的总金额比值为3∶2.若三类糖果单价和为108元,且各单价是低于50元/千克的整数,A 与C 单价差大于25元.则三班分别购买A 、B 、C 三类糖果各2千克、3千克、4千克的总金额为______元.14.已知点()2,3P a a -在第四象限,那么a 的取值范围是________.15.若0a b c ++=,且a b c >>,以下结论:①0a >,0c >;②关于x 的方程0ax b c ++=的解为1x =;③22()a b c =+ ④||||||||a b c abc a b c abc +++的值为0或2; ⑤在数轴上点A .B .C 表示数a 、b 、c ,若0b <,则线段AB 与线段BC 的大小关系是AB BC >.其中正确的结论是______(填写正确结论的序号).16.已知关于x 的不等式24132m x mx +-≤的解集是34x ≥,那么m 的值是________. 17.已知关于x 的不等式组010x a x -≥⎧⎨->⎩的整数解共有3个,则a 的取值范围是________. 18.若关于x 、y 的二元一次方程组23242x y a x y a +=-⎧⎨+=+⎩的解满足1x y +<,则a 的取值范围为________.19.小张同学在解一元一次不等式时,发现一个不等式右边的数被墨迹污染看不清了,所看到的部分不等式是13x -<■,他查看练习本后的答案知道这个不等式的解是2x >,则被污染的数是__________.20.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.三、解答题21.解不等式(或组):(1)2934x x ++≤ (2)()47512432x x x x ⎧-<-⎪⎨->-⎪⎩22.某水果店购买某种水果的进价为18元/千克,在销售过程中有10%的水果损耗,该水果店以a 元/千克的标价出售该种水果.(1)为避免亏本,求a 的最小值.(2)若该水果店以标价销售了70%的该种水果,在扣除10%损耗后,剩下的20%水果按10元/千克的价格售完.为确保销售该种水果所得的利润率不低于20%,求a 的最小值. 23.已知,点O 是数轴的原点,点A 、点B 是数轴上不重合的两个点,且点A 在点B 的左边,点M 是线段AB 的中点.在上述条件下,解决问题:(1)如果点A 表示的数是4,点B 表示的数是6,那么点M 表示的数是 ;(2)如果点A 表示的数是-3,点M 表示的数是2,那么点B 表示的数是 ;(3)如果点A 表示的数是a ,点B 表示的数是b ,那么点M 表示的数是 ;(用含a ,b 的代数式表示) ,所以AM =BM .因此得到关于x 的方程:x -a =b -x .你能解出这个方程吗?(4)如果点A 表示的数是-2,点C 表示的数是3,点B 是线段OC 上的一点,点M 表示的数为m ,则m 的取值范围是 ;(5)如果点E 表示的数是1,点F 表示的数是x ,点A 从点E 出发,以每分钟1个单位长度的速度向右运动,点B 从点F 出发,以每分钟3个单位长度的速度向右运动,设运动时间为t (t >0).①当x =5时,如果EM =6,那么t 的值是 ;②当t ≤3时,如果EM ≤9,求x 的取值范围.24.解不等式(组):(1)24123x x ---≤; (2)63(4)23253x x x x -≥-⎧⎪⎨++>⎪⎩①②. 25.定义一种新运算“a b ⊗”的含义为:当a b ≥时,a b a b ⊗=+;当a b <时,a b a b ⊗=-.例如:32325⊗=+=,()()22224-⊗=--=-.(1)填空:()21-⊗=________;(2)如果()()3x 732x 2-⊗-=,求x 的值.26.不等式组231,12(2)x x x -≥-⎧⎨-≥-+⎩.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先解不等式,然后根据不等式组无解确定a 的范围.【详解】解:5210x x a -≥-⎧⎨->⎩①② 解不等式①,得3x ≤;解不等式②,得x a >;∵不等式组无解,∴3a ≥;故选:B .【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.B解析:B【分析】利润率不低于5%,即利润要大于或等于800×5%元,设打x 折,则售价是1200x 元.根据利润率不低于5%就可以列出不等式即可.【详解】设至多打x 折 则12008008005%10x ⨯-≥⨯, 解得7x ≥,即最多可打7折.故选:B .【点睛】本题考查了一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.3.D解析:D【分析】利用不等式组取解集的方法:大大小小找不到即可得到a 的范围.【详解】∵关于x 的不等式组21x x a <⎧⎨>-⎩无解, ∴a-1≥2,∴a≥3.故选:D.【点睛】考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到. 4.C解析:C【分析】根据点()3,2P a a --关于原点对称的点在第四象限,可得点P 在第二象限,因此就可列出不等式,解不等式可得a 的取值范围.【详解】解:∵点()3,2P a a --关于原点对称的点在第四象限,∴点()3,2P a a --在第二象限,∴3020a a -<⎧⎨->⎩,a .解得:2则a的取值范围在数轴上表示正确的是:.故选C.【点睛】本题主要考查不等式的解法,根据不等式的解集,在数轴上表示即可,关键在于点P的坐标所在的象限.5.B解析:B【分析】直接利用一元一次不等式的解法分析得出答案.【详解】解:3(x-1)≤5-x3x-3≤5-x,则4x≤8,解得:x≤2,故不等式3(x-1)≤5-x的正整数解有:1,2共2个.故选:B.【点睛】本题主要考查了一元一次不等式的整数解,正确解不等式是解题的关键.6.A解析:A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1–x)<4去括号得:2﹣2x<4移项得:2x>﹣2,系数化为1得:x>﹣1,故选A.“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.7.A解析:A【分析】分别解两个不等式得到得x<20和x>3-2a,由于不等式组只有5个整数解,则不等式组的解集为3-2a<x<20,且整数解为15、16、17、18、19,得到14≤3-2a<15,然后再解关于a的不等式组即可.【详解】255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩①② 解①得x <20解②得x >3-2a ,∵不等式组只有5个整数解,∴不等式组的解集为3-2a <x <20,∴14≤3-2a <15, 1162a ∴-<-故选A【点睛】 本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a <15是解此题的关键.8.A解析:A【分析】根据不等式的性质进行判断即可.【详解】解:A 、根据不等式的性质3,不等式的两边乘以(-3),可得-3a <-3b ,故A 不成立; B 、根据不等式的性质1,不等式的两边减去3,可得a-3>b-3,故B 成立;C 、根据不等式的性质2,不等式的两边乘以13,可得33a b >,故C 成立; D 、根据不等式的性质3,不等式的两边乘以(-1),可得-a <-b ,再根据不等式的性质1,不等式的两边加2,可得-a+2<-b+2,故D 成立.故选:A.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.A解析:A【分析】先解出不等式组的解集,然后再根据选项解答即可.【详解】解:由题意可得:不等式组的解集为:21x ,在数轴上表示为:故答案为A.【点睛】 本题主要考查了不等式组解集在数轴上的表示方法,在表示解集时“≥”或“≤”要用实心圆点表示,“<”,“>”要用空心圆点表示成为解答本题的关键.10.D解析:D【分析】去括号、移项、合并同类项,然后系数化成1即可求解.【详解】解:()2x 13x -≥,去括号,得2x 23x -≥,移项,得23x 2x -≥-,解得x 2≤-.故选:D .【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.11.A解析:A【分析】首先解关于x 和y 的方程组,利用m 表示出x+y ,代入x+y >0即可得到关于m 的不等式,求得m 的范围.【详解】解:2133x y m x y -+⋯⎧⎨+⋯⎩=①=②①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m >-2.故选:A .【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m 当作已知数表示出x+y 的值,再得到关于m 的不等式.12.C解析:C【分析】分别求出每一个不等式的解集,根据口诀:同小取小并结合不等式组的解集可得a 的范围.【详解】解:327x x a -<⎧⎨<⎩①②, ①式化简得:39,3x x << 又∵该不等式的解集为x a <,∴3a .故选C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 二、填空题13.296【分析】可设A 单价x 元B 单价y 元由三类糖果单价和为108元得C 单价;再由一班和二班购买糖果的总金额比值为3∶2可得xy 的关系式再由A 与C 单价差大于25元可得一元一次不等式根据各单价是低于50元解析:296【分析】可设A 单价x 元,B 单价y 元,由三类糖果单价和为108元得C 单价;再由一班和二班购买糖果的总金额比值为3∶2,可得x 、y 的关系式,再由A 与C 单价差大于25元,可得一元一次不等式,根据各单价是低于50元/千克的整数求出符合题意的解即可【详解】解:设A 单价x 元,B 单价y 元三类糖果单价和为108元得C 单价为(108-x-y )元又一班和二班购买糖果的总金额比值为3∶2可得:325(108)324(108)2x y x y x y x y ++--=++-- 整理可得:2x+3y=216①又A 与C 单价差大于25元,即x-(108-x-y )>25整理可得:2x+y>133,将①中的2x 代入可得:y<41.5又A 、B 、C 三类糖果单价是低于50元/千克的整数,故:若y=41,代入①得x=46.5,不符合题意若y=40,代入①得x=48,符合题意若y=39,代入①得x=49.5,不符合题意若y=38,代入①得x=51,不符合题意y越小,x越大,故后面x的结果均大于50,不符合题意故x=48,y=40,108-x-y=20由上可知:A类糖果的单价是48元B类糖果的单价是40元C类糖果的单价是20元故分别购买A、B、C三类糖果各2千克、3千克、4千克的总金额为:48×2+40×3+20×4=296(元)故答案为:296【点睛】本题考查一元一次不等式的解法,利用条件建立一元一次不等式并结合题意准确得到A、B、C三类糖果的单价是解本题的关键14.【分析】点在第四象限的条件是:横坐标是正数纵坐标是负数根据题意列出不等式组即可求解【详解】解:∵点(2-a3a)在第四象限∴解得a<0故答案为:a<0【点睛】坐标平面被两条坐标轴分成了四个象限每个象解析:0a<【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数,根据题意列出不等式组即可求解.【详解】解:∵点(2-a,3a)在第四象限,∴20 30aa-⎧⎨⎩><,解得a<0,故答案为:a<0.