2018届高三数学(理)高考总复习:升级增分训练_最值、范围、存在性问题_有解析

合集下载

2018年普通高等学校招生全国统一考试数学试题 理(全国卷1,解析版)

2018年普通高等学校招生全国统一考试数学试题 理(全国卷1,解析版)

2018年普通高等学校招生全国统一考试数学试题理(全国卷1)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设,则A. B. C. D.【答案】C【解析】分析:首先根据复数的运算法则,将其化简得到,根据复数模的公式,得到,从而选出正确结果.详解:因为,所以,故选C.点睛:该题考查的是有关复数的运算以及复数模的概念及求解公式,利用复数的除法及加法运算法则求得结果,属于简单题目.2. 已知集合,则A. B.C. D.【答案】B【解析】分析:首先利用一元二次不等式的解法,求出的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果.详解:解不等式得,所以,所以可以求得,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】分析:首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.4. 设为等差数列的前项和,若,,则A. B. C. D.【答案】B详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.5. 设函数,若为奇函数,则曲线在点处的切线方程为A. B. C. D.【答案】D【解析】分析:利用奇函数偶此项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.详解:因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.6. 在△中,为边上的中线,为的中点,则A. B.C. D.【答案】A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.7. 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N 在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.8. 设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A. 5B. 6C. 7D. 8【答案】D【解析】分析:首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程组,消元化简,求得两点,再利用所给的抛物线的方程,写出其焦点坐标,之后应用向量坐标公式,求得,最后应用向量数量积坐标公式求得结果.详解:根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.点睛:该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.9. 已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.10. 下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A. p1=p2B. p1=p3C. p2=p3D. p1=p2+p3【答案】A详解:设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.11. 已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=A. B. 3 C. D. 4【答案】B【解析】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到,根据直角三角形的条件,可以确定直线的倾斜角为或,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得,利用两点间距离同时求得的值.详解:根据题意,可知其渐近线的斜率为,且右焦点为,从而得到,所以直线的倾斜角为或,根据双曲线的对称性,设其倾斜角为,可以得出直线的方程为,分别与两条渐近线和联立,求得,所以,故选B.点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.12. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A. B. C. D.【答案】A【解析】分析:首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.详解:根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、填空题:本题共4小题,每小题5分,共20分。

高考数学(理)函数与导数 专题14 恒成立及存在性问题(解析版)

高考数学(理)函数与导数 专题14 恒成立及存在性问题(解析版)

函数与导数14 导数及其应用 恒成立及存在性问题一、具体目标: 1.导数在研究函数中的应用:①了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(对多项式函数一般不超过三次)。

②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(对多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(对多项式函数一般不超过三次). 2.生活中的优化问题:会利用导数解决某些实际问题。

