2018年高三数学模拟试题理科
2018高考理科数学模拟试题.doc

2018 学年高三上期第二次周练数学(理科)第Ⅰ卷(选择题,共60 分)一、选择题:本大题共12 个小题, 每小题5 分, 共60 分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A= 0,1,2,3 ,B= x x 2a 1,a A ,则A B=( )A. 1,2B. 1,3C. 0,1D. 1,32.已知i 是虚数单位,复数z 满足1 i z 2i ,则z 的虚部是()A. iB. iC. 1D. 13.在等比数列a n 中,a1 a3 a5 21,a2 a4 a6 42 ,则数列a n 的前9 项的和S9 ()A. 255B. 256C. 511D. 512x4.如图所示的阴影部分是由x 轴,直线x 1以及曲线y e 1围成,现向矩形区域OABC内随机投掷一点,则该点落在阴影区域的概率是()A. 1e B. e 2e 11C. D.e 1 11e5.在 2 )5(x x y 的展开式中,含x的项的系数是()5 y25 y2A. 10B. 20C. 30D. 606.已知一个简单几何体的三视图如右图所示,则该几何体的体积为( )A. 3 6B. 6 6C. 3 12D. 12x7.已知函数 f x log( 2 a ) 在( ,1) 上单调递减,则 a 的取值范围是( )A. 1 a 1B. 0 a 1或1 a 2C. 0 a 1D. 0 a 1或a 28.执行如图所示的程序框图,若输出的结果为2,则输入的正整数的可能取值的集合是()A. 2,3,4,5B. 1,2,3,,4 ,5 6C. 1,2,3,,4 5D. 2,3,4,,5 69.R上的偶函数 f x 满足f x 1 f x 1 ,当0x 1时, 2f x x ,则y f x log x 的零点个数为()5A. 4B. 8C. 5D. 1010.如图,已知抛物线 2 4y x 的焦点为 F ,直线l 过F且依次交抛物线及圆 2 2 1x 1 y 于点A, B, C,D 四点,则AB 4 CD4的最小值为()A. 172B.152C.132D.11211.已知函数 2 2xf x 4sin x sin 2sin x 0 在区间2 42,2 3上是增函数,且在区间0, 上恰好取得一次最大值,则的取值范围是()A. 0,1B. 0, 34C. 1,D.1 3,2 412.已知数列{a } 中,a1 =1,且对任意的n*m,n N , 都有a m n a m a n mn, 则201811ai i()A.20182019B .20172018C. 2 D .4036 2019第II 卷(非选择题)二、填空题:本大题共 4 小题,每小题 5 分,满分20 分.vv13.已知平面向量 a 2,1 ,b 2,xv vv v,且a 2b a b,则x __________.x y 214.若变量x, y满足{2 x 3y 6 ,且x 2y a 恒成立,则 a 的最大值为______________.x 015.若双曲线2 2x y2 2 1 a 0,b 0a b上存在一点P 满足以OP 为边长的正方形的面积等于2ab(其中O为坐标原点),则双曲线的离心率的取值范围是__________.16.若曲线 2 xC1 : y ax (a0) 与曲线C2 : y e 存在公共切线,则a的取值范围为__________.三、解答题:本大题共 6 小题,共70 分. 解答应写出文字说明、证明过程或演算步骤.17.已知向量v v3v va (sin x , 3sin x ,b sinx ,cosx , f x a b .2 2(1)求f x 的最大值及 f x 取最大值时x 的取值集合M ;(2)在△ABC中,a,b,c 是角A,B,C 的对边, 若C2 4M 且c 1,求△ABC的周长的取值范围.18.如图,已知四棱锥P ABCD 的底面为直角梯形,AB / /DC ,DAB 90 ,PA 底面ABCD ,且1PA AD DC ,AB 1,M 是PB 的中点。
2018年高考第三次模拟考试理科数学试卷含答案