【点睛】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,列出不得式是解题的关键.15.②③⑤【分析】①根据a+b+c=0且a>b>c推出a>0c<0即可判断;②根据a+b+c=0求出a=-(b+c)又ax+b+c=0时ax=-(b+c)方程两边都除以a 即可判断;③根据a=-(b+c)解析:②③⑤【分析】①根据a+b+c=0,且a>b>c推出a>0,c<0,即可判断;②根据a+b+c=0求出a=-(b+c),又ax+b+c=0时ax=-(b+c),方程两边都除以a即可判断;③根据a=-(b+c)两边平方即可判断;④分为两种情况:当b>0,a>0,c<0时,去掉绝对值符号得出aa+bb+cc-+abcabc-,求出结果,当b<0,a>0,c<0时,去掉绝对值符号得出aa+bb-+cc-+abcabc,求出结果,即可判断;⑤求出AB=a-b=-b-c-b=-2b-c=-3b+b-c,BC=b-c,根据b<0利用不等式的性质即可判断.【详解】解:(1)∵a+b+c=0,且a>b>c,∴a>0,c<0,∴①错误;∵a+b+c=0,a>b>c,∴a>0,a=-(b+c),∵ax+b+c=0,∴ax=-(b+c),∴x=1,∴②正确;∵a=-(b+c),∴两边平方得:a2=(b+c)2,∴③正确;∵a>0,c<0,∴分为两种情况:当b>0时,aa+bb+cc+abcabc=aa+bb+cc-+abcabc-=1+1+(-1)+(-1)=0;当b<0时,aa+bb+cc+abcabc=aa+bb-+cc-+abcabc=1+(-1)+(-1)+1=0;∴④错误;∵a+b+c=0,且a>b>c,b<0,∴a>0,c<0,a=-b-c,∴AB=a-b=-b-c-b=-2b-c=-3b+b-c,BC=b-c,∵b<0,∴-3b>0,∴-3b+b-c>b-c,∴AB>BC,∴⑤正确;即正确的结论有②③⑤.故答案为:②③⑤.【点睛】本题考查了比较两线段的长,数轴,有理数的加法、除法、乘方,一元一次方程的解,绝对值等知识点的综合运用,题目比较典型,但是一道比较容易出错的题目.16.【分析】先移项合并然后根据不等式的解集得形式可得出关于m 的方程解出即可得出答案【详解】解:由题意得:∵不等式的解为∴解得:故答案为:【点睛】本题考查解一元一次不等式的知识有一定的难度注意先表示出不等 解析:910. 【分析】 先移项合并,然后根据不等式的解集得形式可得出关于m 的方程,解出即可得出答案.【详解】 解:由题意得:112(2)323m x m -≥+, ∵不等式的解为34x ≥, ∴123231423m m +=-, 解得:910m =. 故答案为:910. 【点睛】本题考查解一元一次不等式的知识,有一定的难度,注意先表示出不等式的解得形式,然后运用方程思想解答. 17.【分析】表示出不等式组的解集由不等式组整数解有3个确定出a 的范围即可【详解】不等式组整理得:即由不等式组整数解有3个得到故答案为:【点睛】本题考查了一元一次不等式组的整数解熟练掌握运算法则是解本题的 解析:32a -<≤【分析】表示出不等式组的解集,由不等式组整数解有3个,确定出a 的范围即可.【详解】不等式组整理得:1x a x ≥⎧⎨<⎩,即1a x ≤<, 由不等式组整数解有3个,得到32a -<≤-,故答案为:32a -<≤-.【点睛】本题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键. 18.【分析】直接把两个方程相加得到然后结合即可求出a 的取值范围【详解】解:直接把两个方程相加得:∴∵∴∴故答案为:【点睛】本题考查了解二元一次方程组以及解一元一次不等式解题的关键是掌握运算法则正确得到 解析:4a.【分析】直接把两个方程相加,得到337x y a +=+,然后结合1x y +<,即可求出a 的取值范围.【详解】 解:23242x y a x y a +=-⎧⎨+=+⎩, 直接把两个方程相加,得:337x y a +=+, ∴73a x y ++=, ∵1x y +<, ∴713a +<, ∴4a .故答案为:4a.【点睛】 本题考查了解二元一次方程组,以及解一元一次不等式,解题的关键是掌握运算法则,正确得到73a x y ++=. 19.−5【分析】设被污染的数为a 表示出不等式的解集根据已知解集确定出a 的值即可【详解】解:设被污染的数为a 不等式为1−3x <a 解得:x >由已知解集为x >2得到=2解得:a =−5故答案为:−5【点睛】此题解析:−5【分析】设被污染的数为a ,表示出不等式的解集,根据已知解集确定出a 的值即可.【详解】解:设被污染的数为a ,不等式为1−3x <a .解得:x >1-3a , 由已知解集为x >2,得到1-3a =2, 解得:a =−5,故答案为:−5【点睛】此题考查了不等式的解集,熟练掌握运算法则是解本题的关键.20.【分析】首先通过解不等式得出的解集和的解集然后根据题意建立一个关于m 的不等式从而确定m 的范围即可【详解】解得解得∵不等式的解集中的每一个值都能使关于的不等式成立解得【点睛】本题主要考查不等式的解集掌 解析:35m <- 【分析】 首先通过解不等式得出25123x x +-≤-的解集和3(1)552()x x m x -+>++的解集,然后根据题意建立一个关于m 的不等式,从而确定m 的范围即可.【详解】 25123x x +-≤-, 解得45x ≤. 3(1)552()x x m x -+>++, 解得12m x -<. ∵不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,1425m -∴>, 解得35m <-. 【点睛】本题主要考查不等式的解集,掌握解不等式的方法是解题的关键.三、解答题21.(1)12x ≤;(2)6x >【分析】(1)解一元一次不等式,先去分母,然后移项,合并同类项,最后系数化1求解; (2)先分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:(1)2934x x ++≤ 去分母,得:4243108x x ++≤移项,得:4310824x x +≤-合并同类项,得:784x ≤系数化1,得:12x ≤∴不等式的解集为x≤12(2)()47512432x x x x ⎧-<-⎪⎨->-⎪⎩①② 解不等式①,得:2x >-解不等式②,得:6x >∴不等式组的解集为6x >.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.(1)a 的最小值为20;(2)28a ≥.【分析】(1)根据只能售出所进商品的110%-,且销售额大于等于进价即可列出不等式,求解即可;(2)根据70%按照标价a 元/千克出售,20%水果按10元/千克出售,且销售额应该大于等于(120%)18+⨯列出不等式求解即可.【详解】解:(1)由题意得:(110%)18a -≥,解得20a ≥,即a 的最小值为20;(2)由题意得:70%20%10(120%)18a ⋅+⨯≥+⨯,解得28a ≥.【点睛】本题考查一元一次不等式的应用.熟记商品销售时所用的常用公式是解题关键.注意本题与销售了多少千克无关.23.(1)5;(2)7;(3)2a b +,2a b x +=;(4)﹣1≤m ≤12;(5)①2;②1<x ≤7 【分析】(1)设点M 表示的数是m ,分别表示出AM 和BM 的距离,再根据AM=BM 求解即可得出答案;(2)设点B 表示的数是b ,分别表示出AM 和BM 的距离,再根据AM=BM 求解即可得出答案;(3)设点M 表示的数是m ,分别表示出AM 和BM 的距离,再根据AM=BM 求解即可得出答案; x a b x -=-根据解一元一次方程的一般步骤即可得出答案;(4)设点B 表示的数是b ,根据点B 的位置在点O 和点C 之间建立不等式,再将点M 表示的数代入求解即可得出答案;(5)①分别表示出点M 表示的数、点A 表示的数及点B 表示的数,再根据2a b m +=代入求解即可得出答案; ②先表示出A 、B 、M 所表示的数,得出EM 的值,再根据给出的范围建立不等式求解即可得出答案.【详解】(1)设点M 表示的数是m ,则AM 之间的距离是4m -,BM 之间的距离是6m -,点M 是线段AB 的中点,∴AM=BM ,即46m m -=-,解得:5m =, 点M 表示的数是5;(2)设点B 表示的数是b点A 表示的数是-3,点M 表示的数是2,∴AM=5,BM=2b -点M 是线段AB 的中点,且点A 在点B 的左边,∴AM=BM ,5=2b ∴-解得:7b =∴点B 表示的数是7;(3)设点M 表示的数是m ,点A 表示的数是a ,点B 表示的数是b ,则AM 之间的距离是m a -,BM 之间的距离是b m -,点M 是线段AB 的中点,∴AM=BM ,即m a b m -=-,解得:2a b m +=, x a b x -=-移项,得x x b a +=+合并同类项,得2x a b将系数化为1,得2a b x +=(4)设点B 表示的数是b O 是原点,点A 表示的数是-2,点C 表示的数是3,点B 是线段OC 上的一点, 03b ∴≤≤22b m -+= 112m ∴-≤≤;(5)①点E 表示的数是1,EM=6,∴点M 表示的数是16=7+点F 表示的数是x ,且x=5 ∴点A 表示的数是1t +,点B 表示的数为53t +15372t t +++∴= 解得:2t =;②由题意得点A 表示的数是1t +,点B 表示的数为3x t +,∴点M 表示的数是132t x t +++ 点E 表示的数是1,∴1312t x t EM +++=-,1x > 即13192t x t +++-≤ 化简得194x t -≤3t ≤1934x -∴≥ 解得:7x ≤∴x 的取值范围为17x <≤.【点睛】本题考查了根据数轴表示两点间的距离、一元一次方程的应用、一元一次不等式的应用,解题的关键是结合数轴将点表示成具体的数.24.(1)x≤4;(2)1<x≤3.【分析】(1)先去分母,再去括号、移项、合并同类项、系数化为1得到解集;(2)分别解不等式即可得到不等式组的解集.【详解】解:(1)去分母,得:3(x ﹣2)﹣6≤2(4﹣x ),去括号,得:3x ﹣6﹣6≤8﹣2x ,移项,得:3x+2x≤8+6+6,合并同类项,得:5x≤20,系数化为1,得:x≤4;(2)解不等式①,得:x≤3,解不等式②,得:x >1,则不等式组的解集为1<x≤3.【点睛】此题考查解不等式及不等式组,掌握解不等式的方法是解题的关键.25.(1)-3;(2)x 6=.【分析】(1)根据新定义列式计算即可;(2)根据新定义分两种情况列方程求解即可.【详解】解:()121-<,∴()21213-⊗=--=-故答案为:3-()2①当3x 732x -≥-时,即x≥2()()3x 732x 2-⊗-=即3x 732x 2-+-=x 6=.②当3x 732x -<-时,即x<2()()3x 732x 2-⊗-=即()3x 732x 2---=125x =(不合题意,舍去) x 6.∴=【点睛】本题主要考察了新定义的计算,解一元一次方程以及有理数的混合运算,解题的关键是熟练掌握解一元一次方程的一般步骤和有理数的混合运算法则.26.11x -≤≤【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:231124x x x -≥-⎧⎨-≥--⎩①② ①式解得1x ≤,②式解得1x ≥-;故不等式组的解为11x -≤≤.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。