考点透析:1.以研究函数的单调性、单调区间、极值(最值)等问题为主,与不等式、函数与方程、函数的图象相结合;2.单独考查利用导数研究函数的某一性质以小题呈现,综合研究函数的性质以大题呈现;3.适度关注生活中的优化问题. 3.备考重点:(1) 熟练掌握导数公式及导数的四则运算法则是基础;(2) 熟练掌握利用导数研究函数的单调性、极值(最值)的基本方法,灵活运用数形结合思想、分类讨论思想、函数方程思想等,分析问题解决问题. 二、知识概述: 一)函数的单调性:1.设函数y =f (x )在某个区间内可导,如果0)(>'x f ,则函数y =f (x )为增函数;如果f ' (x )<0,则函数y =f (x )为减函数;如果恒有f ' ( x )=0,则y =f (x )为常函数.2.应当理解函数的单调性与可导性并无本质的联系,甚至具有单调性的函数并不一定连续.我们只是利用可导来研究单调性,这样就将研究的范围局限于可导函数.3.f (x )在区间I 上可导,那么0)(>'x f 是f (x )为增函数的充分条件,例如f (x )=x 3是定义于R 的增函数, 但 f '(0)=0,这说明f '(x )>0非必要条件.)(x f 为增函数,一定可以推出0)(≥'x f ,但反之不一定.4. 讨论可导函数的单调性的步骤: (1)确定)(x f 的定义域;【考点讲解】(2)求)(x f ',令0)(='x f ,解方程求分界点; (3)用分界点将定义域分成若干个开区间;(4)判断)(x f '在每个开区间内的符号,即可确定)(x f 的单调性.5.我们也可利用导数来证明一些不等式.如f (x )、g (x )均在[a 、b ]上连续,(a ,b )上可导,那么令h (x )=f (x )-g (x ),则h (x )也在[a ,b ]上连续,且在(a ,b )上可导,若对任何x ∈(a ,b )有h '(x )>0且 h (a )≥0,则当x ∈(a ,b )时 h (x )>h (a )=0,从而f (x )>g (x )对所有x ∈(a ,b )成立. 二)函数的极、最值: 1.函数的极值 (1)函数的极小值:函数y =f(x)在点x =a 的函数值f(a)比它在点x =a 附近其它点的函数值都小,f′(a)=0,而且在点x =a 附近的左侧f′(x)<0,右侧f′(x)>0,则点a 叫做函数y =f(x)的极小值点,f(a)叫做函数y =f(x )的极小值. (2)函数的极大值:函数y =f(x)在点x =b 的函数值f(b)比它在点x =b 附近的其他点的函数值都大,f′(b)=0,而且在点x =b 附近的左侧f′(x)>0,右侧f′(x)<0,则点b 叫做函数y =f(x)的极大值点,f(b)叫做函数y =f(x)的极大值. 极小值点,极大值点统称为极值点,极大值和极小值统称为极值. 2.函数的最值(1)在闭区间[a ,b ]上连续的函数f(x)在[a ,b ]上必有最大值与最小值.(2)若函数f(x)在[a ,b ]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a ,b ]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.三)高考中全称命题和存在性命题与导数的结合是近年高考的一大亮点,下面结合高考试题对此类问题进行归纳探究相关结论:结论1:1212min max [,],[,],()()[()][()]x a b x c d f x g x f x g x ∀∈∀∈>⇔>; 结论2:1212max min [,],[,],()()[()][()]x a b x c d f x g x f x g x ∃∈∃∈>⇔>; 结论3:1212min min [,],[,],()()[()][()]x a b x c d f x g x f x g x ∀∈∃∈>⇔>; 结论4:1212max max [,],[,],()()[()][()]x a b x c d f x g x f x g x ∃∈∀∈>⇔>;结论5:1212[,],[,],()()()x a b x c d f x g x f x ∃∈∃∈=⇔的值域和()g x 的值域交集不为空.1. 【2019年高考天津理数】已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥【真题分析】在R 上恒成立,则a 的取值范围为( ) A .[]0,1B .[]0,2C .[]0,eD .[]1,e【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立,令2()1x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=----112201x x ⎛⎫⎛⎫=--+-≤-= ⎪ ⎪ ⎪-⎝⎭⎝⎭,当111x x-=-,即0x =时取等号,∴max 2()0a g x ≥=,则0a >. 当1x >时,()ln 0f x x a x =-≥,即ln x a x ≤恒成立,令()ln xh x x=,则2ln 1()(ln )x h x x -'=,当e x >时,()0h x '>,函数()h x 单调递增,当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =,∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e]. 【答案】C2.【优选题】设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数t ,使得()0f t <,则a的取值范围是( ) A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭【解析】本题考点是函数的单调性、存在性问题的综合应用.令()()()21,xg x e x h x ax a =-=-.由题意知存在唯一整数t ,使得()g t 在直线()h x 的下方.()()21'=+xg x ex ,当12x <-时,函数单调递减,当12x >-,函数单调递增,当12x =-时,函数取得最小值为122e --.当0x =时,(0)1g =-,当1x =时,(1)0g e =>,直线()h x ax a =-过定点()1,0,斜率为a ,故()0a g ->且()113g e a a --=-≥--,解得3,12⎡⎫∈⎪⎢⎣⎭a e . 【答案】D3.【2019年高考北京】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤,即实数a 的取值范围是(],0-∞. 【答案】(]1,0--∞4.【优选题】已知函数f (x )=mx 2-x +ln x ,若在函数f (x )的定义域内存在区间D ,使得该函数在区间D 上为减函数,则实数m 的取值范围为________.【解析】f ′(x )=2mx -1+1x =2mx 2-x +1x ,即2mx 2-x +1<0在(0,+∞)上有解.当m ≤0时,显然成立;当m >0时,由于函数y =2mx 2-x +1的图象的对称轴x =14m >0,故只需Δ>0,即1-8m >0,解得m <18.故实数m 的取值范围为⎝⎛⎭⎫-∞,18. 【答案】⎝⎛⎭⎫-∞,18 5.【优选题】若曲线3()ln f x ax x =+存在垂直于y 轴的切线,则实数a 取值范围是_____________. 【解析】 由题意可知'21()2f x ax x=+,又因为存在垂直于y 轴的切线, 所以231120(0)(,0)2ax a x a x x+=⇒=->⇒∈-∞. 【答案 】 (,0)-∞ 6.【2018年江苏卷】若函数()()R a ax x x f ∈+-=1223在()∞+,0内有且只有一个零点,则()x f 在[]11,-上的最大值与最小值的和为________.【解析】本题考点是函数的零点、函数的单调性与最值的综合应用. 由题意可求得原函数的导函数为()0262=-='ax x x f 解得3,0ax x ==,因为函数在()∞+,0上有且只有一个零点,且有()10=f ,所以有03,03=⎪⎭⎫⎝⎛>a f a,因此有3,0133223==+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛a a a a ,函数()x f 在[]01,-上单调递增,在[]10,上单调递减,所以有()()10max ==f x f ,()()41min -=-=f x f ,()()3min max -=+x f x f .【答案】–37.【2018年理新课标I 卷】已知函数()x x x f 2sin sin 2+=,则()x f 的最小值是_____________.【解析】本题考点是函数的单调性、最值与三角函数的综合应用. 由题意可()()⎪⎭⎫ ⎝⎛-+=-+=+='21cos 1cos 42cos 2cos 42cos 2cos 22x x x x x x x f ,所以当21cos <x 时函数单调减,当21cos >x 时函数单调增,从而得到函数的减区间为 ()Z k k k ∈⎥⎦⎤⎢⎣⎡--32,352ππππ,函数的增区间为()Z k k k ∈⎥⎦⎤⎢⎣⎡+-32,32ππππ,所以当()Z k k x ∈-=,32ππ时,函数()x f 取得最小值,此时232sin ,23sin -=-=x x ,所以()23323232min-=-⎪⎪⎭⎫ ⎝⎛-=x f ,故答案是233-. 【答案】233-8.【优选题】已知21()ln (0)2f x a x x a =+>,若对任意两个不等的正实数12x x 、都有1212()()2f x f x x x ->-恒成立,则a 的取值范围是 . 【解析】由题意可知()'2af x x x=+≥(x >0)恒成立,∴22a x x ≥-恒成立, 令()()22211g x x x x =-=--+则()max x g a ≥,∵()22g x x x =-为开口方向向下,对称轴为x =1的抛物线,∴当x =1时,()22g x x x =-取得最大值()11=g ,∴1≥a 即a 的取值范围是[1,+∞).【答案】[)1,+∞9. 【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.【解析】(1)2()622(3)f x x ax x x a '=-=-.令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞⎪⎝⎭U 时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l ]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-. (ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =,与0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =或a =-或a =0,与0<a <3矛盾.综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1.10.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x +>(1)当34a =-时,求函数()f x 的单调区间;(2)对任意21[,)e x ∈+∞均有()f x ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.【解析】(1)当34a =-时,3()ln 04f x x x =->.3()4f 'x x =-+=()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得04a <≤.当04a <≤时,()f x ≤2ln 0x ≥.令1t a=,则t ≥.设()22ln ,g t tx t =≥2()2ln g t t x=-.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-==. 故所以,()(1)0p x p ≥=.因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,()g t g =….令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫ ⎪⎝⎭„. 由(i )得,11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x .因此()0g t g =>…. 