**2017—2018学年度高三年级第三次模拟考试**理科数学试卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}{}13,0M x x N x x =-≤<=<,则集合{}03xx ≤<=( )A .MN⋂ B .MN⋃ C.()R MC N⋂ D .()R C M N⋂2.复数z 满足()234i z i --=+(i 为虚数单位),则z=( )A .2i -+B .2i - C. 2i -- D .2i + 3.已知ta n 16πα⎛⎫+= ⎪⎝⎭,则ta n 6πα⎛⎫-= ⎪⎝⎭( )A .2-.2+C. 2--.2-+4.已知命题:p 在A B C ∆中,若sin sin A B=,则A B=;命题():0,q x π∀∈,1sin 2sin x x+>.则下列命题为真命题的是( ) A .pq∧ B .()pq ∨⌝ C.()()p q ⌝∧⌝ D .()p q⌝∨5.已知双曲线()2222:10,0x y Ea b ab-=>>的两条渐近线分别为12,l l ,若E 的一个焦点F 关于1l 的对称点F '在2l 上,则E 的离心率为( )A B .326.某几何体的三视图如图所示,则该几何体的体积为( )A .6B .7 C. 152D .2337.已知函数()()s in 203f x x πωωω⎛⎫=+-> ⎪⎝⎭的图象与x 轴相切,则()f π=( )A .32-B .12-12- D .12--8.已知P 是抛物线24y x=上任意一点,Q 是圆()2241xy-+=上任意一点,则P Q 的最小值为( )A .52B .1D.19.利用随机模拟的方法可以估计圆周率π的值,为此设计如图所示的程序框图,其中()ra n d 表示产生区间[]0,1上的均匀随机数(实数),若输出的结果为786,则由此可估计π的近似值为( )A .3.134B .3.141 C.3.144 D .3.147 10.在A BC ∆中,点G 满足0G A G BG C ++=.若存在点O ,使得16O GB C=,且O Am O B n O C=+,则m n -=( )A .2B .2- C. 1 D .1- 11.若异面直线,m n 所成的角是60︒,则以下三个命题: ①存在直线l ,满足l 与,m n 的夹角都是60︒; ②存在平面α,满足mα⊂,n 与α所成角为60︒;③存在平面,αβ,满足,mn αβ⊂⊂,α与β所成锐二面角为60︒.其中正确命题的个数为( )A .0B .1 C. 2 D .3 12.已知()0,xxxea fx e a>=+,若()f x 的最小值为1-,则a=( )A .21eB .1eC. e D .2e第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 设变量,x y 满足约束条件10,1,250,x y y x y -+≥⎧⎪≥⎨⎪+-≤⎩则zx y=+的最大值为 .14.某种袋装大米的质量X (单位:k g )服从正态分布()50,0.01N ,任意选一袋这种大米,质量在49.850.1kg的概率为 . 15.设函数()2,0,0,x x f x x ⎧<⎪=≥则使得()()f x fx >-成立的x 得取值范围是 .16.A B C ∆的内角,,A B C 的对边分别为,,a b c ,角A 的内角平分线交B C 于点D ,若111,2a bc=+=,则A D 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知数列{}n a 是等差数列,{}n b 是等比数列,111,2a b ==,22337,13a b a b +=+=.(1)求{}n a 和{}n b 的通项公式; (2)若,,n nn a n c b n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n c 的前2n 项和2n S .18. 某球迷为了解,A B 两支球队的攻击能力,从本赛季常规赛中随机调查了20场与这两支球队有关的比赛.两队所得分数分别如下:A球队:122 110 105 105 109 101 107 129 115 100114 118 118 104 93 120 96 102 105 83B球队:114 114 110 108 103 117 93 124 75 10691 81 107 112 107 101 106 120 107 79(1)根据两组数据完成两队所得分数的茎叶图,并通过茎叶图比较两支球队所得分数的平均值及分散程度(不要求计算出具体值,得出结论即可);(2)根据球队所得分数,将球队的攻击能力从低到高分为三个等级:记事件:C “A 球队的攻击能力等级高于B 球队的攻击能力等级”.假设两支球队的攻击能力相互独立. 根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率. 19.如图,四棱锥PA B C D-的底面A B C D 是平行四边形,90B A CP A D P C D ∠=∠=∠=︒.(1)求证:平面P A B ⊥平面A B C D ;(2)若3AB AC PA ===,E 为B C 的中点,F 为棱P B 上的点,//P D平面A E F ,求二面角A D F E--的余弦值.20.