上海华东师大一附中实验中学小学数学二年级下册第五单元阶段测试(提高培优)(1)

上海华东师大一附中实验中学小学数学二年级下册第五单元阶段测试(提高培优)(1)

一、选择题1.学校计划栽树85棵,已经栽了50棵,剩下的分给5个班级栽,平均每个班级栽多少棵?正确列式为()。

A. 50÷5+85B. 85-50÷5C. (85-50) ÷5 C解析: C【解析】【解答】学校计划栽树85棵,已经栽了50棵,剩下的分给5个班级栽,平均每个班级栽的棵数是:(85-50)÷5故答案为:C。

【分析】由题意可知,剩下的分给5个班,因此先求出栽了50棵后剩下的棵数,最后把剩下的棵数平均分成5份,求每一份是多少。

2.24+16÷8,要先算()。

A. 24+16B. 16÷8C. 24+8B解析: B【解析】【解答】 24+16÷8,要先算16÷8。

故答案为:B。

【分析】没有括号的混合运算:同级运算从左往右依次运算;两级运算,先算乘、除法,后算加减法。

3.56÷7+□=20,□里面应填( )。

A. 12B. 28C. 16A解析: A【解析】【解答】解:56÷7+□=20,8+□=20,所以□=12。

故答案为:A。

【分析】在没有小括号,既有加减法又有乘除法的计算中,要先算乘除法,再算加减法;在加法计算中,其中一个加数=和-另一个加数。

4.实验小学三年级同学去秋游,男生有3组,每组9人;女生有36人。

去秋游的男生和女生一共有()人。

A. 27B. 39C. 45D. 63D解析: D【解析】【解答】3×9+36=27+36=63(人)故答案为:D。

【分析】根据题意可知,用每组男生的人数×男生的组数+女生的人数=总人数,据此列式解答。

5.60×8+5和60×(8+5)相比,结果相差()。

A. 60B. 295C. 0B解析: B【解析】【解答】解:60×8+5=480+5=48560×(8+5)=60×13=780相差:780-485=295。

上海 华东师范大学第一附属初级中学必修第一册第五单元《三角函数》测试卷(含答案解析)

上海 华东师范大学第一附属初级中学必修第一册第五单元《三角函数》测试卷(含答案解析)