由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞…,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2f x a „. 综上所述,所求a的取值范围是0,4⎛ ⎝⎦. 【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)0,4⎛ ⎝⎦.1.设函数a ax x x x f -+--=53)(23,若存在唯一的正整数0x ,使得0)(0<x f ,则a 的取值范围是( )A .)31,0( B .]45,31( C .]23,31( D .]23,45(【解析】当32a =时,3237()322f x x x x =--+,()()20,30f f <<,不符合题意,故排除C ,D.当54a =时,32515()344f x x x x =--+,()()()()10,20,30,40f f f f ><=>,故54a =符合题意.【答案】B2.设函数()(21)xf x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( ) A .3[,1)2e -B .33[,)24e - C .33[,)24e D .3[,1)2e【解析】 ()0(21)xf x e x ax a <⇔-<-,记()(21)xg x e x =-,则题意说明存在唯一的整数0x ,使()g x 的图象在直线y ax a =-下方,【模拟考场】'()(21)x g x e x =+,当12x <-时,'()0g x <,当12x >-时,'()0g x >,因此当12x =-时,()g x 取得极小值也是最小值21()22g e --=-,又(0)1g =-,(1)0g e =>,直线y ax a =-过点(1,0)且斜率为a ,故1(0)1(1)3a g g e a a-->=-⎧⎨-=-≥--⎩,解得312a e≤<. 【答案】D3.若函数()()2ln 201x f x a x x a m a a =+-⋅-->≠且有两个零点,则m 的取值范围( ) A.()1,3- B.()3,1- C.()3,+∞ D.(),1-∞- 【解析】考查函数()2ln xg x a x x a m =+--,则问题转化为曲线()y g x =与直线2y =有两个公共点,则()()ln 2ln 1ln 2x x g x a a x a a a x '=+-=-+,则()00g '=, 当01a <<时,ln 0a <,当0x <时,10x a ->,()1ln 0x a a -<,20x <,则()1ln 20x a a x -+<, 当0x >,10x a -<,()1ln 0x a a ->,20x >,则()1ln 20x a a x -+>,此时,函数()2ln xg x a x x a m =+--在区间(),0-∞上单调递减,在区间()0,+∞上单调递增,同理,当1a >时,函数()2ln xg x a x x a m =+--在区间(),0-∞上单调递减,在区间()0,+∞上单调递增,因此函数()2ln xg x a x x a m =+--在0x =处取得极小值,亦即最小值,即()()min 01g x g m ==-,)由于函数()()2ln 201x f x a x x a m a a =+-⋅-->≠且有两个零点, 结合图象知12m -<,解得13m -<<,故选A. 【答案】A 4. (1)求函数()f x 的单调区间;(2)若当[]1,2x ∈-时()f x m <恒成立,求m 的取值范围 【解析】试题分析:(1)由原函数求出导数,通过导数的正负求出相应的单调区间(2)将不等式恒成立问题转化为求函数的最值问题,本题中需求函数()f x 的最大值,可通过导数求解.试题解析:(1)由()'2320fx x x =--> 得1x >或()1,+∞(2上递减,在区间[]1,2上递增,又,所以在区间[]1, 2-上max 7f =要使()f x m <恒成立,只需7m >即可.【答案】(1,()1,+∞ 2)7m >5.【2018年高考全国Ⅰ卷理数】已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.【解析】(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,2a x =或2a x =.当)x ∈+∞U 时,()0f x '<;当x ∈时,()0f x '>.所以()f x在)+∞单调递减,在单调递增. (2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >. 由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--. 6.已知函数()ln 2a xf x x x =++. (1)求函数()f x 的单调区间;(2)设函数()()ln 1g x x x f x =+-,若1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x >恒成立,求实数a 的取值范围.【解析】(1)()f x 的定义域为()0,+∞,()222112222a x x af x x x x +-'=-+=,令()0f x '=,则2220x x a +-=,480a ∆=+>时,即12a >-,方程两根为11x ==--2x =-122x x +=-,122x x a =-,①当12a ≤-时,0∆≤,()0f x '≥恒成立,()f x 的增区间为()0,+∞;②当102a -<≤时,1220x x a =-≥,10x <,20x ≤,()0,x ∈+∞时,()0f x '≥,()f x 的增区间为()0,+∞;③当0a >时,10x <,20x >,当()20,x x ∈时,()0f x '<,()f x 单调递减,当()2+x x ∈∞,时,()0f x '>,单调递增;综上,当0a ≤时,()f x 的增区间为()0,+∞; 当0a >时,()f x的减区间为(0,1-,增区间为()1-+∞.(2)1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x >恒成立,即ln ln 102a x x x x x ---+>,∴22ln ln 2x a x x x x x <--+,令()221ln ln 22x h x x x x x x x ⎛⎫=--+> ⎪⎝⎭,()2ln ln 11h x x x x x x '=+---+,()()21ln h x x x '=-,当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 单调递减;当()1+x ∈∞,时,()0h x '>,()h x 单调递减; ∴()()min 112h x h ==,∴12a <,则实数a 的取值范围时12⎛⎫-∞ ⎪⎝⎭,.【答案】(1)当0a ≤时,()f x 的增区间为()0,+∞;当0a >时,()f x的减区间为(0,1-,增区间为()1-+∞;(2)12⎛⎫-∞ ⎪⎝⎭,.7.已知函数f (xln x .(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2;(Ⅱ)若a ≤3−4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.【解析】(Ⅰ)函数f (x)的导函数1()f x x '=-,由12()()f x f x ''=1211x x -=-, 因为12x x ≠12+==≥ 因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +=+=.设()ln g x x =,则1()4)4g x x'=, 所以所以g (x )在[256,+∞)上单调递增,故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-. (Ⅱ)令m =()e a k -+,n =21()1a k++,则f (m )–km –a >|a |+k –k –a ≥0, f (n )–kn –a <)a n k n --≤)n k -<0,所以,存在x 0∈(m ,n )使f (x 0)=kx 0+a , 所以,对于任意的a ∈R 及k ∈(0,+∞),直线y =kx +a 与曲线y =f (x )有公共点. 由f (x )=kx +a 得k =设()h x =22ln )1)((12x ag x x x a x h '=-+--+=,其中(n )l g x x -=. 由(Ⅰ)可知g (x )≥g (16),又a ≤3–4ln2,故–g (x )–1+a ≤–g (16)–1+a =–3+4ln 2+a ≤0, 所以h ′(x )≤0,即函数h (x )在(0,+∞)上单调递减,因此方程f (x )–kx –a =0至多1个实根. 综上,当a ≤3–4ln 2时,对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点. 8.【优选题】已知函数21()(2)2ln 2f x x a x a x =-++(0)a >. (1)若曲线()y f x =在点(1,(1))f 处的切线为2y x b =+,求2a b +的值; (2)讨论函数()f x 的单调性;(3)设函数()(2)g x a x =-+,若至少存在一个0[,4]x e ∈,使得00()()f x g x >成立,求实数a 的取值范围.【解析】本题是函数的综合问题.(1)()f x 的定义域为(0,)+∞,2()(2)'=-++a f x x a x, ∴1(1)(2)22f a b =-+=+,(1)1(2)22'=-++=f a a , 解得132,2a b ==-,∴210a b +=-.(2)2(2)2(2)()()-++--'==x a x a x x a f x x x,当2a =时,()0(0,)'≥⇒∈+∞f x x ,∴()f x 的单调增区间为(0,)+∞.当02a <<时,由'()0(0,)(2,)f x x a >⇒∈+∞U ,∴()f x 的单调增区间为(0,)a ,(2,)+∞由'()0(,2)f x x a <⇒∈,∴()f x 的单调减区间为(,2)a .当2a >时,由'()0(0,2)(,)f x x a >⇒∈+∞U ,∴()f x 的单调增区间为(0,2),(,)a +∞由'()0(2,)f x x a <⇒∈,∴()f x 的单调减区间为(2,)a .综上所述:当2a =时,'()0(0,)f x x ≥⇒∈+∞,∴()f x 的单调增区间为(0,)+∞,当02a <<时,∴()f x 的单调增区间为(0,)a ,(2,)+∞,()f x 的单调减区间为(,2)a 当2a >时,∴()f x 的单调增区间为(0,2),(,)a +∞,()f x 的单调减区间为(2,)a .(3)若至少存在一个0[,4]x e ∈,使得00()()f x g x >,∴212ln 02x a x +>, 当[,4]x e ∈时,ln 1x >,∴2122ln xa x>-有解,令212()ln x h x x=-,∴min 2()a h x >.2'22111ln (ln )22()0(ln )(ln )x x x x x x h x x x -⋅-=-=-<, ∴()h x 在[,4]e 上单调递减,min 4()(4)ln 2h x h == ∴42ln 2a >得,2ln 2a >. 9.【2018山东模拟】设函数0),(,)1(31)(223>∈-++-=m R x x m x x x f 其中 (Ⅰ)当时,1=m 曲线))(,在点(11)(f x f y =处的切线斜率.(Ⅱ)求函数的单调区间与极值;(Ⅲ)已知函数)(x f 有三个互不相同的零点0,21,x x ,且21x x <.若对任意的],[21x x x ∈,)1()(f x f > 恒成立,求m 的取值范围.【解析 】本小题主要考查导数的几何意义,导数的运算,以及函数与方程的根的关系解不等式等基础知识,考查综合分析问题和解决问题的能力. (1)当1)1(,2)(,31)(1'2/23=+=+==f x x x f x x x f m 故时, 所以曲线))(,在点(11)(f x f y =处的切线斜率为1.(2) 12)(22'-++-=m x x x f ,令0)('=x f ,得到m x m x +=-=1,1因为m m m ->+>11,0所以当x 变化时,)(),('x f x f 的变化情况如下表:x )1,(m --∞m -1)1,1(m m +-m +1),1(+∞+m)('x f+0 - 0 +)(x f极小值极大值)(x f 在)1,(m --∞和),1(+∞+m 内减函数,在)1,1(m m +-内增函数。