已知点()2,0A -,点()1,0B -,点()1,0C ,动圆O '与x 轴相切于点A ,过点B 的直线1l 与圆O '相切于点D ,过点C 的直线2l 与圆O '相切于点E (,D E 均不同于点A ),且1l 与2l 交于点P ,设点P 的轨迹为曲线Γ. (1)证明:P B P C+为定值,并求Γ的方程;(2)设直线1l 与Γ的另一个交点为Q ,直线C D 与Γ交于,M N两点,当,,O D C '三点共线时,求四边形M P N Q 的面积. 21.已知0a>,函数()24ln 2a f x x x a=+-+.(1)记()()2g a fa =,求()g a 的最小值;(2)若()yfx =有三个不同的零点,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程 已知点A 在椭圆22:24Cx y+=上,将射线O A 绕原点O 逆时针旋转2π,所得射线O B 交直线:2l y =于点B .以O 为极点,x 轴正半轴为极轴建立极坐标系. (1)求椭圆C 和直线l 的极坐标方程;(2)证明::R t O A B ∆中,斜边A B 上的高h 为定值,并求该定值. 23.选修4-5:不等式选讲 已知函数()123f x x x =---.(1)求不等式()0f x ≥的解集; (2)设()()()g x fx fx =+-,求()g x 的最大值.试卷答案一、选择题1-5: CADBB 6-10: BBDCD 11、12:DA 二、填空题13. 4 14.0.8185 15.()(),10,1?∞-⋃- 16.2⎫⎪⎪⎣⎭三、解答题 17.解:(1)设数列{a n }的公差为d ,数列{b n }的公比为q , 依题意有,⎩⎨⎧1+d +2q =7,1+2d +2q 2=13,解得d =2,q =2, 故a n =2n -1,b n =2n,(2)由已知c 2n -1=a 2n -1=4n -3,c 2n =b 2n =4n, 所以数列{c n }的前2n 项和为S 2n =(a 1+a 3+…a 2n -1)+(b 2+b 4+…b 2n )=n(1+4n -3)2+4(1-4n)1-4=2n 2-n + 4 3(4n -1).18.解:(1)两队所得分数的茎叶图如下3 6 9 3 15 2 4 0 7 1 9 5 5 10 8 367 7 1 6 78 8 4 5 0 11 4 4 0 7 20 9 2 12 4 0通过茎叶图可以看出,A 球队所得分数的平均值高于B 球队所得分数的平均值; A 球队所得分数比较集中,B 球队所得分数比较分散.(2)记C A1表示事件:“A 球队攻击能力等级为较强”, C A2表示事件:“A 球队攻击能力等级为很强”; C B1表示事件:“B 球队攻击能力等级为较弱”, C B2表示事件:“B 球队攻击能力等级为较弱或较强”,则C A1与C B1独立,C A2与C B2独立,C A1与C A2互斥,C =(C A1C B1)∪(C A2C B2). P (C)=P (C A1C B1)+ P (C A2C B2)=P (C A1)P (C B1)+P (C A2)P (C B2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为1420,320,520,1820,故P (C A1)=1420,P (C A2)=320,P (C B1)=520,P (C B2)=1820,P (C)=1420×520+320×1820=0.31.19.解:(1)∵AB ∥CD ,PC ⊥CD ,∴AB ⊥PC , ∵AB ⊥AC ,AC ∩PC =C ,∴AB ⊥平面PAC , ∴AB ⊥PA ,又∵PA ⊥AD ,AB ∩AD =A , ∴PA ⊥平面ABCD ,PA 平面PAB , ∴平面PAB ⊥平面ABCD . (2)连接BD 交AE 于点O ,连接OF , ∵E 为BC 的中点,BC ∥AD , ∴ BO OD = BE AD = 1 2, ∵PD ∥平面AEF ,PD 平面PBD , 平面AEF ∩平面PBD =OF , ∴PD ∥OF ,∴ BF FP = BO OD = 1 2,以AB ,AC ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系A -xyz ,则A(0,0,0),B(3,0,0),C(0,3,0),D(-3,3,0), P(0,0,3),E ( 3 2, 32,0),F(2,0,1),设平面ADF 的法向量m =(x 1,y 1,z 1), ∵AF →=(2,0,1),AD →=(-3,3,0),由AF →·m =0,AD →·m =0得⎩⎨⎧2x 1+z 1=0,-3x 1+3y 1=0,取m =(1,1,-2).设平面DEF 的法向量n =(x 2,y 2,z 2),∵DE →=( 9 2,- 3 2,0),EF →=( 1 2,- 32,1),由DE →·n =0,EF →·n =0得⎩⎨⎧ 9 2x 2- 32y 2=0, 1 2x 2- 32y 2+z 2=0,取n =(1,3,4). cos m ,n=m ·n |m ||n |=-23939, ∵二面角A-DF-E 为钝二面角,∴二面角A-DF-E 的余弦值为-23939.20.