一、选择题1.将函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像上所有点的横坐标变为原来的2倍(纵坐标不变),再将所得的图像向左平移π6个单位,则所得图像对应的解析式为( ) A .sin 212y x π⎛⎫=+ ⎪⎝⎭B .sin 212y x π⎛⎫=- ⎪⎝⎭C .sin 26x y π⎛⎫=-⎪⎝⎭ D .sin 212x y π⎛⎫=-⎪⎝⎭ 2.将函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图像向左平移12π个单位得到函数()g x 的图像,在()g x 的图像的所有对称轴中,离原点最近的对称轴为( ) A .24x π=-B .4πx =-C .524x π=-D .12x π=3.已知α为第二象限角,且π3cos 25α⎛⎫-= ⎪⎝⎭,则tan α=( ). A .34-B .43-C .53-D .45-4.把函数sin y x =的图象上所有的点向左平行移动6π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数解析式是( ) A .sin 23y x π⎛⎫=- ⎪⎝⎭B .sin 26x y π⎛⎫=+⎪⎝⎭ C .sin 26y x π⎛⎫=-⎪⎝⎭D .sin 26y x π⎛⎫=+⎪⎝⎭5.已知函数 ()cos f x x a x =+,[0,]3x π∈的最小值为a ,则实数a 的取值范围是( ) A .[0,2] B .[2,2]-C .(],1-∞D .(],3-∞6.已知3πin 325s α⎛⎫+= ⎪⎝⎭,0απ<<,则tan α=( ) A .43-B .34-C .34D .437.()()sin f x A x =+ωϕ0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图象如图所示,若将函数()f x 的图象向右平移2π个单位长度,得到函数()g x 的图象,则( )A .()12sin 212g x x π⎛⎫=- ⎪⎝⎭ B .()12sin 212g x x π⎛⎫=+⎪⎝⎭ C .()2sin 212g x x π⎛⎫=- ⎪⎝⎭ D .()2sin 212g x x π⎛⎫=+⎪⎝⎭8.已知将向量13,2a ⎛= ⎝⎭绕起点逆时针旋转4π得到向量b ,则b =( ) A .626244⎛- ⎝⎭B .626244⎛ ⎝⎭C .266244⎛⎫⎪⎪⎝⎭ D .262644⎛⎝⎭9.若将函数3sin(2)3y x π=+的图象向左平移6π个单位长度,则平移后图象的一个对称中心是( ) A .,06π⎛⎫⎪⎝⎭B .,06π⎛⎫- ⎪⎝⎭C .,012π⎛⎫ ⎪⎝⎭D .,03π⎛⎫ ⎪⎝⎭10.已知3cos()45x π-=-,177124x ππ<<,则2sin 22sin 1tan x xx-+的值为( ) A .2875B .21100-C .2875-D .2110011.函数cos 2y x =的单调减区间是( )A .ππ,π,Z 2k k k ⎡⎤+∈⎢⎥⎣⎦B .π3π2π,2π,Z22k k k ⎡⎤++∈⎢⎥⎣⎦ C .[]2π,π2π,Z k k k +∈ D .πππ,π,Z44k k k ⎡⎤-+∈⎢⎥⎣⎦12.已知tan 2α=,则sin sin 44ππαα⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭( ) A .310-B .310 C .35D .35二、填空题13.田忌赛马是中国古代对策论与运筹思想的著名范例,故事中齐将田忌与齐王赛马,孙膑献策以下马对齐王上马,以上马对齐王中马,以中马对齐王下马,结果田忌一负两胜从而获胜,该故事中以局部的牺牲换取全局的胜利成为军事上一条重要的用兵规律,在比大小游戏中(大者为胜),已知我方的三个数为cos a θ=,sin cos b θθ=+,cos sin c θθ=-,对方的三个数以及排序如表:当04θ<<时,则我方必胜的排序是______.14.已知函数7()4sin 2066f x x x ππ⎛⎫⎛⎫=+≤≤ ⎪⎪⎝⎭⎝⎭,若函数()()F x f x a =-恰有3个零点,分别为()123123,,x x x x x x <<,则1232x x x ++的值为________.15.已知函数sin cos y x x =-,其图象的对称轴中距离y 轴最近的一条对称轴方程为x =________.16.设ABC 的内角,,A B C 所对的边分别为,,,a b c 若2sin cos sin A B C =,则ABC 的形状为________.17.已知角α的终边经过点()3,4P -,则sin 2cos αα+的值等于______. 18.设函数()cos 2sin f x x x =+,下述四个结论正确结论的编号是__________. ①()f x 是偶函数; ②()f x 的最小正周期为π; ③()f x 的最小值为0; ④()f x 在[]0,2π上有3个零点. 19.已知一扇形的圆心角为3π,弧长是cm π,则扇形的面积是__________2cm . 20.对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值,若有且仅有一个正数a 使得[][]0,,2a a a M kM =成立,则实数k 的取值范围是_________.三、解答题21.已知函数()22sin cos 2sin 1f x x x x =-+.(1)求4f π⎛⎫⎪⎝⎭的值; (2)求()f x 的最小正周期;(3)求()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最小值.22.已知()()()()1122,,,A x f x B x f x 是函数()()2sin f x x ωϕ=+0,02πωϕ⎛⎫>-<< ⎪⎝⎭图象上的任意两点,且角ϕ的终边经过点(1,P ,当()()124f x f x -=时,12x x -的最小值为3π. (1)求函数()f x 的解析式; (2)当0,6x π⎡⎤∈⎢⎥⎣⎦时,不等式()()2mf x m f x +≥恒成立,求实数m 的取值范围.23.已知向量1cos 2cos 2m x x x ⎛⎫=- ⎪ ⎪⎝⎭,311,sin cos 2n x x ⎛⎫=- ⎪ ⎪⎝⎭,设函数()f x m n =⋅.(1)求函数()f x 取得最大值时x 取值的集合;(2)设A ,B ,C 为锐角三角形ABC 的三个内角,若3cos 5B =,()14f C =-,求cos A 的值.24.已知函数()211cos cos 24f x x x x =-,(x ∈R ) (1)当函数()f x 取得最大值时,求自变量x 的取值集合; (2)用五点法做出该函数在[]0,π上的图象; (3)写出函数()f x 单调递减区间. 25.已知函数()()1cos sin cos 2f x x x x =+-. (Ⅰ)若0,2πα<<且1sin 3α=.求()f α; (Ⅱ)求函数()f x 的最小正周期及单调递增区间. 26.已知22sin 2sin12αα=-.(1)求sin cos cos2ααα+的值;(2)已知()0,απ∈,0,2πβ⎛⎫∈ ⎪⎝⎭,且2tan 6tan 1ββ-=,求2αβ+的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据正弦型函数的图像的变换规律进行求解即可. 【详解】将函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像上所有点的横坐标变为原来的2倍(纵坐标不变),所得到的函数的解析式为:sin 24x y π⎛⎫=-⎪⎝⎭,将sin 24x y π⎛⎫=- ⎪⎝⎭的图像向左平移π6个单位,得到的函数的解析式为:1sin[]264y x ππ⎛⎫=+- ⎪⎝⎭,化简得:sin 26x y π⎛⎫=- ⎪⎝⎭. 故选:C2.A解析:A 【分析】利用三角函数的伸缩变换和平移变换,得到()22sin 43g x x π⎛⎫=+⎪⎝⎭,然后令24,32x k k Z πππ+=+∈求解. 【详解】 将函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,2sin 43y x π⎛⎫=+⎪⎝⎭, 再将所得图像向左平移12π个单位得到函数()22sin 43g x x π⎛⎫=+⎪⎝⎭, 令24,32x k k Z πππ+=+∈, 解得,424k x k Z ππ=-∈, 所以在()g x 的图像的所有对称轴中,离原点最近的对称轴为24x π=-,故选:A3.A解析:A 【分析】 由已知求出3sin 5α=,即可得cos α,进而求出所求. 【详解】 ∵π3cos 25α⎛⎫-=⎪⎝⎭,∴3sin 5α=,∵α为第二象限角,∴4cos 5α==-, ∴sin 3tan cos 4ααα==-. 故选:A .4.D解析:D 【分析】根据三角函数的图象变换规律可得解析式. 【详解】函数sin y x =的图象上所有的点向左平行移动6π个单位长度,得sin 6y x π⎛⎫=+ ⎪⎝⎭,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),可得sin 26y x π⎛⎫=+ ⎪⎝⎭. 故选:D .5.D解析:D 【分析】通过参变分离转化为2cos222sin tan22x x a x ≤==,即min tan 2a x ⎛⎫ ⎪≤ ⎪ ⎪⎝⎭. 【详解】()cos f x x a x =+的最小值是a ,并且观察当0x =时,()0f a =,所以当0,3x π⎡⎤∈⎢⎥⎣⎦cos x a x a +≥恒成立,即()1cos a x x -≤,当0x =时,a R ∈,当0,3x π⎛⎤∈ ⎥⎝⎦时,2cos221cos 2sin tan 22x xx a x x x ≤==-恒成立,即mintan 2a ≤ ⎪⎝⎭0,3x π⎛⎤∈ ⎥⎝⎦时,tan 2xtan 2的最小值是3,所以3a ≤.故选:D 【点睛】方法点睛:由不等式恒成立求参数的取值范围的方法:讨论最值,先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值范围;分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值范围.6.A解析:A 【分析】根据诱导公式,可得cos α的值,根据同角三角函数的关系,结合α的范围,可求得sin α的值,即可求得答案.【详解】因为3πin 325s α⎛⎫+=⎪⎝⎭,所以3cos 5α=-,所以4sin 5α===±, 又0πα<<,所以α为第二象限角,所以4sin 5α 所以sin tan s 43co ααα==-. 故选:A .7.A解析:A 【分析】根据图象易得2A =,最小正周期T 2433ππ⎛⎫=-- ⎪⎝⎭,进而求得ω,再由图象过点2,23π⎛⎫⎪⎝⎭求得函数()f x ,然后再根据平移变换得到()g x 即可. 