高中数学。三角形中的最值、范围问题。练习题(含答案)

高中数学。三角形中的最值、范围问题。练习题(含答案)

高中数学。

三角形中的最值、范围问题。

练习题(含答案)解三角形问题是高考高频考点。

主要利用三角形的内角和定理、正弦定理、余弦定理、三角形面积公式等知识解题。

在解题过程中,需要灵活利用三角形的边角关系进行“边转角”“角转边”。

另外,要注意a+c。

ac。

a+c三者的关系。

高考中经常将三角变换与解三角形知识综合起来命题。

如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到。

而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式。

正弦定理的主要作用是方程和分式中的边角互化。

其原则为关于边,或是角的正弦值是否具备齐次的特征。

如果齐次则可直接进行边化角或是角化边,否则不可行。

例如:(1)sinA+sinB-sinAsinB=sinC。

可化为a+b-ab=c;(2)bcosC+ccosB=a 可化为sinBcosC+sinCcosB=sinA(恒等式);(3) bcsinBsinC/2=asinA/2.余弦定理为a²=b²+c²-2bccosA。

变式为a=(b+c)-2bc(1+cosA)。

此公式在已知a,A的情况下,配合均值不等式可得到b+c和bc的最值。

在三角形中,任意两边之和大于第三边。

在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可。

在求最值时使用较少。

另外,在三角形中,边角以及角的三角函数值存在等价关系。

例如a>b则A>B,则sinA>sinB,cosAB 则cosAB则sinA>sinB仅在一个三角形内有效。

解三角形中处理不等关系的几种方法包括:(1)转变为一个变量的函数;(2)利用均值不等式求得最值。

例如,已知四边形面积为S1、S2、S3、S4,则S1+S2+S3+S4的最大值为多少?答案】1) $\frac{b}{a}=\frac{\sqrt{3}+1}{2}$;2) $a+b+c$ 的最大值为 $2\sqrt{3}+\sqrt{6}$。

2018届高考数学理科全国通用一轮总复习课件:第八章 平面解析几何 8.1 精品

2018届高考数学理科全国通用一轮总复习课件:第八章 平面解析几何 8.1 精品

.
64 3
【解析】当α∈[ , ) 时,k=tanα∈[ 3 ,1);
64
3
当α∈ [2 , )时,k=tanα∈[ 3,0).
3
综上k∈[ 3,0) [ 3 ,1).
3
答案:[ 3,0) [ 3 ,1)
3
【加固训练】
1.直线xsin2-ycos2=0的倾斜角的大小是 ( )
A. 1
B. 2
且斜率为 3 .则直线l的方程为 ( )
4
A.3x+4y-14=0
B.3x-4y+14=0
C.4x+3y-14=0
D.4x-3y+14=0
【解析】选A.由点斜式得y-5=- 3 (x+2),即3x+4y-14=0.
4
感悟考题 试一试 3.(2016·淄博模拟)已知ab>0,bc>0,则直线ax+by=c通 过( ) A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限
4
4
4
【解析】选C.当a=0时,两直线的斜率都不存在,
它们的方程分别是x=1,x=-1,显然两直线是平行的.
当a≠0时,两直线的斜率都存在,故它们的斜率相等,
由 2a 1 a解得1a, =
1 2a 1
1, 4
综上,a=0或 1 .
4
考向一 直线的倾斜角与斜率
【典例1】(1)(2016·菏泽模拟)直线2xcosα-y-3=0
名 称 已知条件
方程
适用范围
点斜式
斜率k与点 (x1,y1)
_y_-_y_1_=_k_(_x_-_x_1)_ 不含直线x=x1
斜率k与直线 斜截式 在y轴上的截

2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

2018高考数学(理)大一轮复习课件:第三章 导数及其应用 第二节 导数与函数的单调性

2018高考数学(理)大一轮复习课件:第三章 导数及其应用 第二节 导数与函数的单调性

1 由曲线y=f(x)在点(1,f(1))处的切线垂直于直线y= 2 x, 3 5 知f′(1)=-4-a=-2,解得a=4.
x2-4x-5 x 5 3 所以f(x)=4+4x-ln x-2,则f′(x)= , 4x2 令f′(x)=0,解得x=-1或x=5, 因x=-1不在f(x)的定义域(0,+∞)内,故舍去. 当x∈(0,5)时,f′(x)<0,故f(x)在(0,5)内为减函数; 当x∈(5,+∞)时,f′(x)>0,故f(x)在(5,+∞)内为增 函数. 所以函数f(x)的单调递增区间为(5,+∞),单调递减区 间为(0,5).
值对不等式解集的影响进行分类讨论.
求函数的单调区间
[例2] x a 3 已知函数f(x)= 4 + x -ln x- 2 ,其中a∈R,且曲
1 线y=f(x)在点(1,f(1))处的切线垂直于直线y= 2 x,求函数f(x) 的单调区间.
[解]
1 a 1 对f(x)求导得f′(x)=4-x2-x,
第二节 导数与 函数的 单调性
本节主要包括2个知识点: 1.利用导数讨论函数的单调性或求函数的单调区间; 2.利用导数解决函数单调性的应用问题.
突破点(一)
基础联通
利用导数讨论函数的单调性或求函数的单调区间
抓主干知识的“源”与“流”
1.函数的单调性与导数的关系 函数y=f(x)在某个区间内可导: (1)若f′(x)>0,则f(x)在这个区间内 单调递增 ; (2)若f′(x)<0,则f(x)在这个区间内 单调递减 ; (3)若f′(x)=0,则f(x)在这个区间内是 常数函数 .
考点贯通
抓高考命题的“形”与“神”
证明或讨论函数的单调性
判断函数单调性的三种方法

专题2.3 平面向量中范围、最值等综合问题 高考数学选填题压轴题突破讲义(解析版)

专题2.3 平面向量中范围、最值等综合问题  高考数学选填题压轴题突破讲义(解析版)