解:(1)由已知可得|PD|=|PE|,|BA|=|BD|,|CE|=|CA|, 所以|PB|+|PC|=|PD|+|DB|+|PC| =|PE|+|PC|+|AB| =|CE|+|AB|=|AC|+|AB|=4>|BC| 所以点P 的轨迹是以B ,C 为焦点的椭圆(去掉与x 轴的交点),可求的方程为x 24+y23=1(y ≠0).(2)由O ,D ,C 三点共线及圆的几何性质,可知PB ⊥CD , 又由直线CE ,CA 为圆O 的切线,可知CE =CA ,O A =O E , 所以△OAC ≌△O EC ,进而有∠ACO =∠ECO ,所以|PC|=|BC|=2,又由椭圆的定义,|PB|+|PC|=4,得|PB|=2, 所以△PBC 为等边三角形,即点P 在y 轴上,点P 的坐标为(0,±3)(i)当点P 的坐标为(0,3)时,∠PBC =60,∠BCD =30, 此时直线l 1的方程为y =3(x +1),直线CD 的方程为y =-33(x -1), 由⎩⎪⎨⎪⎧x 24+y 23=1,y =3(x +1)整理得5x 2+8x =0,得Q (- 8 5,-335),所以|PQ|=165,由⎩⎪⎨⎪⎧x 24+y23=1,y =-33(x -1)整理得13x 2-8x -32=0,设M(x 1,y 1),N(x 2,y 2),x 1+x 2=813,x 1x 2=-3213,|MN|=1+ 1 3|x 1-x 2|=4813,所以四边形MPNQ 的面积S =1 2|PQ|·|MN|=38465.(ii)当点P 的坐标为(0,-3)时,由椭圆的对称性,四边形MPNQ 的面积为38465.综上,四边形MPNQ 的面积为38465.21.解:(1)g (a)=ln a 2+4a a 2+a 2-2=2(ln a + 1 a -1),g(a)=2(1a - 1 a )=2(a -1)a,所以0<a <1时,g (a)<0,g (a)单调递减;a >1时,g(a)>0,g (a)单调递增,所以g (a)的最小值为g (1)=0.(2)f(x)= 1x -4a (x +a 2)2=x 2+(2a 2-4a)x +a 4x(x +a 2)2,x >0. 因为y =f (x)有三个不同的零点,所以f (x)至少有三个单调区间, 而方程x 2+(2a 2-4a)x +a 4=0至多有两个不同正根,所以,有⎩⎨⎧2a 2-4a <0,Δ=16a 2(1-a)>0,解得,0<a <1.由(1)得,当x ≠1时,g (x)>0,即ln x +1x-1>0, 所以ln x >- 1x,则x >e -1x (x >0),令x =a 22,得a 22>e - 2 a 2.因为f (e - 2a 2)<- 2 a 2+ 4 a -2=-2(a -1)2a2<0,f (a 2)>0,f (1)=4a 1+a 2-2=-2(a -1)21+a 2<0,f (e 2)=4a e 2+a2>0,所以y =f (x)在(e - 2a 2,a 2),(a 2,1),(1,e 2)内各有一个零点,故所求a 的范围是0<a <1.22.解:(1)由x =ρcos θ,y =ρsin θ得椭圆C 极坐标方程为ρ2(cos 2θ+2sin 2θ)=4,即ρ2=41+sin 2θ; 直线l 的极坐标方程为ρsin θ=2,即ρ= 2sin θ.(2)证明:设A(ρA ,θ),B (ρB ,θ+2),-2<θ< 2.由(1)得|OA|2=ρ2A =41+sin 2θ,|OB|2=ρ2B = 4sin 2(θ+2)=4cos 2θ, 由S △OAB = 1 2×|OA|×|OB|= 12×|AB|×h 可得,h 2=|OA|2×|OB|2|AB|2=|OA|2×|OB|2|OA|2+|OB|2=2.故h 为定值,且h =2.23.解:(1)由题意得|x -1|≥|2x -3|, 所以|x -1|2≥|2x -3|2整理可得3x 2-10x +8≤0,解得 4 3≤x ≤2,故原不等式的解集为{x | 43≤x ≤2}.(2)显然g (x)=f (x)+f (-x)为偶函数, 所以只研究x≥0时g (x)的最大值.g (x)=f (x)+f (-x)=|x -1|-|2x -3|+|x +1|-|2x +3|, 所以x≥0时,g (x)=|x -1|-|2x -3|-x -2 =⎩⎪⎨⎪⎧-4, 0≤x ≤1,2x -6,1<x < 3 2,-2x , x ≥ 32,所以当x = 32时,g (x)取得最大值-3,故x =± 32时,g (x)取得最大值-3.。
2018年全国普通高等学校高考高三数学模拟试卷及解析高三理科数学(一)