【详解】由图象可知2A =,最小正周期2T 4433πππ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦,∴212T πω==,1()2sin 2f x x ϕ⎛⎫=+ ⎪⎝⎭, 又22sin 233f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, ∴232k ππϕπ+=+,26k πϕπ=+,∵||2ϕπ<,∴6π=ϕ,1()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,将其图象向右平移2π个单位长度得 11()2sin 2sin 226212g x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故选:A 8.C解析:C 【分析】先求出a 与x 轴正方向的夹角为3πθ=,即可得b 与x 轴正方向的夹角为73412πππα=+=, 再利用向量坐标的定义即可求解. 【详解】设a 的起点是坐标原点,a 与x 轴正方向的夹角为θ,1a =由13,22a ⎛= ⎝⎭可得2tan 12θ==3πθ=, 设b 与x 轴正方向的夹角为α,则73412πππα=+=且1b =因为7sinsin sin cos cos sin 12434343y πππππππ⎛⎫==+=⨯+⨯=⎪⎝⎭7coscos cos cos sin sin 12434343x πππππππ⎛⎫==+=⨯-⨯=⎪⎝⎭故2,44b ⎛⎫-= ⎪ ⎪⎝⎭, 故选:C.9.A解析:A 【分析】先求出平移后的解析式为23sin 23y x π⎛⎫=+ ⎪⎝⎭,令()223x k k Z ππ+=∈解方程即可求解. 【详解】将函数3sin(2)3y x π=+的图象向左平移6π个单位长度得:23sin 23sin 2633y x x πππ⎡⎤⎛⎫⎛⎫=++=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 令()223x k k Z ππ+=∈,解得:()32kx k Z ππ=-+∈, 当1k =时,326x πππ=-+=,所以平移后图象的一个对称中心为,06π⎛⎫⎪⎝⎭,故选:A10.A解析:A 【分析】 根据177124x ππ<<以及3cos()45x π-=-求出4sin()45x π-=-,进而求出4tan()43x π-=,根据诱导公式和二倍角的余弦公式得7sin 225x =-,然后利用恒等变换公式将2sin 22sin 1tan x xx-+化简为sin 2tan()4x x π-⋅-后,代入计算可得结果.【详解】因为177124x ππ<<,所以73642x πππ<-<, 因为3cos()45x π-=-,所以4sin()45x π-===-, sin()4tan()4cos()4x x x πππ--==-4535--43=, sin 2cos(2)cos 2()24x x x ππ⎡⎤=-=-⎢⎥⎣⎦2972cos 12142525x π⎛⎫=--=⨯-=- ⎪⎝⎭,所以2sin 22sin 1tan x x x-+2sin (cos sin )sin 1cos x x x x x-=+2sin cos (cos sin )cos sin )x x x x x x -=+sin 2(1tan )1tan x x x -=+tantan 4sin 21tan tan 4xx x ππ-=⋅+sin 2tan()4x x π=-⋅-7428()25375=--⨯=.故选:A 【点睛】本题考查了同角公式,考查了诱导公式,考查了二倍角的正弦公式,考查了两角差的正切公式,属于中档题.11.A解析:A 【分析】根据余弦函数的性质,令222,k x k k Z πππ≤≤+∈求解. 【详解】令222,k x k k Z πππ≤≤+∈, 解得2,2k x k k Z πππ≤≤+∈,所以函数cos 2y x =的单调减区间是ππ,π,Z 2k k k ⎡⎤+∈⎢⎥⎣⎦, 故选:A12.B解析:B 【分析】利用两角和与差的正弦公式、同角三角函数的基本关系式化简所求表达式,由此求得所求表达式的值. 【详解】sin sin sin cos cos sin sin cos cos sin 444444ππππππαααααα⎛⎫⎛⎫⎛⎫⎛⎫-+=-⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()22222211sin cos sin cos 22sin cos αααααα-=-=⨯+ 221tan 114132tan 124110αα--=⨯=⨯=++. 故选:B二、填空题13.【分析】由三角函数值的大小比较得:当时结合田忌赛马的事例进行简单的推理即可得答案【详解】因为当时故答案为:【点睛】关键点点睛:本题的关键点是当时比较出以及的大小关系利用田忌赛马的事例进行推理即可 解析:c ,b ,a【分析】由三角函数值的大小比较得:当04πθ<<时,cos sin cos cos sin θθθθθ-<<+,sin tan θθ<<,结合田忌赛马的事例进行简单的推理,即可得答案. 【详解】因为当04πθ<<时,cos sin cos cos sin θθθθθ-<<+,sin tan θθ<<,tan sin cos θθθ<+,sin cos θθ<. 故答案为:c ,b ,a 【点睛】关键点点睛:本题的关键点是当04πθ<<时,比较出sin tan θθ<<,以及a 、b 、c 的大小关系,利用田忌赛马的事例进行推理即可.14.【分析】令则通过正弦函数的对称轴方程求出函数的对称轴方程分别为和结合图像可知从而求得进而求得的值【详解】令则函数恰有3零点等价于的图像与直线恰有3个交点即与直线恰有3个交点设为如图函数的图像取得最值 解析:53π 【分析】 令26x t π+=,则5,62t ππ⎡⎤∈⎢⎥⎣⎦,通过正弦函数的对称轴方程,求出函数的对称轴方程分别为2t π=和32t π=,结合图像可知12t t π+=,233t t π+=,从而求得123x x π+=,2343x x π+=,进而求得1232x x x ++的值. 【详解】令26x t π+=,则5,62t ππ⎡⎤∈⎢⎥⎣⎦函数()()F x f x a =-恰有3零点,等价于()y f x =的图像与直线y a =恰有3个交点,即4sin y t =与直线y a =恰有3个交点,设为123,,t t t ,如图函数4sin y t =,5,62t ππ⎡⎤∈⎢⎥⎣⎦的图像取得最值有2个t 值,分别为2t π=和32t π=,由正弦函数图像的对称性可得1212222662t t x x ππππ+=+++=⨯=,即123x x π+=232332223662t t x x ππππ+=+++=⨯=,即2343x x π+=,故1231223452333x x x x x x x πππ++=+++=+= , 故答案为:53π. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.15.【分析】函数令求解【详解】已知函数令解得所以其图象的对称轴中距离轴最近的一条对称轴方程为故答案为: 解析:4π-【分析】 函数24y x π⎛⎫=- ⎪⎝⎭,令42x k πππ-=+求解.【详解】已知函数sin cos 24y x x x π⎛⎫=-=- ⎪⎝⎭,令,42x k k Z πππ-=+∈,解得 3,4x k k Z ππ=+∈, 所以其图象的对称轴中距离y 轴最近的一条对称轴方程为x =4π-. 故答案为:4π-16.等腰三角形【分析】由整理可得角的关系即可【详解】由的内角知所以又所以为等腰三角形故答案为:等腰三角形【点睛】此题考查两角和与差的正弦公式的正向和逆向使用属于基础题解析:等腰三角形 【分析】由()sin sin sin cos cos sin C A B A B A B π=-+=+⎡⎤⎣⎦,整理可得角的关系即可. 【详解】由ABC 的内角,,A B C 知,()C A B π=-+,所以 ()sin sin sin cos cos sin 2sin cos C A B A B A B A B π=-+=+=⎡⎤⎣⎦,sin cos cos sin 0A B A B -=,()sin 0A B -=,又()()()0,π,0,π,π,πA B A B ∈∈-∈-所以A B =,ABC 为等腰三角形. 故答案为:等腰三角形. 【点睛】此题考查两角和与差的正弦公式的正向和逆向使用,属于基础题.17.【分析】根据三角函数定义求出的值由此可求得的值【详解】由三角函数的定义可得因此故答案为:解析:25-【分析】根据三角函数定义求出sin α、cos α的值,由此可求得sin 2cos αα+的值. 【详解】由三角函数的定义可得3cos 5α==-,4sin 5α==,因此,432sin 2cos 2555αα⎛⎫+=+⨯-=- ⎪⎝⎭. 故答案为:25-. 18.①②③【分析】对①根据即可判断①正确对②根据函数和的最小正周期即可判断②正确对③首先得到再利用二次函数的性质即可判断③正确对④令解方程即可判断④错误【详解】对①因为函数的定义域为所以是偶函数故①正确解析:①②③ 【分析】对①,根据()()f x f x -=即可判断①正确,对②,根据函数cos 2y x =和sin y x=的最小正周期即可判断②正确,对③,首先得到()2192sin 48f x x ⎛⎫=--+ ⎪⎝⎭,再利用二次函数的性质即可判断③正确,对④,令()cos 2sin 0f x x x =+=,解方程即可判断④错误. 【详解】对①,因为函数()f x 的定义域为R ,()()()cos 2sin =cos 2sin f x x x x x f x -=-+-+=,所以()f x 是偶函数,故①正确;对②,因为cos 2cos2y x x ==,最小正周期为π,sin y x =的最小正周期为π,所以函数()cos 2sin f x x x =+的最小正周期为π,故②正确; 对③,()2cos 2sin cos2sin 12sin sin f x x x x x x x =+=+=-+2192sin 48x ⎛⎫=--+ ⎪⎝⎭.因为0sin 1x ≤≤,当sin 1x =时,()f x 取得最小值为0,故③正确. 对④,令()cos 2sin 0f x x x =+=,即212sin sin 0x x -+=,解得sin 1x =或1sin 2x =-(舍去). 当[]0,2x π∈时,sin 1x =,解得2x π=或32x π=, 所以()f x 在[]0,2π上有2个零点.故④错误. 故选:①②③19.【分析】先由弧长公式求出扇形所在圆的半径再根据扇形面积公式即可得出结果【详解】因为一扇形的圆心角为弧长是所以其所在圆的半径为因此该扇形的面积是故答案为:解析:32π【分析】先由弧长公式求出扇形所在圆的半径,再根据扇形面积公式,即可得出结果.【详解】因为一扇形的圆心角为3π,弧长是cm π, 所以其所在圆的半径为33r ππ==,因此该扇形的面积是1133222S lr ππ==⨯⨯=. 故答案为:32π. 20.