一.方法综述平面向量中的最值与范围问题是一种典型的能力考查题,能有效地考查学生的思维品质和学习潜能,能综合考察学生分析问题和解决问题的能力,体现了高考在知识点交汇处命题的思想,是高考的热点,也是难点,其基本题型是根据已知条件求某个变量的范围、最值,比如向量的模、数量积、向量夹角、系数的范围的等,解决思路是建立目标函数的函数解析式,转化为求函数(二次函数、三角函数)的最值或应用基本不等式,同时向量兼顾“数”与“形”的双重身份,所以解决平面向量的范围、最值问题的另外一种思路是数形结合,应用图形的几何性质.二.解题策略类型一与向量的模有关的最值问题【例1】【安徽省黄山市2019届高三一模】如图,在中,,,为上一点,且满足,若的面积为,则的最小值为()A.B.C.D.【答案】B【解析】设,,则三角形的面积为,解得,由,且C,P,D三点共线,可知,即,故.以所在直线为轴,以点为坐标原点,过点作的垂线为轴,建立如图所示的坐标系,则,,,,则,,,则(当且仅当即时取“=”).故的最小值为.【指点迷津】三点共线的一个向量性质:已知O、A、B、C是平面内的四点,则A、B、C三点共线的充要条件是存在一对实数、,使,且.【举一反三】1、【宁夏六盘山高级中学2019届高三下学期二模】如图,矩形中边的长为,边的长为,矩形位于第一象限,且顶点分别位于轴、轴的正半轴上(含原点)滑动,则的最大值为()A.B.C.D.【答案】B【解析】如图,设,则因为所以则所以的最大值为所以选B2、【浙江省湖州三校2019年高考模拟】已知向量,的夹角为,且,则的最小值为()A.B.C.5 D.【答案】B【解析】由题意可设,,因此表示直线上一动点到定点距离的和,因为关于直线的对称点为,所以选B.3、【四川省成都外国语学校2019届高三3月月考】在平面直角坐标系中,,若,则的最小值是()A.B.C.D.【答案】C【解析】由于,即,即,所以在以原点为圆心,半径为的圆上.得到三点共线.画出图像如下图所示,由图可知,的最小值等于圆心到直线的距离减去半径,直线的方程为,圆心到直线的距离为,故的最小值是,故选C.类型二与向量夹角有关的范围问题【例2】【四川省成都市实验外国语学校2019届高三10月月考】已知向量与的夹角为,,,,,在时取得最小值若,则夹角的取值范围是______.【答案】【解析】,,,在时取得最小值解可得:则夹角的取值范围本题正确结果:【指点迷津】求变量的取值范围、最值,往往要将目标函数用某个变量表示,转化为求函数的最值问题,期间要注意变量之间的关系,进而得解. 【举一反三】1、非零向量b a ,满足b a2=22b a,2|||| b a,则b a 与的夹角的最小值是 .【答案】3【解析】由题意得2212a b a b r r r r ,24a b r r ,整理得22422a b a b a b r r r r r r ,即1a b r11cos ,22a b a b a b a b r rr r r r r r ,,3a b r r ,夹角的最小值为3 .2、【上海市2019年1月春季高考】在椭圆上任意一点,与关于轴对称,若有,则与的夹角范围为____________【答案】【解析】 由题意:,设,,因为,则与结合,又与结合,消去,可得:所以本题正确结果:类型三 与向量投影有关的最值问题【例3】【辽宁省沈阳市郊联体2019届高三一模】若平面向量,满足||=|3|=2,则在方向上的投影的最大值为( ) A .B .C .D .【答案】A 【解析】 因为,所以,在方向上的投影为,其中为,的夹角.又,故.设,则有非负解,故, 故,故,故选A .【指点迷津】向量的数量积有两个应用:(1)计算长度或模长,通过用;(2)计算角,.特别地,两个非零向量垂直的充要条件是.另外,的几何意义就是向量在向量的投影与模的乘积,向量在向量的投影为.【举一反三】1、已知ABC 的外接圆的圆心为O ,半径为2,且0OA AB AC u u u v u u u v u u u v v ,则向量CA u u u v 在向量CB u u u v方向上的投影为( ) A. 3 B. 3 C. -3 D. 3 【答案】B本题选择B 选项.2、设1,2OA OB u uu v u u u v , 0OA OB u u u v u u u v , OP OA OB u u u v u u u v u u u v ,且1 ,则OA u u u v 在OP uuu v 上的投影的取值范围( ) A. 25-,15B.25,15C. 5,15D. 5-,15【答案】D当λ0 时, 0,x当222215λ8λ4482λ0521x λλλλ,故当λ1 时,1x 取得最小值为1,即1101x x, 当λ0 时, 222215844825215x,即15x 505x综上所述 5( ,1x故答案选D 类型四 与平面向量数量积有关的最值问题 【例4】【辽宁省鞍山市第一中学2019届高三一模】中,,,,且,则的最小值等于 A .B .C .D .【答案】C 【解析】 由题意知,向量,且,可得点D 在边BC 上,,所以,则,即,所以时以C 为直角的直角三角形.如图建立平面直角坐标系,设,则, 则,,当时,则最小,最小值为.故选:C .【指点迷津】平面向量数量积的求法有:①定义法;②坐标法;③转化法;其中坐标法是同学们最容易忽视的解题方法,要倍加注视,若有垂直或者容易出现垂直的背景可建立平面直角坐标系,利用坐标法求解.【举一反三】1、已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE DC u u u r u u u r的最大值为( )A. 1B. 12C. 3D. 2【答案】A2、【辽宁省鞍山市第一中学2019届高三一模】中,,,,且,则的最小值等于 A .B .C .D .【答案】C 【解析】 由题意知,向量,且,可得点D 在边BC 上,,所以,则,即,所以时以C 为直角的直角三角形.如图建立平面直角坐标系,设,则, 则,,当时,则最小,最小值为.故选:C .3、已知圆的半径为2,是圆上任意两点,且,是圆的一条直径,若点满足(),则的最小值为( )A. -1B. -2C. -3D. -4 【答案】C类型五 平面向量系数的取值范围问题【例5】在矩形ABCD 中, 12AB AD ,,动点P 在以点C 为圆心且与BD 相切的圆上,若AP AB AD u u u v u u u v u u u v,则 的最大值为( )A. 3B. 22C. 5D. 2【答案】A∴圆的方程为(x ﹣1)2+(y ﹣2)2=45, 设点P 25cosθ+1, 25), ∵AP AB AD u u u v u u u v u u u v,25, 25sinθ+2)=λ(1,0)+μ(0,2)=(λ,2μ), ∴55cosθ+1=λ, 55sinθ+2=2μ, ∴255(θ+φ)+2,其中tanφ=2, ∵﹣1≤sin (θ+φ)≤1, ∴1≤λ+μ≤3,故λ+μ的最大值为3, 故选:A【指点迷津】(1)向量的运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题;(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题; (3)向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题. 【举一反三】1、【云南省昆明市云南师范大学附属中学2019届高三上学期第四次月考】已知正方形ABCD 的边长为1,动点P 满足,若,则的最大值为A .B .C .D .【答案】C 【解析】解:以A 为原点建立如图所示的直角坐标系:则,,,,设, ,则由得,化简得:,又,,,,表示圆上的点到原点的距离得平方,其最大值等于圆心到原点的距离加半径的平方,即,故选:C .2.已知1,3,0OA OB OA OB u u u v u u u v u u u v u u u v ,点C 在AOB 内,且OC u u u v 与OA u u u v 的夹角为030,设,OC mOA nOB m n R u u u v u u u v u u u v ,则mn的值为( )A. 2B. 52C. 3D. 4【答案】C 【解析】如图所示,建立直角坐标系.由已知1,3,OA OB u u u v u u u v,,则10033OA OB OC mOA nOB m n u u u r u u u r u u u r u u u r u u u r(,),(,),(,), 33303n tan m, 3mn. 故选B3.【上海市金山区2019届高三二模】正方形ABCD 的边长为2,对角线AC 、BD 相交于点O ,动点P 满足,若,其中m 、n R ,则的最大值是________【答案】 【解析】建立如图所示的直角坐标系,则A (﹣1,﹣1),B (1,﹣1),D (﹣1,1),P (,),所以(1,sinθ+1),(2,0),(0,2),又,所以,则,其几何意义为过点E (﹣3,﹣2)与点P (sinθ,cosθ)的直线的斜率,设直线方程为y +2k (x +3),点P 的轨迹方程为x 2+y 2=1,由直线与圆的位置关系有:,解得:,即的最大值是1,故答案为:1类型六 平面向量与三角形四心的结合【例6】已知ABC 的三边垂直平分线交于点O , ,,a b c 分别为内角,,A B C 的对边,且 222c b b ,则AO BC u u u v u u u v的取值范围是__________.【答案】2,23【指点迷津】平面向量中有关范围最值问题的求解通常有两种思路:①“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;②“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.【举一反三】1、如图,为的外心,为钝角,是边的中点,则的值为()A. 4B.C.D.【答案】B2.已知点O 是锐角三角形ABC 的外心,若OC mOA nOB u u u v u u u v u u u v(m , n R ),则( )A. 2m nB. 21m nC. 1m nD. 10m n 【答案】C【解析】∵O 是锐角△ABC 的外心,∴O 在三角形内部,不妨设锐角△ABC 的外接圆的半径为1,又OC mOA nOB u u u v u u u v u u u v ,∴|OC u u u v |=| mOA nOB u u u v u u u v |,可得2OC u u u v =22m OA u u u v +22n OB u u u v +2mn OA u u u v ⋅OB uuu v ,而OA u u u v ⋅OB uuu v =|OA u u u v|⋅|OB uuu v |cos ∠A 0B <|OA u u u v |⋅|OB uuu v|=1.∴1=2m +2n +2mn OA u u u v ⋅OB uuu v<22m n +2mn ,∴m n <−1或m n >1,如果m n >1则O 在三角形外部,三角形不是锐角三角形, ∴m n <−1, 故选:C.3、在ABC 中, 3AB , 5AC ,若O 为ABC 外接圆的圆心(即满足OA OB OC ),则·AO BC u u u v u u u v的值为__________. 【答案】8【解析】设BC 的中点为D ,连结OD ,AD ,则OD BC u u u v u u u v,则:222212121538.2AO BC AD DO BC AD BCAB AC AC AB AC ABu u u v u u u v u u u v u u u v u u u v u u u v u u u v u u uv u u u v u u u v u u u v u u uv u u u v三.强化训练1.【宁夏平罗中学2019届高三上期中】已知数列是正项等差数列,在中,,若,则的最大值为()A.1 B.C. D.【答案】C【解析】解:∵,故三点共线,又∵,∴,数列是正项等差数列,故∴,解得:,故选:C.2.【山东省聊城市第一中学2019届高三上期中】已知M是△ABC内的一点,且,,若△MBC,△MCA和△MAB的面积分别为1,,,则的最小值是()A.2 B.8 C.6 D.3【答案】D【解析】∵,,∴,化为.∴.∴.则,而=5+4=9,当且仅当,即时取等号,故的最小值是9,故选:D.3.【贵州省凯里市第一中学2019届高三下学期模拟《黄金卷三》】已知是边长为的正三角形,且,,设函数,当函数的最大值为-2时,()A.B.C.D.【答案】D【解析】,因为是边长为的正三角形,且,所以又因,代入得所以当时,取得最大,最大值为所以,解得,舍去负根.故选D项.4.【辽宁省鞍山市第一中学2019届高三一模】已知平面向量,,满足,若,则的最小值为A.B.C.D.0【答案】B【解析】因为平面向量,,满足,,,,设,,,,所以的最小值为.故选:B.5.已知直线分别于半径为1的圆O相切于点若点在圆O的内部(不包括边界),则实数的取值范围是( )A. B. C. D.【答案】B6.【河南省南阳市第一中学2019届高三第十四次考试】已知是平面内两个互相垂直的单位向量,若向量满足,则的最大值是()A.1 B.2 C.D.【答案】C【解析】解:以所在直线建立平面直角坐标系,设,,,因为所以,即,故,令(为参数),所以,因为,所以,,故选C.7.【四川省成都市外国语学校2019届高三一诊】如图所示,在中,,点在线段上,设,,,则的最小值为()A.B.C.D.【答案】D【解析】解:.∵,,三点共线,∴.即.由图可知.∴.令,得,令得或(舍).当时,,当时,.∴当时, 取得最小值故选:D.8.【安徽省宣城市 2019 届高三第二次调研】在直角三角形中,边 的中线 上,则的最大值为( ).,,A.B.C.D.【答案】B 【解析】 解:以 A 为坐标原点,以 AB,AC 方向分别为 x 轴,y 轴正方向建立平面直角坐标系, 则 B(2,0),C(0,4),中点 D(1,2)设,所以,,在 斜时,最大值为 .故选:B. 二、填空题 9.在△ABC 中,角 A,B,C 所对的边分别为 a,b,c.若对任意 λ∈R,不等式则 的最大值为_____. 【答案】2【解析】由,两边平方得,,则则,又,则,即,由 ,从而,即,从而问题可得解.恒成立, ,,2110.【2019 年 3 月 2019 届高三第一次全国大联考】已知 的内角 所对的边分别为 ,向量,,且,若 ,则 面积的最大值为________.【答案】 【解析】由 ,得,整理得.由余弦定理得,因为,所以.又所以,,当且仅当 时等号成立,所以,即.故答案为: . 11.【四川省广元市 2019 届高三第二次高考适应】在等腰梯形 ABCD 中,已知,,,,动点 E 和 F 分别在线段 BC 和 DC 上,且,【答案】【解析】解:等腰梯形 ABCD 中,已知,,,,,,,,,则的最小值为______.,22, ,则当且仅当即 时有最小值故答案为:12.【上海市七宝中学 2019 届高三下学期开学】若边长为 6 的等边三角形 ABC,M 是其外接圆上任一点,则的最大值为______.【答案】【解析】解:是等边三角形, 三角形的外接圆半径为 ,以外接圆圆心 为原点建立平面直角坐标系,设,.设,则,..23的最大值是.故答案为.13.【天津市第一中学 2019 届高三下学期第四次月考】在线段 以点 为中点,则的最大值为________【答案】0 【解析】中,已知 为直角,,若长为 的即 14.【安徽省黄山市 2019 届高三第二次检测】已知 是锐角,则 的取值范围为________.【答案】 【解析】 设 是 中点,根据垂径定理可知,依题意的最大值为 0. 的外接圆圆心, 是最大角,若,即,利用正弦定理化简得.由于,所以,即.由于 是锐角三角形的最大角,故,故.15.【北京市大兴区 2019 届高三 4 月一模】已知点,,点 在双曲线的取值范围是_________.的右支上,则24【答案】【解析】设点 P(x,y),(x>1),所以,因为,当 y>0 时,y=,所以,由于函数在[1,+∞)上都是增函数,所以函数在[1,+∞)上是增函数,所以当 y>0 时函数 f(x)的最小值=f(1)=1.即 f(x)≥1.当 y≤0 时,y=,所以,由于函数 所以函数在[1,+∞)上都是增函数, 在[1,+∞)上是减函数,所以当 y≤0 时函数 k(x)>0.综上所述,的取值范围是.16.【上海市青浦区 2019 届高三二模】已知 为的外心,,大值为________【答案】【解析】设的外接圆半径为 1,以外接圆圆心为原点建立坐标系,因为,所以,不妨设,,,则,,,因为,所以,,则 的最25解得,因为 在圆上,所以 即, ,所以,所以,解得或,因为 只能在优弧 上,所以,故26。