2018年全国普通高等学校高考数学模拟理科数学试题及解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|﹣x2+4x≥0},,C={x|x=2n,n∈N},则(A∪B)∩C=()A.{2,4}B.{0,2}C.{0,2,4}D.{x|x=2n,n∈N}2.(5分)设i是虚数单位,若,x,y∈R,则复数x+yi的共轭复数是()A.2﹣iB.﹣2﹣iC.2+iD.﹣2+i3.(5分)已知等差数列{a n}的前n项和是S n,且a4+a5+a6+a7=18,则下列命题正确的是()A.a5是常数B.S5是常数C.a10是常数D.S10是常数4.(5分)七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是()A. B. C. D.5.(5分)已知点F为双曲线C:(a>0,b>0)的右焦点,直线x=a与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,则双曲线的离心率为()A. B. C. D.6.(5分)已知函数则()A.2+πB.C.D.7.(5分)执行如图所示的程序框图,则输出的S的值为()A. B. C. D.8.(5分)已知函数(ω>0)的相邻两个零点差的绝对值为,则函数f(x)的图象()A.可由函数g(x)=cos4x的图象向左平移个单位而得B.可由函数g(x)=cos4x的图象向右平移个单位而得C.可由函数g(x)=cos4x的图象向右平移个单位而得D.可由函数g(x)=cos4x的图象向右平移个单位而得9.(5分)的展开式中剔除常数项后的各项系数和为()A.﹣73B.﹣61C.﹣55D.﹣6310.(5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是()A. B. C. D.11.(5分)已知抛物线C:y2=4x的焦点为F,过点F分别作两条直线l1,l2,直线l1与抛物线C交于A、B两点,直线l2与抛物线C交于D、E两点,若l1与l2的斜率的平方和为1,则|AB|+|DE|的最小值为()A.16B.20C.24D.3212.(5分)若函数y=f(x),x∈M,对于给定的非零实数a,总存在非零常数T,使得定义域M内的任意实数x,都有af(x)=f(x+T)恒成立,此时T为f(x)的类周期,函数y=f(x)是M上的a级类周期函数.若函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2,当x∈[0,2)时,函数.若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,则实数m的取值范围是()A. B. C. D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量,,且,则=.14.(5分)已知x,y满足约束条件则目标函数的最小值为.15.(5分)在等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设b n=a2n﹣1﹣a2n,n∈N*,则数列{b n}的前2n项和为.16.(5分)如图,在直角梯形ABCD中,AB⊥BC,AD∥BC,,点E是线段CD 上异于点C,D的动点,EF⊥AD于点F,将△DEF沿EF折起到△PEF的位置,并使PF ⊥AF,则五棱锥P﹣ABCEF的体积的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC的内角A,B,C的对边a,b,c分别满足c=2b=2,2bcosA+acosC +ccosA=0,又点D满足.(1)求a及角A的大小;(2)求的值.B1C1D1中,底面ABCD是正方形,且,∠18.(12分)在四棱柱ABCD﹣AA1AB=∠A1AD=60°.(1)求证:BD⊥CC1;(2)若动点E在棱C1D1上,试确定点E的位置,使得直线DE与平面BDB1所成角的正弦值为.19.(12分)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(μ,σ2),利用该正态分布,求Z落在(14.55,38.45)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则P(μ﹣σ<Z≤μ+σ)=0.6826,P(μ﹣2σ<Z≤μ+2σ)=0.9544.20.(12分)已知椭圆C:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线l:y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.21.(12分)已知函数f(x)=e x﹣2(a﹣1)x﹣b,其中e为自然对数的底数.