【分析】讨论的范围得出的表达式求出的值域即可【详解】①当时由得所以此时即则即;②当时由得此时即;③当时由得所以此时则即;④当时则由得不成立此时不存在;⑤当时由得所以此时则即;⑥当时由得综上实数的取值解析:1,2⎡⎫+∞⎪⎢⎣⎭【分析】讨论a 的范围得出k 的表达式,求出()k f a =的值域即可. 【详解】①当0,4πa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]20,,sin ,sin 22a a a πa M a M a ⎡⎤∈==⎢⎥⎣⎦,由[][]0,,2a a a M kM =,得sin sin 2a k a =,所以12cos k a=,此时cos 12a ≤≤2cos 2a ≤≤,则1122cos a ≤≤122k ⎡∈⎢⎣⎦; ②当,42ππa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]2,,sin ,12a a a πa πM a M ⎡⎤∈==⎢⎥⎣⎦, 由[][]0,,2a a a M kM =,得sin k a =,此时sin 12a ≤≤,即2k ⎤∈⎥⎣⎦; ③当,2a ππ⎛⎫∈⎪⎝⎭时,()[0,][,2]2,2,1,sin a a a a M M a ππ∈==, 由[][]0,,2a a a M kM =,得1sin k a =,所以1sin k a=, 此时0sin 1a <<,则11sin a>,即()1,k ∈+∞;④当a π=时,22a π=,则[0,][,2]1,0a a a M M ==, 由[][]0,,2a a a M kM =,得10=不成立,此时k 不存在; ⑤当5,4πa π⎛⎫∈ ⎪⎝⎭时,[0,][,2]522,,1,sin 22a a a a ππM M a ⎛⎫∈== ⎪⎝⎭, 由[][]0,,2a a a M kM =,得1sin 2k a =,所以1sin 2k a=, 此时0sin 21a <<,则11sin 2a>,即()1,k ∈+∞; ⑥当5,+4a π⎡⎫∈∞⎪⎢⎣⎭时,[0,][,2]52,,1,12a a a a πM M ⎡⎫∈+∞==⎪⎢⎣⎭, 由[][]0,,2a a a M kM =,得1k =, 综上,实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查三角函数最值的求解,解题的关键是分段讨论a 的范围,根据a 的不同取值范围得出k 的表达式,再利用三角函数的性质求解.三、解答题21.(1)1;(2)π;(3). 【分析】(1)由题意利用三角恒等变换化简函数的解析式,从而求得4f π⎛⎫⎪⎝⎭的值 (2)由(1)得,利用正弦函数的周期性,得出结论; (3)由(1)得,利用正弦函数的单调性,得出结论; 【详解】(1)()22sin cos 2sin 1sin 2cos2f x x x x x x =-+=+π24x ⎛⎫=+ ⎪⎝⎭∴πππ1424f ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭或直接求2ππππ2sin cos 2sin 114444f ⎛⎫=-+=⎪⎝⎭. (2)由(1)得,所以()f x 的最小正周期为2π2ππ2T ω=== (3)由(1)得,∵π02x -≤≤,∴3πππ2444x -≤+≤,∴πsin 24x ⎡⎛⎫+∈-⎢ ⎪⎝⎭⎣⎦当ππ242x +=-,即3π8x =-时,()f x 取得最小值为. 【点睛】关键点睛:解题的关键在于,利用三角恒等变换化简函数的解析式得到()π24f x x ⎛⎫=+ ⎪⎝⎭,进而利用正弦函数的性质求解,属于中档题22.(1)()2sin 33f x x π⎛⎫=- ⎪⎝⎭;(2)13m ≥. 【分析】(1)由ϕ的终边上的点可求出ϕ,再由题可得23T π=,即可求出ω,得出解析式;(2)根据0,6x π⎡⎤∈⎢⎥⎣⎦可得()1f x ≤≤,不等式化为()212m f x ≥-+,求出()212f x -+的最大值即可.【详解】(1)角ϕ的终边经过点(1,P ,∴tan ϕ= 又02πϕ-<<,∴3πϕ=-.∵当()()124f x f x -=时,12x x -的最小值为3π, ∴23T π=,即223ππω=,∴3ω=, ∴()2sin 33f x x π⎛⎫=- ⎪⎝⎭. (2)当0,6x π⎡⎤∈⎢⎥⎣⎦时,3,336x πππ⎡⎤-∈-⎢⎥⎣⎦,∴()1f x ≤≤,于是()20f x +>,于是()()2mf x m f x +≥即为()()()2122f x m f x f x ≥=-++,由()1f x ≤≤,得()212f x -+的最大值为13.∴实数m 的取值范围是13m ≥.【点睛】本题考查正弦型函数的性质,解题的关键是由当()()124f x f x -=时,12x x -的最小值为3π得出23T π=,以便求出解析式,第二问得出()1f x ≤≤,将不等式化为()212m f x ≥-+.23.(1)|,12x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭;(2)310【分析】(1)利用三角函数公式和平面向量数量积对函数简化,再根据三角函数的性质求得函数取得最大值时x 取值的集合;(2)根据已知条件求得的B ,C 大小,然后利用()cos cos A B C =-+展开即可求解. 【详解】(1)21()cos 2cos 2f x m n x x x ⎫=⋅=+-⎪⎪⎝⎭2231cos 2sin cos sin cos 442x x x x x =++-31cos 211cos 2cos 2242424x x x x -+=+⨯+⨯-311cos 2sin 22442223x x x π⎛⎫=-+=-- ⎪⎝⎭, 要使函数()f x 取得最大值,需要满足sin 23x π⎛⎫- ⎪⎝⎭取得最小值, 所以()2232x k k Z πππ-=-+∈,所以12x k ππ=-()k Z ∈,所以当()f x 取得最大值时x 取值的集合为|,12x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭, (2)因为A ,B ,C 为锐角三角形ABC 的三个内角,3cos 5B =所以4sin 5B ==,由()11sin 22234f C C π⎛⎫=--=- ⎪⎝⎭,得sin 232C π⎛⎫-=⎪⎝⎭, 因为22333C πππ-<-<所以233C ππ-=,解得3C π=,所以()3143cos cos cos cos sin sin 525210A B C B C B C =-+=-+=-⨯+⨯=所以cos A = 【点睛】关键点点睛:本题的关键点是熟记两角和差的正弦余弦公式,辅助角公式,诱导公式,同角三角函数基本关系,向量的数量积的坐标表示,注意三角形是锐角三角形以确定角的范围.24.(1),6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)图象见解析;(3)()2,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 【分析】利用二倍角和辅助角公式可化简得到()1sin 226f x x π⎛⎫=+ ⎪⎝⎭, (1)令()2262x k k Z πππ+=+∈,解方程可求得所求的取值集合;(2)利用五点法得到特殊点对应的函数值,由此可画出函数图象; (3)令()3222262k x k k Z πππππ+≤+≤+∈,解不等式求得x 的范围即可得到所求区间. 【详解】()11cos 22sin 2426f x x x x π⎛⎫==+ ⎪⎝⎭,(1)当()2262x k k Z πππ+=+∈时,()f x 取得最大值,此时()6x k k Z ππ=+∈,x 的取值集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)由题意可得表格如下:(3)令()3222262k x k k Z πππππ+≤+≤+∈,解得:()263k x k k Z ππππ+≤≤+∈, ()f x ∴的单调递减区间为()2,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 【点睛】方法点睛:求解正弦型函数()sin y A ωx φ=+的单调区间、对称轴和对称中心、最值点问题时,通常采用整体对应的方法,即令x ωϕ+整体对应sin y x =的单调区间、对称轴和对称中心、最值点即可. 25.(Ⅰ427+;(Ⅱ)最小正周期为π.3ππππ88k k ⎡⎤-+⎢⎥⎣⎦,.k Z ∈.【分析】 (Ⅰ)根据1sin 3α=以及α的范围,得到cos α,代入到()f α中,得到答案; (Ⅱ)对()f x 进行整理化简,得到()2π24f x x ⎛⎫=+ ⎪⎝⎭,根据正弦型函数的图像和性质,求出其周期和单调减区间. 【详解】(Ⅰ)解:因为π02α<<.且1sin 3α=.所以22cos 1sin 3αα=-=. 故()()1427cos sin cos 2f αααα+=+-=(Ⅱ)解:因为 ()21sin cos cos 2f x x x x =+-11cos 21sin 2222x x +=+- 112πsin 2cos 22224x x x ⎛⎫=+=+ ⎪⎝⎭. 所以函数()f x 的最小正周期为π.设π24t x =+.由y t =的单调递增区间是ππ2π 2π22k k ⎡⎤-+⎢⎥⎣⎦,.k Z ∈. 令πππ2π22π242k x k -++≤≤.解得 3ππππ88k x k -+≤≤.k Z ∈. 故函数()f x 的单调递增区间为3ππππ88k k ⎡⎤-+⎢⎥⎣⎦,.k Z ∈. 【点睛】本题考查同角三角函数关系,利用二倍角公式、降幂公式、辅助角公式对三角函数进行化简,求正弦型函数的周期和单调区间,属于基础题.26.(1)15;(2)74π. 【分析】 (1)先求出1tan 2α=-,再化简22tan 1tan sin cos cos 2tan 1αααααα+-+=+即得解; (2)先求出1tan 23β=-,再求出tan(2)1αβ+=-,求出52,23παβπ⎛⎫+∈ ⎪⎝⎭,即得解.【详解】(1)由已知得2sin cos αα=-,所以1tan 2α=- 222222sin cos cos sin tan 1tan 1sin cos cos 2sin cos tan 15αααααααααααα+-+-+===++ (2)由2tan 6tan 1ββ-=,可得22tan 1tan 21tan 3βββ==--, 则11tan tan 223tan(2)1111tan tan 2123αβαβαβ--++===---⨯. 因为0,2πβ⎛⎫∈ ⎪⎝⎭,所以()20,βπ∈,又1tan 23β=->52,6πβπ⎛⎫∈ ⎪⎝⎭, 因为()0,απ∈,1tan 2α=->, 则5,6παπ⎛⎫∈ ⎪⎝⎭,则52,23παβπ⎛⎫+∈ ⎪⎝⎭, 所以724παβ+=. 【点睛】易错点睛:本题容易得出两个答案,724παβ+=或34π.之所以得出两个答案,是没有分析缩小,αβ的范围,从而得到52,23παβπ⎛⎫+∈ ⎪⎝⎭.对于求角的大小的问题,一般先求出角的某三角函数值,再求出角的范围,再得到角的大小.。