高三数学 含有参数的方程(或不等式)中的“任意性”与“存在性”压轴题训练

高三数学 含有参数的方程(或不等式)中的“任意性”与“存在性”压轴题训练

高三数学含有参数的方程(或不等式)中的“任意性”与“存在性”压轴题训练含有参数的方程(或不等式)中的“任意性”与“存在性”问题历来是高考考查的一个热点,也是高考复习中的一个难点.破解的关键在于将它们等价转化为熟悉的基本初等函数的最值或值域问题,而正确区分“任意性”与“存在性”问题也是解题的关键.技法一 “∀x ,使得f (x )>g (x )”与“∃x ,使得f (x )>g (x )”的辨析 (1)∀x ,使得f (x )>g (x ),只需h (x )min =[f (x )-g (x )]min >0.如图①.(2)∃x ,使得f (x )>g (x ),只需h (x )max =[f (x )-g (x )]max >0.如图②.[典例] 设函数f (x )=ln(1+x ),g (x )=af ′(x ),其中f ′(x )是f (x )的导函数. (1)若对于任意x ≥0,总有f (x )≥g (x ),求实数a 的取值范围; (2)若存在x ≥0,使得f (x )≥g (x ),求实数a 的取值范围. [方法演示]解:(1)设h (x )=f (x )-g (x )=ln(1+x )-a1+x (x ≥0).h ′(x )=11+x +a (1+x )2=x +1+a (1+x )2.当a ≥-1时,h ′(x )≥0,h (x )在[0,+∞)上单调递增, ∴h (x )≥h (0)=-a ,则-a ≥0,a ≤0,∴a ∈[-1,0].当a <-1时,对于x ∈(0,-a -1)有h ′(x )<0,则h (x )在(0,-a -1)上单调递减,所以h (-a -1)<h (0)=0,即此时存在x >0,使得h (x )<0,即f (x )≥g (x )在[0,+∞)上不恒成立.综上可知,实数a 的取值范围为[-1,0].(2)由(1)可知,当a ≥-1时,存在x ≥0,使得f (x )≥g (x ), 当a <-1时,令x 0=e -a -1,则x 0>0, ∴h (x 0)=-a (1+e a )>0,∴必存在x ≥0,使得f (x )≥g (x ).综上可知,实数a 的取值范围是(-∞,+∞). [解题师说](1)这是较为常见的一类恒成立问题,运用数形结合的思想可知,当x 0≥0时,总有f (x 0)≥g (x 0),即f (x 0)-g (x 0)≥0(注意不是f (x )min ≥g (x )max ),可以转化为当x ≥0时,h (x )=f (x )-g (x )≥0恒成立问题.(2)存在x ≥0,使得f (x )≥g (x ),即至少有一个x 0≥0,满足f (x 0)-g (x 0)不是负数,可以转化为当x ≥0时,h (x )=f (x )-g (x )的函数值至少有一个是非负数.[应用体验]1.设函数f (x )=x 3-x 2-3. (1)求f (x )的单调区间;(2)若函数y =f (x )-m 在区间[-1,2]上有三个零点,求实数m 的取值范围;(3)设函数g (x )=ax +x ln x ,如果对任意的x 1,x 2∈⎣⎡⎦⎤12,2,都有f (x 1)≤g (x 2)成立,求实数a 的取值范围.解:(1)f ′(x )=3x 2-2x =x (3x -2). 由f ′(x )>0,得x <0或x >23;由f ′(x )<0,得0<x <23,所以f (x )的单调递增区间是(-∞,0),⎝⎛⎭⎫23,+∞,单调递减区间是⎝⎛⎭⎫0,23. (2)令h (x )=f (x )-m ,则h (x )=x 3-x 2-3-m , h ′(x )=3x 2-2x =x (3x -2),由(1)知函数h (x )在x =0处取得极大值h (0)=-3-m ,在x =23处取得极小值h ⎝⎛⎭⎫23=-8527-m . 因为函数y =f (x )-m 在区间[-1,2]上有三个零点,所以⎩⎪⎨⎪⎧h (-1)=-5-m ≤0,h (0)=-3-m >0,h ⎝⎛⎭⎫23=-8527-m <0,解得-8527<m <-3,h (2)=1-m ≥0,所以实数m 的取值范围是⎝⎛⎭⎫-8527,-3. (3)由(1)知,函数f (x )在⎝⎛⎭⎫12,23上单调递减,在⎝⎛⎭⎫23,2上单调递增, 而f ⎝⎛⎭⎫12=-258,f (2)=1,故f (x )在区间⎣⎡⎦⎤12,2上的最大值为f (2)=1. 因为“对任意的x 1,x 2∈⎣⎡⎦⎤12,2,都有f (x 1)≤g (x 2)成立”等价于“对任意x ∈⎣⎡⎦⎤12,2,g (x )≥f (x )max 恒成立”.即当x ∈⎣⎡⎦⎤12,2时,g (x )=ax +x ln x ≥1恒成立, 即a ≥x -x 2ln x 恒成立.记u (x )=x -x 2ln x ,则有a ≥u (x )max . u ′(x )=1-x -2x ln x ,可知u ′(1)=0. 当x ∈⎝⎛⎭⎫12,1时,1-x >0,2x ln x <0, 则u ′(x )>0,u (x )在⎝⎛⎭⎫12,1上单调递增; 当x ∈(1,2)时,1-x <0,2x ln x >0, 则u ′(x )<0,u (x )在(1,2)上单调递减. 故u (x )在区间⎣⎡⎦⎤12,1上的最大值为u (1)=1, 所以实数a 的取值范围是[1,+∞).技法二 “若∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)=g (x 2)”与“∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)=g (x 2)”的辨析(1)∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)=g (x 2)等价于函数f (x )在D 1上的值域A 与g (x )在D 2上的值域B 的交集不是空集,即A ∩B ≠∅,如图③.其等价转化的目标是两个函数有相等的函数值.(2)∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)=g (x 2)等价于函数f (x )在D 1上的值域A 是g (x )在D 2上的值域B 的子集,即A ⊆B ,如图④.其等价转化的目标是函数y =f (x )的值域都在函数y =g (x )的值域之中.说明:图③,图④中的条形图表示函数在相应定义域上的值域在y 轴上的投影. [典例] 已知函数f (x )=x 2-23ax 3,a >0,x ∈R ,g (x )=1x 2(1-x ).(1)若∃x 1∈(-∞,-1],∃x 2∈⎝⎛⎭⎫-∞,-12,使得f (x 1)=g (x 2),求实数a 的取值范围; (2)当a =32时,证明:对任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)=g (x 2).[方法演示]解:(1)∵f (x )=x 2-23ax 3,∴f ′(x )=2x -2ax 2=2x (1-ax ). 令f ′(x )=0,得x =0或x =1a .∵a >0,∴1a >0,∴当x ∈(-∞,0)时,f ′(x )<0,∴f (x )在(-∞,-1]上单调递减, 故f (x )在(-∞,-1]上的值域为⎣⎡⎭⎫1+2a3,+∞. ∵g (x )=1x 2(1-x ),∴g ′(x )=3x 2-2x (x 2-x 3)2=3x -2x 3(1-x )2.当x <-12时,g ′(x )>0,g (x )单调递增,g (x )<g ⎝⎛⎭⎫-12=83, 故g (x )在⎝⎛⎭⎫-∞,-12上的值域为⎝⎛⎭⎫-∞,83. 若∃x 1∈(-∞,-1],∃x 2∈⎝⎛⎭⎫-∞,-12,使得f (x 1)=g (x 2),则1+2a 3<83,解得0<a <52,故实数a 的取值范围是⎝⎛⎭⎫0,52. (2)证明:当a =32时,f (x )=x 2-x 3,所以f ′(x )=2x -3x 2=3x ⎝⎛⎭⎫23-x .当x >1时,f ′(x )<0,所以f (x )在(1,+∞)上单调递减,且f (2)=-4.所以f (x )在(2,+∞)上的值域为(-∞,-4). 则g (x )=1x 2(1-x )=1f (x )在(1,+∞)上单调递增,所以g (x )=1x 2(1-x )在(1,+∞)上的值域为(-∞,0).因为(-∞,-4)(-∞,0),所以对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)=g (x 2). [解题师说]本例第(1)问等价转化的基本思想是:两个函数有相等的函数值,即它们的值域有公共部分;第(2)问等价转化的基本思想是:函数f (x )的任意一个函数值都与函数g (x )的某一函数值相等,即f (x )的值域都在g (x )的值域中.[应用体验]2.已知函数f (x )=4x 2-72-x ,x ∈[0,1].(1)求f (x )的单调区间和值域;(2)设a ≥1,函数g (x )=x 3-3a 2x -2a ,x ∈[0,1].若对于任意x 1∈[0,1],总存在x 0∈[0,1],使得g (x 0)=f (x 1)成立,求实数a 的取值范围.解:(1)f ′(x )=-4x 2+16x -7(2-x )2=-(2x -1)(2x -7)(2-x )2,x ∈[0,1].令f ′(x )=0,解得x =12或x =72(舍去).当x 变化时,f ′(x ),f (x )的变化情况如下表:x 0 ⎝⎛⎭⎫0,12 12 ⎝⎛⎭⎫12,1 1 f ′(x ) -0 +f (x )-72-4-3所以f (x )的递减区间是⎝⎛⎭⎫0,12,递增区间是⎝⎛⎭⎫12,1. 所以f (x )min =f ⎝⎛⎭⎫12=-4. 又f (0)=-72,f (1)=-3,所以f (x )max =f (1)=-3.故当x ∈[0,1]时,f (x )的值域为B =[-4,-3].(2)“对于任意x 1∈[0,1],总存在x 0∈[0,1],使得g (x 0)=f (x 1)成立”等价于“在x ∈[0,1]上,函数f (x )的值域B 是函数g (x )的值域A 的子集,即B ⊆A ”.因为a ≥1,当x ∈(0,1)时,g ′(x )=3(x 2-a 2)<0, 所以g (x )为减函数,故g (x )的值域A =[1-2a -3a 2,-2a ].由B ⊆A ,得1-2a -3a 2≤-4且-2a ≥-3,解得1≤a ≤32.所以实数a 的取值范围为⎣⎡⎦⎤1,32. 技法三 f (x ),g (x )是闭区间D 上的连续函数,“∀x 1,x 2∈D ,使得f (x 1)>g (x 2)”与“∃x 1,x 2∈D ,使得f (x 1)>g (x 2)”的辨析(1)f (x ),g (x )是在闭区间D 上的连续函数且∀x 1,x 2∈D ,使得f (x 1)>g (x 2),等价于f (x )min >g (x )max .其等价转化的目标是函数y =f (x )的任意一个函数值均大于函数y =g (x )的任意一个函数值.如图⑤.(2)存在x 1,x 2∈D ,使得f (x 1)>g (x 2),等价于f (x )max >g (x )min .其等价转化的目标是函数y =f (x )的某一个函数值大于函数y =g (x )的某些函数值.如图⑥.[典例] 已知f (x )=x +a 2x (a >0),g (x )=x +ln x .(1)若对任意的x 1,x 2∈[1,e],都有f (x 1)≥g (x 2)成立,求实数a 的取值范围; (2)若存在x 1,x 2∈[1,e],使得f (x 1)<g (x 2),求实数a 的取值范围. [方法演示]解:(1)对任意的x 1,x 2∈[1,e],都有f (x 1)≥g (x 2)成立,等价于x ∈[1,e]时,f (x )min ≥g (x )max .当x ∈[1,e]时,g ′(x )=1+1x >0,所以g (x )在[1,e]上单调递增,所以g (x )max =g (e)=e +1.只需证f (x )≥e +1,即x +a 2x ≥e +1⇔a 2≥(e +1)x -x 2在[1,e]上恒成立即可.令h (x )=(e +1)x -x 2.当x ∈[1,e]时,h (x )=(e +1)x -x 2的最大值为h ⎝ ⎛⎭⎪⎫e +12=⎝ ⎛⎭⎪⎫e +122.所以a 2≥⎝ ⎛⎭⎪⎫e +122,即a ≥e +12.故实数a 的取值范围是⎣⎢⎡⎭⎪⎫e +12,+∞.(2)存在x 1,x 2∈[1,e],使得f (x 1)<g (x 2),等价于x ∈[1,e]时,f (x )min <g (x )max . 当x ∈[1,e]时,g ′(x )=1+1x >0,所以g (x )在[1,e]上单调递增,所以g (x )max =g (e)=e +1.又f ′(x )=1-a 2x2,令f ′(x )=0,得x =a ,故f (x )=x +a 2x (a >0)在(0,a )上单调递减,在(a ,+∞)上单调递增.当0<a <1时,f (x )在[1,e]上单调递增,f (x )min =f (1)=1+a 2<1+e ,符合题意; 当1≤a ≤e 时,f (x )在[1,a ]上单调递减,在[a ,e]上单调递增,f (x )min =f (a )=2a , 此时,2a <1+e ,解得1≤a <1+e2;当a >e 时,f (x )在[1,e]上单调递减,f (x )min =f (e)=e +a 2e ,此时,e +a 2e <1+e ,即a <e ,与a >e 矛盾,不符合题意.综上可知,实数a 的取值范围为⎝⎛⎭⎪⎫0,e +12.[解题师说](1)本例第(1)问从数的角度看,问题的本质就是f (x )min ≥g (x )max .从形的角度看,问题的本质就是函数f (x )图象的最低点也不低于g (x )图象的最高点.(2)本例第(2)问从形的角度看,问题的本质就是函数f (x )图象的最低点低于g (x )图象的最高点.[应用体验]3.已知函数f (x )=4ln x -ax +a +3x (a ≥0), (1)求f (x )的单调区间;(2)当a ≥1时,设g (x )=2e x -4x +2a ,若存在x 1,x 2∈⎣⎡⎦⎤12,2,使f (x 1)>g (x 2),求实数a 的取值范围.解:(1)由题意得f ′(x )=4x -a -a +3x 2=-ax 2-4x +a +3x 2(x >0).令f ′(x )=0,即ax 2-4x +a +3=0.当a =0时,f ′(x )=4x -3x 2.由f ′(x )>0,得x >34;由f ′(x )<0,得0<x <34,所以函数f (x )的单调递增区间为⎝⎛⎭⎫34,+∞,单调递减区间为⎝⎛⎭⎫0,34. 当a >0时,ax 2-4x +a +3=0的判别式Δ=-4(a -1)(a +4). 若a ≥1,Δ≤0,则f ′(x )≤0,所以f (x )的单调递减区间为(0,+∞). 若0<a <1,则Δ>0.因为x 1+x 2=4a >0,x 1x 2=a +3a >0,所以x 1=2--(a -1)(a +4)a>0,x 2=2+-(a -1)(a +4)a>0.