(1)若函数f(x)在区间[0,1]上是单调函数,试求实数a的取值范围;(2)已知函数g(x)=e x﹣(a﹣1)x2﹣bx﹣1,且g(1)=0,若函数g(x)在区间[0,1]上恰有3个零点,求实数a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,圆C1的参数方程为(θ为参数,a 是大于0的常数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为.(1)求圆C1的极坐标方程和圆C2的直角坐标方程;(2)分别记直线l:,ρ∈R与圆C1、圆C2的异于原点的焦点为A,B,若圆C1与圆C2外切,试求实数a的值及线段AB的长.[选修4-5:不等式选讲]23.已知函数f(x)=|2x+1|.(1)求不等式f(x)≤10﹣|x﹣3|的解集;(2)若正数m,n满足m+2n=mn,求证:f(m)+f(﹣2n)≥16.2018年全国普通高等学校高考数学模拟理科数学试题及解析(一)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|﹣x2+4x≥0},,C={x|x=2n,n∈N},则(A∪B)∩C=()A.{2,4}B.{0,2}C.{0,2,4}D.{x|x=2n,n∈N}【试题解答】解:A={x|﹣x2+4x≥0}={x|0≤x≤4},={x|3﹣4<3x<33}={x|﹣4<x<3},则A∪B={x|﹣4<x≤4},C={x|x=2n,n∈N},可得(A∪B)∩C={0,2,4},故选C.2.(5分)设i是虚数单位,若,x,y∈R,则复数x+yi的共轭复数是()A.2﹣iB.﹣2﹣iC.2+iD.﹣2+i【试题解答】解:由,得x+yi==2+i,∴复数x+yi的共轭复数是2﹣i.故选:A.3.(5分)已知等差数列{a n}的前n项和是S n,且a4+a5+a6+a7=18,则下列命题正确的是()A.a5是常数B.S5是常数C.a10是常数D.S10是常数【试题解答】解:∵等差数列{a n}的前n项和是S n,且a4+a5+a6+a7=18,∴a4+a5+a6+a7=2(a1+a10)=18,∴a1+a10=9,∴=45.故选:D.4.(5分)七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是()A. B. C. D.【试题解答】解:设AB=2,则BC=CD=DE=EF=1,∴S=××=,△BCIS平行四边形EFGH=2S△BCI=2×=,∴所求的概率为P===.故选:A.5.(5分)已知点F为双曲线C:(a>0,b>0)的右焦点,直线x=a与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,则双曲线的离心率为()A. B. C. D.【试题解答】解:设双曲线C:的右焦点F(c,0),双曲线的渐近线方程为y=x,由x=a代入渐近线方程可得y=b,则A(a,b),可得AF的中点为(,b),代入双曲线的方程可得﹣=1,可得4a2﹣2ac﹣c2=0,由e=,可得e2+2e﹣4=0,解得e=﹣1(﹣1﹣舍去),故选:D.6.(5分)已知函数则()A.2+πB.C.D.【试题解答】解:∵,=∫cos2tdt===,∴=()+(﹣cosx)=﹣2.故选:D.7.(5分)执行如图所示的程序框图,则输出的S的值为()A. B. C. D.【试题解答】解:第1次循环后,S=,不满足退出循环的条件,k=2;第2次循环后,S=,不满足退出循环的条件,k=3;第3次循环后,S==2,不满足退出循环的条件,k=4;…第n次循环后,S=,不满足退出循环的条件,k=n+1;…第2018次循环后,S=,不满足退出循环的条件,k=2019第2019次循环后,S==2,满足退出循环的条件,故输出的S值为2,故选:C8.(5分)已知函数(ω>0)的相邻两个零点差的绝对值为,则函数f(x)的图象()A.可由函数g(x)=cos4x的图象向左平移个单位而得B.可由函数g(x)=cos4x的图象向右平移个单位而得C.可由函数g(x)=cos4x的图象向右平移个单位而得D.可由函数g(x)=cos4x的图象向右平移个单位而得【试题解答】解:函数=sin(2ωx)﹣•+=sin(2ωx﹣)(ω>0)的相邻两个零点差的绝对值为,∴•=,∴ω=2,f(x)=sin(4x﹣)=cos[(4x﹣)﹣]=cos(4x﹣).故把函数g(x)=cos4x的图象向右平移个单位,可得f(x)的图象,故选:B.9.(5分)的展开式中剔除常数项后的各项系数和为()A.﹣73B.﹣61C.﹣55D.﹣63【试题解答】解:展开式中所有各项系数和为(2﹣3)(1+1)6=﹣64;=(2x﹣3)(1+++…),其展开式中的常数项为﹣3+12=9,∴所求展开式中剔除常数项后的各项系数和为﹣64﹣9=﹣73.