上海 华东师范大学第一附属初级中学小学数学一年级上册第五单元阶段练习(提高培优)

上海 华东师范大学第一附属初级中学小学数学一年级上册第五单元阶段练习(提高培优)

一、选择题1.减数是4,被减数10,差是()。

A. 6B. 14C. 102.下面离5最近的数是()A. 6B. 7C. 33.菜园里有4只小鸡,又来了6只,一共有()只。

A. 2B. 8C. 104.比2大7的数是()。

A. 7B. 9C. 25.笑笑有8个果子,吃掉了4个,还剩()个。

A. 8B. 4C. 56.与4+2的结果相等的算式是()。

A. 2+3B. 1+2C. 3+37.数一数,下图是由()个小正方体搭成的。

A. 7B. 5C. 68.电线杆上原来有15只燕子,飞走了5只,又飞走了3只,一共飞走了()只。

A. 8B. 7C. 109.比4大比6小的数是( )。

A. 4B. 6C. 510.河里原有8只小鸭,后来5只小鸭上了岸,河里还有几只小鸭?列式计算正确的是()A. 8+5=13(只)B. 8-5=3(只)C. 13-5=8(只)D. 8-3=5(只) 11.列式计算,正确的是()A. 8+3=11(个)B. 8-3=5(个)C. 11-8=3(个)D. 3+8=11(个)12.小明要看9本,已经看了3本,还要看________本.()A. 12B. 6C. 11D. 313.学校里有9个,挂出去了4个,现在还有________个.()A. 13B. 11C. 5D. 12 14.列式计算,正确的是()A. 16-6=10(辆)B. 10+6=16(辆)C. 16-10=6(辆)D. 10-6=4(辆)15.小兰买了7枝,用去了5枝,还剩________枝.()A. 12B. 2C. 11D. 13二、填空题16.在横线上填上合适的数。

________+2=5 6+________=10 ________+2=94+________=11 ________+8=13 7+________=1517.8-5=3读作________减________等于________。

18.比6多3的数是________,它再加上________就是10。

上海华东师大一附中实验中学小学数学二年级上册第五单元阶段测试(提高培优)(1)

上海华东师大一附中实验中学小学数学二年级上册第五单元阶段测试(提高培优)(1)

一、选择题1.按照如图所示的表示方法,右图由7个立方体叠加的几何体,从正面观察,可以画出的平面图形是()A. B. C. D. 2.观察下边的物体,图()是从上面看到的。