由f ′(x )>0,得x 1<x <x 2;由f ′(x )<0,得x >x 2或0<x <x 1,所以f (x )的单调递增区间为(x 1,x 2),单调递减区间为(0,x 1),(x 2,+∞).综上,当a =0时,函数f (x )的单调递增区间为⎝⎛⎭⎫34,+∞,单调递减区间为⎝⎛⎭⎫0,34. 当0<a <1时,函数f (x )的单调递增区间为2--(a -1)(a +4)a,2+-(a -1)(a +4)a, 单调递减区间为0,2--(a -1)(a +4)a, 2+-(a -1)(a +4)a,+∞.当a ≥1时,f (x )的单调递减区间为(0,+∞).(2)“存在x 1,x 2∈⎣⎡⎦⎤12,2,使f (x 1)>g (x 2)”等价于“x ∈⎣⎡⎦⎤12,2时,f (x )max >g (x )min ”. 由(1)知,当x ∈⎣⎡⎦⎤12,2时,f (x )max =f ⎝⎛⎭⎫12=-4ln 2+32a +6.由g ′(x )=2e x -4=0,得x =ln 2.当x ∈⎣⎡⎭⎫12,ln 2时,g ′(x )<0,g (x )单调递减; 当x ∈(ln 2,2]时,g ′(x )>0,g (x )单调递增. 所以当x ∈⎣⎡⎦⎤12,2时,g (x )min =g (ln 2)=4-4ln 2+2a .由f (x )max >g (x )min ,得-4ln 2+32a +6>4-4ln 2+2a ,解得1≤a <4,故实数a 的取值范围为[1,4).技法四 “∀x 1∈D 1,∃x 2∈D 2,使f (x 1)>g (x 2)”与“∀x 1∈D 1,∃x 2∈D 2,使f (x 1)<g (x 2)”的辨析(1)∀x 1∈D 1,∃x 2∈D 2,使f (x 1)>g (x 2),等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值,即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的目标是函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值.如图⑦.(2)∀x 1∈D 1,∃x 2∈D 2,使f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于g (x )在D 2上的最大值,即f (x )max <g (x )max .其等价转化的目标是函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值.如图⑧.[典例] 已知函数f (x )=ln x -14x +34x -1,g (x )=x 2-2bx +4,若对任意的x 1∈(0,2),总存在x 2∈[1,2],使f (x 1)≥g (x 2),求实数b 的取值范围.[方法演示]解:依题意知f (x )在(0,2)上的最小值不小于g (x )在[1,2]上的最小值,即f (x )min ≥g (x )min . 所以f ′(x )=1x -14-34x 2=-(x -1)(x -3)4x 2,则当0<x <1时,f ′(x )<0,f (x )单调递减; 当1<x <2时,f ′(x )>0,f (x )单调递增, 所以当x ∈(0,2)时,f (x )min =f (1)=-12.又g (x )=x 2-2bx +4,①当b <1时,可求得g (x )min =g (1)=5-2b . 由5-2b ≤-12,解得b ≥114,这与b <1矛盾;②当1≤b ≤2时,可求得g (x )min =g (b )=4-b 2. 由4-b 2≤-12,得b 2≥92,这与1≤b ≤2矛盾;③当b >2时,可求得g (x )min =g (2)=8-4b . 由8-4b ≤-12,得b ≥178.综合①②③得实数b 的取值范围是⎣⎡⎭⎫178,+∞. [解题师说]“对任意x 1∈(0,2),总存在x 2∈[1,2],使f (x 1)≥g (x 2)”等价于“f (x )在(0,2)上的最小值大于或等于g (x )在[1,2]上的最小值”.[应用体验]4.已知函数f (x )=13x 3+x 2+ax .(1)若f (x )在区间[1,+∞)上单调递增,求实数a 的最小值;(2)若g (x )=xe x ,对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2,使f ′(x 1)≤g (x 2)成立,求实数a 的取值范围.解:(1)由题设知f ′(x )=x 2+2x +a ≥0在[1,+∞)上恒成立,即a ≥-(x +1)2+1在[1,+∞)上恒成立,而y =-(x +1)2+1在[1,+∞)单调递减,则y max =-3,∴a ≥-3,∴a 的最小值为-3.(2)“对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2,使f ′(x 1)≤g (x 2)成立”等价于“x ∈⎣⎡⎦⎤12,2时,f ′(x )max ≤g (x )max ”.∵f ′(x )=x 2+2x +a =(x +1)2+a -1在⎣⎡⎦⎤12,2上递增, ∴f ′(x )max =f ′(2)=8+a .又g ′(x )=1-xex ,由g ′(x )>0,得x <1,由g ′(x )<0,得x >1,∴g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减. ∴当x ∈⎣⎡⎦⎤12,2时,g (x )max =g (1)=1e . 由8+a ≤1e ,得a ≤1e-8,∴实数a 的取值范围为⎝⎛⎦⎤-∞,1e -8.1.已知函数f (x )=⎩⎨⎧-16x +112,0≤x ≤12,x 3x +1,12<x ≤1和函数g (x )=a sin π6x -a +1(a >0),若存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,求实数a 的取值范围.解:设函数f (x ),g (x )在[0,1]上的值域分别为A ,B ,则“存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立”等价于“A ∩B ≠∅”.当0≤x ≤12时,f (x )=-16x +112单调递减,所以0≤f (x )≤112. 当12<x ≤1时,f ′(x )=x 2(2x +3)(x +1)2>0, 所以f (x )=x 3x +1单调递增,所以112<f (x )≤12;故f (x )在[0,1]上的值域A =⎣⎡⎦⎤0,12. 当x ∈[0,1]时,π6x ∈⎣⎡⎦⎤0,π6,y =sin π6x 在[0,1]上单调递增.又a >0,所以g (x )=a sin π6x -a +1在[0,1]上单调递增,其值域B =⎣⎡⎦⎤1-a ,1-a2. 由A ∩B ≠∅,得0≤1-a ≤12或0≤1-a 2≤12,解得12≤a ≤2.所以实数a 的取值范围是⎣⎡⎦⎤12,2. 2.已知函数f (x )=ln x +1x +ax .(1)若函数f (x )在[1,+∞)上是单调函数,求实数a 的取值范围;(2)已知函数g (x )=x +1x ,对于任意x 1∈[1,e],总存在x 2∈[1,e],使得f (x 1)≤g (x 2)成立,求正实数a 的取值范围.解:(1)f ′(x )=1x -1x 2+a =ax 2+x -1x 2,x ∈[1,+∞),∵函数f (x )在[1,+∞)上是单调函数,∴f ′(x )≥0或f ′(x )≤0对任意x ∈[1,+∞)恒成立.即ax 2+x -1≥0或ax 2+x -1≤0对任意x ∈[1,+∞)恒成立, ∴a ≥1x 2-1x 或a ≤1x 2-1x 对任意x ∈[1,+∞)恒成立.令t =1x ,由于x ∈[1,+∞),则t ∈(0,1], 设h (t )=t 2-t =⎝⎛⎭⎫t -122-14, 因此-14≤h (t )≤0,故a ≥0或a ≤-14,∴实数a 的取值范围为⎝⎛⎦⎤-∞,-14∪[0,+∞). (2)由(1)知,当a >0时,函数f (x )在[1,e]上为增函数, 故f (1)≤f (x )≤f (e),即1+a ≤f (x )≤1+a e +1e.∵g ′(x )=1-1x 2=x 2-1x2,∴当x ∈[1,e]时,g ′(x )≥0,g (x )单调递增, ∴g (1)≤g (x )≤g (e),即2≤g (x )≤e +1e .∵对任意x 1∈[1,e],总存在x 2∈[1,e], 使得f (x 1)≤g (x 2)成立,∴f (x 1)max ≤g (x 2)max ,即1+a e +1e ≤e +1e,解得0<a ≤1-1e,故所求正实数a 的取值范围为⎝⎛⎦⎤0,1-1e . 3.已知函数f (x )=x 2-23ax 3(a >0),x ∈R.(1)求f (x )的单调区间和极值;(2)若对任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1,求实数a 的取值范围.解:(1)f ′(x )=2x -2ax 2(a >0), 令f ′(x )=0,得x =0或x =1a .当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )的单调递增区间是⎝⎛⎭⎫0,1a ,单调递减区间是(-∞,0),⎝⎛⎭⎫1a ,+∞. f (x )的极小值为f (0)=0,极大值为f ⎝⎛⎭⎫1a =13a 2. (2)由f (0)=f ⎝⎛⎭⎫32a =0及(1)知, 当x ∈⎝⎛⎭⎫0,32a 时,f (x )>0; 当x ∈⎝⎛⎭⎫32a ,+∞时,f (x )<0. 设集合A ={f (x )|x ∈(2,+∞)},B =⎩⎨⎧⎭⎬⎫1f (x )x ∈(1,+∞),f (x )≠0.则“对任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1”等价于A ⊆B ,显然0∉B .下面分三种情况讨论:①当32a >2,即0<a <34时,由f ⎝⎛⎭⎫32a =0知,0∈A ,而0∉B ,所以A 不是B 的子集.②当1≤32a ≤2,即34≤a ≤32时,有f (2)≤0,且此时f (x )在(2,+∞)上单调递减,故A =(-∞,f (2)),因而A ⊆(-∞,0);由f (1)≥0,有f (x )在(1,+∞)上的取值范围包含(-∞,0),则(-∞,0)⊆B ,所以A ⊆B .③当32a <1,即a >32时,有f (1)<0,且此时f (x )在(1,+∞)上单调递减,故B =⎝⎛⎭⎫1f (1),0,A =(-∞,f (2)),A 不是B 的子集.综上,实数a 的取值范围是⎣⎡⎦⎤34,32. 4.(理)已知函数f (x )=mxx 2+1+1(m ≠0),g (x )=x 2e ax (a ∈R). (1)求函数f (x )的单调区间;(2)当m >0时,若对任意x 1,x 2∈[0,2],f (x 1)≥g (x 2)恒成立,求实数a 的取值范围. 解:(1)f ′(x )=m (1-x 2)(x 2+1)2=m (1-x )(1+x )(x 2+1)2.当m >0时,由f ′(x )>0,得-1<x <1;由f ′(x )<0,得x >1或x <-1,所以f (x )的单调递增区间是(-1,1),单调递减区间是(-∞,-1),(1,+∞).当m <0时,由f ′(x )>0,得x >1或x <-1;由f ′(x )<0,得-1<x <1,所以f (x )的单调递增区间是(-∞,-1),(1,+∞),单调递减区间是(-1,1).(2)依题意,当m >0时,“对任意x 1,x 2∈[0,2],f (x 1)≥g (x 2)恒成立”等价于“对任意x ∈[0,2],f (x )min ≥g (x )max 成立”.当m >0时,由(1)知,函数f (x )在[0,1]上单调递增,在[1,2]上单调递减, 因为f (0)=1,f (2)=2m5+1>1,所以f (x )min =f (0)=1.故应满足1≥g (x )max .因为g (x )=x 2e ax ,所以g ′(x )=(ax 2+2x )e ax .①当a =0时,g (x )=x 2,对任意x ∈[0,2],g (x )max =g (2)=4,不满足1≥g (x )max . ②当a ≠0时,令g ′(x )=0,得x =0或x =-2a .(ⅰ)当-2a ≥2,即-1≤a <0时,在[0,2]上,g ′(x )≥0,所以g (x )在[0,2]上单调递增,g (x )max =g (2)=4e 2a .由1≥4e 2a ,得a ≤-ln 2,所以-1≤a ≤-ln 2.(ⅱ)当0<-2a <2,即a <-1时,在⎣⎡⎭⎫0,-2a 上,g ′(x )≥0,g (x )单调递增;在⎝⎛⎦⎤-2a ,2上,g ′(x )<0,g (x )单调递减.g (x )max =g ⎝⎛⎭⎫-2a =4a 2e2. 由1≥4a 2e 2,得a ≤-2e,所以a <-1.(ⅲ)当-2a <0,即a >0时,显然在[0,2]上,g ′(x )≥0,g (x )单调递增,于是g (x )max =g (2)=4e 2a ,此时不满足1≥g (x )max .综上,实数a 的取值范围是(-∞,-ln 2].4.(文)已知函数f (x )=(1+b )x +2a 2x -a ln x (a >0)在x =2a 处取得极值.(1)求函数f (x )的单调区间;(2)设函数g (x )=x 2-2cx +4-ln 2,当a =1时,若对任意的x 1,x 2∈[1,e]都有f (x 1)≥g (x 2),求实数c 的取值范围.解:(1)由f (x )=(1+b )x +2a 2x -a ln x ,a >0,x >0, 得f ′(x )=1+b -2a 2x 2-ax .又f (x )在x =2a 处取得极值, 所以f ′(2a )=1+b -12-12=b =0,所以f (x )=x +2a 2x -a ln x ,f ′(x )=1-2a 2x 2-a x =x 2-ax -2a 2x 2=(x +a )(x -2a )x 2,又a >0,且函数f (x )的定义域为(0,+∞), 所以由f ′(x )>0,得x >2a ; 由f ′(x )<0,得0<x <2a ,即函数f (x )的单调递增区间是(2a ,+∞),单调递减区间为(0,2a ). (2)当a =1时,f (x )=x +2x -ln x ,x ∈(0,+∞),由(1)知x ∈[1,e]时,f (x )在[1,2]上单调递减,在(2,e]上单调递增,所以f (x )min =f (2)=3-ln 2.对任意的x 1,x 2∈[1,e]都有f (x 1)≥g (x 2), 即f (x )min ≥g (x ),x ∈[1,e]恒成立.即3-ln 2≥x 2-2cx +4-ln 2,x ∈[1,e]恒成立, 即2c ≥x +1x ,x ∈[1,e]恒成立,令h (x )=x +1x ,则h ′(x )=1-1x 2≥0,x ∈[1,e],即h (x )=x +1x 在[1,e]上单调递增,故h (x )max =e +1e ,所以c ≥12⎝⎛⎭⎫e +1e . 故实数c 的取值范围为⎣⎡⎭⎫e 2+12e ,+∞.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