故选:A.10.(5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是()A. B. C. D.【试题解答】解:如图,可得该几何体是六棱锥P﹣ABCDEF,底面是正六边形,有一PAF侧面垂直底面,且P在底面的投影为AF中点,过底面中心N作底面垂线,过侧面PAF的外心M作面PAF的垂线,两垂线的交点即为球心O,设△PAF的外接圆半径为r,,解得r=,∴,则该几何体的外接球的半径R=,∴表面积是则该几何体的外接球的表面积是S=4πR2=.故选:C.11.(5分)已知抛物线C:y2=4x的焦点为F,过点F分别作两条直线l1,l2,直线l1与抛物线C交于A、B两点,直线l2与抛物线C交于D、E两点,若l1与l2的斜率的平方和为1,则|AB|+|DE|的最小值为()A.16B.20C.24D.32【试题解答】解:抛物线C:y2=4x的焦点F(1,0),设直线l1:y=k1(x﹣1),直线l2:y=k2(x﹣1),由题意可知,则,联立,整理得:k12x2﹣(2k12+4)x+k12=0,设A(x1,y1),B(x2,y2),则x1+x2=,设D(x3,y3),E(x4,y4),同理可得:x3+x4=2+,由抛物线的性质可得:丨AB丨=x1+x2+p=4+,丨DE丨=x3+x4+p=4+,∴|AB|+|DE|=8+==,当且仅当=时,上式“=”成立.∴|AB|+|DE|的最小值24,故选:C.12.(5分)若函数y=f(x),x∈M,对于给定的非零实数a,总存在非零常数T,使得定义域M内的任意实数x,都有af(x)=f(x+T)恒成立,此时T为f(x)的类周期,函数y=f(x)是M上的a级类周期函数.若函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2,当x∈[0,2)时,函数.若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,则实数m的取值范围是()A. B. C. D.【试题解答】解:根据题意,对于函数f(x),当x∈[0,2)时,,分析可得:当0≤x≤1时,f(x)=﹣2x2,有最大值f(0)=,最小值f(1)=﹣,当1<x<2时,f(x)=f(2﹣x),函数f(x)的图象关于直线x=1对称,则此时有﹣<f(x)<,又由函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2;则在∈[6,8)上,f(x)=23•f(x﹣6),则有﹣12≤f(x)≤4,则f(8)=2f(6)=4f(4)=8f(2)=16f(0)=8,则函数f(x)在区间[6,8]上的最大值为8,最小值为﹣12;对于函数,有g′(x)=﹣+x+1==,分析可得:在(0,1)上,g′(x)<0,函数g(x)为减函数,在(1,+∞)上,g′(x)>0,函数g(x)为增函数,则函数g(x)在(0,+∞)上,由最小值f(1)=+m,若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,必有g(x)min≤f(x)max,即+m≤8,解可得m≤,即m的取值范围为(﹣∞,];故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量,,且,则=.【试题解答】解:根据题意,向量,,若,则•=2sinα﹣cosα=0,则有tanα=,又由sin2α+cos2α=1,则有或,则=(,)或(﹣,﹣),则||=,则=2+2﹣2•=;故答案为:14.(5分)已知x,y满足约束条件则目标函数的最小值为.【试题解答】解:由约束条件作出可行域如图,联立,解得A(2,4),=,令t=5x﹣3y,化为y=,由图可知,当直线y=过A时,直线在y轴上的截距最大,t有最小值为﹣2.∴目标函数的最小值为.故答案为:.15.(5分)在等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设b n=a2n﹣1﹣a2n,n∈N*,则数列{b n}的前2n项和为.【试题解答】解:等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设首项为a1,公比为q,则:,整理得:,解得:.则:,﹣a2n==﹣22n﹣4,所以:b n=a2n﹣1则:T 2n ==.故答案为:.16.(5分)如图,在直角梯形ABCD 中,AB ⊥BC,AD ∥BC,,点E 是线段CD上异于点C,D 的动点,EF ⊥AD 于点F,将△DEF 沿EF 折起到△PEF 的位置,并使PF ⊥AF,则五棱锥P ﹣ABCEF 的体积的取值范围为 (0,) .【试题解答】解:∵PF ⊥AF,PF ⊥EF,AF ∩EF =F, ∴PF ⊥平面ABCD.