A. B. C.3.一堆积木从左面看是,则这堆积木不可能是下列()。

A. ③B. ①②④C. ①③D. ②④4.下面3个物体,从()看到的图形相同。

A. 上面B. 前面C. 左面5.下图中,看到的是()号。

A. B. C. D. 6.李霞给奶奶买的一个生日蛋糕,从上面看它的形状是()A. B. C.7.如图,水杯从上往下看到的图形是()。

A. B. C.8.是天天10岁的生日蛋糕,从前面看它的形状是( )。

A. B. C.9.哪一个是小红从正上方看到的小轿车的形状?( )A. B. C.10.这两幅冰箱图中哪一幅是小朋友“正面平视”观察得到的?( )A. B.11.这两幅茶杯图哪一幅是从“侧面“观察得到的?( )A. B.12.这两幅凳子图中哪一幅是从“上面"观察得到的?()A. B.13.哪一幅图是方方看到的()A. B. C. 14.下图小梅看到的汽车的样子是()。

A. B. C. 15.淘气看到的是哪副图?()A. B.二、填空题16.下面的图片分别是谁看到的?请填一填。

________________________________17.爸爸给淘气买了个新年礼物,外包装盒是个长方体,做得很漂亮,他想用手机拍张包装盒的照片发给笑笑,他拍照的时候发现一次最多只能拍到________个面。

18.观察,从________面看到的是,从________面看到的是,从________面看到的是.19.下面的图分别是谁看到的?把序号填在相应的横线上。

________________________20.淘气从窗外看到的情景会是下面哪一幅图?填序号________.21.下面这三幅图分别是在哪个位置看到的?把位置的编号写在横线上。

上海华东师大一附中实验中学小学数学六年级上册第五单元阶段测试(提高培优)

上海华东师大一附中实验中学小学数学六年级上册第五单元阶段测试(提高培优)

一、选择题1.圆是轴对称图形,它有()条对称轴。

A. 一B. 两C. 无数D. 四C解析: C【解析】【解答】解:圆是轴对称图形,它有无数条对称轴。

故答案为:C。

【分析】圆的对称轴是圆的直径,圆的直径有无数条,那么它有无数条对称轴。

2.已知圆的周长是18.84厘米,它的直径是()A. 6厘米B. 12.56厘米C. 12厘米A解析: A【解析】【解答】18.84÷3.14=6(厘米)故答案为:A。

【分析】根据圆的周长公式:C=πd,已知圆的周长C,要求直径d,用C÷π=d,据此列式解答。

3.在圆内剪去一个圆心角为45的扇形,余下部分的面积是剪去部分面积的()倍.A. 9 B. 8 C. 7C解析: C【解析】【解答】(360°-45°)÷45°=7。

故答案为:C。

【分析】在同一个圆内,扇形的面积比可用圆心角的比来求,即求“余下部分的面积是剪去部分面积的几倍”,可用“余下部分扇形的圆心角是剪去部分扇形圆心角的几倍”计算,即(360°-45°)÷45°。

4.下图是一个半圆,它的半径是5cm,周长是()cm。

A. 5π +10B. 5πC. 10πD. 10π+10A解析: A【解析】【解答】解:π×5×2÷2+5×2=5π+10(cm)。

故答案为:A。

【分析】半圆的周长包括所在圆周长的一半加上直径的长度,由此根据周长公式计算即可。

5.把一个直径是2cm的圆平分成2个半圆后,每个半圆的周长是()。

A. 6.28cmB. 3.14cmC. 4.14cmD. 5.14cm D解析: D【解析】【解答】圆周长的一半:3.14×2÷2=3.14(厘米);半圆的周长:3.14+2=5.14(厘米)。

故答案为:D。

【分析】半圆的周长=圆周长的一半+直径。

6.两个圆的周长之比是2:5,则它的面积之比是()。

华师大版2020-2021学年七年级数学上册第5章 相交线与平行线 单元测试卷(含答案)

华师大版2020-2021学年七年级数学上册第5章 相交线与平行线 单元测试卷(含答案)

第五单元测试卷一、选择题(10×3=30分)1、如图,∠AOB=40°,OP平分∠AOB,点C为射线OP上一点,作CD⊥OA于点D,在∠POB 的内部作CE∥OB,则∠DCE=()度.图1图2A.20° B.140° C.130° D.50°2、如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()度.A.20° B.75° C.130° D.70°图3 图43、如图,直线AB∥CD,BC平分∠ABD,∠1=54°,求∠2的度数()度。

A.20° B.75° C.80° D.72°4、如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30° B、36° C. 45° D.50°5、如图,直线a,b被直线c所截,则下列条件不能判定直线a与b平行的是( )图5图6A.∠1=∠3 B.∠2+∠4=180° C.∠1=∠4 D.∠3=∠46、直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的度数为( )A.55° B.75° C.65° D.85°7、下列说法正确的是()A.有内错角的两条直线平行 B.对顶角相等两直线平行B.同旁内角相等两直线平行 D.同位角相等两直线平行8、下列说法错误的是()A.过直线外一点有且只有一条直线与已知直线平行。

B.从直线外一点到这条直线的垂线段,叫做点到直线的距离。

C.过一点有且只有一条直线与已知直线垂直。

D.一条直线的平行线有无数条9、如图,若∠A+∠ABC=180°,则下列结论正确的是( )A.∠1=∠2 B.∠2=∠3 C.∠1=∠3 D.∠2=∠4图9图1010、如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是()A.35° B.45° C.55° D.65°二、填空题(10×3=30分)1、如图1,直线AB,CD被直线AE所截,AB∥CD.若∠A=110°,则∠1=________度.图1图22、如图2,在不添加辅助线及字母的前提下,请写出一个能判定AD∥BC的条件:(填一个即可).3、若∠1+∠2=90º,∠1+∠3=90º则∠2=∠3,理由是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元测试五(A 卷)
一、选择题(每题2分,共12分)
1.甲、乙、丙三地的海拔高度分别为20米、-15米和-10米,那么最高的地方比最低的地方高()
A .5米
B .10米
C .15米
D .35米 2.在10.1、-(-5)、2
1--、10%、0、2、31)(-、22-、2
2)(--这九个数中,非负数有
( )
A .4个
B .5个
C .6个
D .7个
3.下列各组数中,数值相等的是( )
A .
2244--和)( B .7
733--与)( C .
2221212--和)(D .8
822--与)( 4.如果n
1005.2⨯的原数是一个14位整数,那么n 的值是( ) (A)12 (B)13 (C)14 (D)15
5.如果a>0,b<0,且b a <,那么下列关系式中正确的是( ) A.-b>a>-a>b B.b>a>-b>-a C.-b>a>b>-a D.a>b>-a>-b
6.下列说法中正确的是( )
.A 如果b a >,那么a>b B 如果a>b,那么b a > C 如果2
2
b a =,那么a=b D 如果a=b,那么2
2
b a =
二、填空题(每题2分,共26分) 7.-3的相反数是. 8.数轴上到表示5
3
2
-的点的距离等于4的点所对应的数是。

9.用科学记数法表示:-32500000=。

10.比较大小:-3.14π-. 11.211
-+=6
12-
12.计算:=-÷⨯-)(5
212.1712。

13.计算:=-
⨯-6
1
32
)(。

14.计算:
=⨯-7525
4
2(。

15.在-2、-3、-4、5中任取三个数相乘,其中最小的积是。

16.上海冬天某两天的天气温度情况如下表所示:
这两天中,第天的温差较大。

17.如果a =5,b=-2,ab>0,那么a+b=。

18.如果=-=+x x x 那么,21。

19.按照下面的操作步骤,如果输出的值为9
1
-,那么输入的值x 为。

输入
三、解答题(第20—24题每题6分,第25—28题每8分,共62分)
20.计算:)()()(2
175.241
5.0++---+
21.计算:
()(8
7121335
24+-⨯-
22.计算:
)()(4
3
65412787--÷--.
23.计算:⎥⎦
⎤⎢⎣

+-÷--⨯13
24225.02
3)()(
24.21-的立方减去4
3
-的平方所得的差是多少?
25.检查5个篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,
(1)最接近标准质量的是号篮球。

(2)质量最大的篮球比质量最小的篮球重多少克?
26.如图,数轴上的点a 、b 表示有理数,根据它们所在点的位置,化简下列各式:
(1);a b a +- (2);a b a ++ (3).a b a +- | | | a 0 b
27.如果的值是多少?
)那么(且2
,3,4,n m n m m n n m +==-=-
28.已知数轴上三点所对应的有理数分别为A :512-,B :10
7,C :x ,如果AC=3BC,求x 的值。

相关文档
最新文档