升级增分训练 最值、范围、存在性问题
1.(2016·贵阳监测考试)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率为6
3,且椭圆C 上的点到一个焦点的距离的最小值为3-2.
(1)求椭圆C 的方程;
(2)已知过点T (0,2)的直线l 与椭圆C 交于A ,B 两点,若在x 轴上存在一点E ,使∠AEB =90°,求直线l 的斜率k 的取值范围.
解:(1)设椭圆的半焦距长为c , 则由题设有⎩⎨

c a =6
3,
a -c =3-2,
解得a =3,c =2, ∴b 2=1,
故椭圆C 的方程为y 23+x 2
=1.
(2)由已知可得,直线l 的方程为y =kx +2,以AB 为直径的圆与x 轴有公共点. 设A (x 1,y 1),B (x 2,y 2),AB 中点为M (x 0,y 0), 将直线l :y =kx +2代入y 23+x 2
=1, 得(3+k 2)x 2+4kx +1=0, 则Δ=12k 2-12>0, x 1+x 2=-4k 3+k 2,x 1x 2=1
3+k 2
. ∴x 0=x 1+x 22=-2k 3+k 2,y 0=kx 0+2=63+k 2, |AB |=1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2
·12k 2-123+k 2=23k 4-13+k 2

∴⎩⎪⎨⎪⎧
Δ=12k 2
-12>0,63+k 2≤1
2
|AB |,
解得k 4≥13,
即k ≥413或k ≤-4
13.
故所求斜率的取值范围为(-∞,-413]∪4
13,+∞). 2.(2016·西安质检)如图所示,已知椭圆C 的中心在原点,焦点在x 轴
上,离心率等于3
2,它的一个顶点恰好在抛物线x 2=8y 的
准线上.
(1)求椭圆C 的标准方程;
(2)点P (2,3),Q (2,-3)在椭圆上,A ,B 是椭圆上位于直线PQ 两侧的动点,当A ,B 运动时,满足∠APQ =∠BPQ ,试问直线AB 的斜率是否为定值,请说明理由.
解:(1)设椭圆C 的标准方程为x 2a 2+y 2
b 2=1(a >b >0). ∵椭圆的一个顶点恰好在抛物线x 2=8y 的准线y =-2上, ∴-b =-2,解得b =2. 又
c a =3
2,a 2=b 2+c 2, ∴a =4,c =23.
可得椭圆C 的标准方程为x 216+y 2
4=1. (2)设A (x 1,y 1),B (x 2,y 2),
∵∠APQ =∠BPQ ,则P A ,PB 的斜率互为相反数, 可设直线P A 的斜率为k , 则PB 的斜率为-k ,
直线P A 的方程为:y -3=k (x -2), 联立⎩
⎨⎧
y -3=k (x -2),x 2+4y 2
=16,消去y , 得(1+4k 2)x 2+8k (3-2k )x +4(3-2k )2-16=0, ∴x 1+2=
8k (2k -3)
1+4k 2

同理可得:x 2+2=-8k (-2k -3)1+4k 2=8k (2k +3)
1+4k 2,
∴x 1+x 2=16k 2-41+4k 2,x 1-x 2=-163k
1+4k 2, k AB =
y 1-y 2x 1-x 2=k (x 1+x 2)-4k x 1-x 2
=3
6.
∴直线AB 的斜率为定值3
6.
3.(2016·贵阳期末)已知椭圆C 的两个焦点是(0,-3)和(0,3),并且经过点⎝ ⎛⎭⎪⎫
32,1,抛
物线E 的顶点在坐标原点,焦点恰好是椭圆C 的右顶点F .
(1)求椭圆C 和抛物线E 的标准方程;
(2)过点F 作两条斜率都存在且互相垂直的直线l 1,l 2,l 1交抛物线E 于点A ,B ,l 2交抛物线E 于点G ,H ,求AG ―→·HB ―→
的最小值.
解:(1)设椭圆C 的标准方程为y 2a 2+x 2
b 2=1(a >b >0),焦距为2
c ,则由题意得c =3, 2a =
34
+(1+3)2+34
+(1-3)2=4, ∴a =2,b 2=a 2-c 2=1,
∴椭圆C 的标准方程为y 24+x 2
=1. ∴右顶点F 的坐标为(1,0).
设抛物线E 的标准方程为y 2=2px (p >0), ∴p
2=1,2p =4,
∴抛物线E 的标准方程为y 2=4x .
(2)设l 1的方程:y =k (x -1),l 2的方程:y =-1
k (x -1), A (x 1,y 1),B (x 2,y 2),G (x 3,y 3),H (x 4,y 4). 由⎩⎨⎧
y =k (x -1),y 2=4x
消去y 得:k 2x 2-(2k 2+4)x +k 2=0, ∴Δ=4k 4+16k 2+16-4k 4>0, x 1+x 2=2+4
k 2,x 1x 2=1. 同理x 3+x 4=4k 2+2,x 3x 4=1, ∴AG ―→·HB ―→=(AF ―→+FG ―→)·(HF ―→+FB ―→) =AF ―→·HF ―→+AF ―→·FB ―→+FG ―→·HF ―→+FG ―→·FB ―→ =|AF |―→·|FB |―→+|FG ―→|·|HF |―→ =|x 1+1|·|x 2+1|+|x 3+1|·|x 4+1|
=(x 1x 2+x 1+x 2+1)+(x 3x 4+x 3+x 4+1) =8+4
k 2+4k 2 ≥8+2
4k 2·
4k 2
=16, 当且仅当4k 2=4k 2,即k =±1时,AG ―→·HB ―→
有最小值16.
4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为6
3,以原点O 为圆心,椭圆C 的长半轴长为半径的圆与直线2x -2y +6=0相切.
(1)求椭圆C 的标准方程;
(2)已知点A ,B 为动直线y =k (x -2)(k ≠0)与椭圆C 的两个交点,问:在x 轴上是否存在定点E ,使得EA ―→2+EA ―→·AB ―→
为定值?若存在,试求出点E 的坐标和定值;若不存在,请说明理由.
解:(1)由e =63,得c a =6
3, 即c =6
3a ,①
又以原点O 为圆心,椭圆C 的长半轴长为半径的圆为x 2+y 2=a 2, 且该圆与直线2x -2y +6=0相切, 所以a =
|6|22
+(-2)
2
=6,代入①得c =2,
所以b 2=a 2-c 2=2,
所以椭圆C 的标准方程为x 26+y 2
2=1. (2)由⎩⎪⎨⎪⎧
x 26+y 22
=1,y =k (x -2),
得(1+3k 2)x 2-12k 2x +12k 2-6=0. 设A (x 1,y 1),B (x 2,y 2),
所以x 1+x 2=12k 2
1+3k 2,x 1x 2=12k 2-61+3k 2.
根据题意,假设x 轴上存在定点E (m,0),
使得EA ―→2+EA ―→·AB ―→=(EA ―→+AB ―→)·EA ―→=EA ―→·EB ―→为定值, 则EA ―→·EB ―→=(x 1-m ,y 1)·(x 2-m ,y 2)
=(x 1-m )(x 2-m )+y 1y 2
=(k 2+1)x 1x 2-(2k 2+m )(x 1+x 2)+(4k 2+m 2) =(3m 2-12m +10)k 2+(m 2-6)1+3k 2,
要使上式为定值,即与k 无关, 只需3m 2-12m +10=3(m 2-6), 解得m =7
3,
此时,EA ―→2+EA ―→·AB ―→
=m 2-6=-59,
所以在x 轴上存在定点E ⎝ ⎛⎭⎪⎫
73,0使得EA ―→2+EA ―→·AB ―→为定值,且定值为-59.。

相关文档
最新文档