设PF =x,则0<x <1,且EF =DF =x.∴五边形ABCEF 的面积为S =S 梯形ABCD ﹣S △DEF =×(1+2)×1﹣x 2=(3﹣x 2).∴五棱锥P ﹣ABCEF 的体积V =(3﹣x 2)x =(3x ﹣x 3),设f(x)=(3x ﹣x 3),则f′(x)=(3﹣3x 2)=(1﹣x 2), ∴当0<x <1时,f′(x)>0,∴f(x)在(0,1)上单调递增,又f(0)=0,f(1)=. ∴五棱锥P ﹣ABCEF 的体积的范围是(0,). 故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC 的内角A,B,C 的对边a,b,c 分别满足c =2b =2,2bcosA +acosC+ccosA=0,又点D满足.(1)求a及角A的大小;(2)求的值.【试题解答】解:(1)由2bcosA+acosC+ccosA=0及正弦定理得﹣2sinBcosA=sinAcosC+cosAsinC,即﹣2sinBcosA=sin(A+C)=sinB,在△ABC中,sinB>0,所以.又A∈(0,π),所以.在△ABC中,c=2b=2,由余弦定理得a2=b2+c2﹣2bccosA=b2+c2+bc=7,所以.(2)由,得=,所以.18.(12分)在四棱柱ABCD﹣AB1C1D1中,底面ABCD是正方形,且,∠A1AB=∠A1AD=60°.(1)求证:BD⊥CC1;(2)若动点E在棱C1D1上,试确定点E的位置,使得直线DE与平面BDB1所成角的正弦值为.【试题解答】解:(1)连接A1B,A1D,AC,因为AB=AA1=AD,∠A1AB=∠A1AD=60°,所以△A1AB和△A1AD均为正三角形,于是A1B=A1D.设AC与BD的交点为O,连接A1O,则A1O⊥BD,又四边形ABCD是正方形,所以AC⊥BD,而A1O∩AC=O,所以BD⊥平面A1AC.又AA1⊂平面A1AC,所以BD⊥AA1,又CC1∥AA1,所以BD⊥CC1.(2)由,及,知A 1B⊥A1D,于是,从而A1O⊥AO,结合A1O⊥BD,AO∩AC=O,得A1O⊥底面ABCD,所以OA、OB、OA1两两垂直.如图,以点O为坐标原点,的方向为x轴的正方向,建立空间直角坐标系O﹣xyz,则A(1,0,0),B(0,1,0),D(0,﹣1,0),A1(0,0,1),C(﹣1,0,0),,,,由,得D1(﹣1,﹣1,1).设(λ∈[0,1]),则(x E+1,y E+1,z E﹣1)=λ(﹣1,1,0),即E(﹣λ﹣1,λ﹣1,1),所以.设平面B 1BD的一个法向量为,由得令x=1,得,设直线DE与平面BDB1所成角为θ,则,解得或(舍去),所以当E为D1C1的中点时,直线DE与平面BDB1所成角的正弦值为.19.(12分)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(μ,σ2),利用该正态分布,求Z落在(14.55,38.45)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则P(μ﹣σ<Z≤μ+σ)=0.6826,P(μ﹣2σ<Z≤μ+2σ)=0.9544.【试题解答】解:(1)所抽取的100包速冻水饺该项质量指标值的样本平均数为.(2)①∵Z 服从正态分布N(μ,σ2),且μ=26.5,σ≈11.95,∴P(14.55<Z <38.45)=P(26.5﹣11.95<Z <26.5+11.95)=0.6826, ∴Z 落在(14.55,38.45)内的概率是0.6826.②根据题意得X ~B(4,),;;;;.∴X 的分布列为∴.20.(12分)已知椭圆C :的离心率为,且以两焦点为直径的圆的内接正方形面积为2. (1)求椭圆C 的标准方程;(2)若直线l :y =kx +2与椭圆C 相交于A,B 两点,在y 轴上是否存在点D,使直线AD 与BD 的斜率之和k AD +k BD 为定值?若存在,求出点D 坐标及该定值,若不存在,试说明理由.【试题解答】解:(1)由已知可得解得a2=2,b2=c2=1,所求椭圆方程为.(2)由得(1+2k2)x2+8kx+6=0,则△=64k2﹣24(1+2k2)=16k2﹣24>0,解得或.设A(x1,y1),B(x2,y2),则,,设存在点D(0,m),则,,所以==.要使k AD+k BD为定值,只需6k﹣4k(2﹣m)=6k﹣8k+4mk=2(2m﹣1),k与参数k无关,故2m﹣1=0,解得,当时,k AD+k BD=0.综上所述,存在点,使得k AD+k BD为定值,且定值为0.21.(12分)已知函数f(x)=e x﹣2(a﹣1)x﹣b,其中e为自然对数的底数.(1)若函数f(x)在区间[0,1]上是单调函数,试求实数a的取值范围;(2)已知函数g(x)=e x﹣(a﹣1)x2﹣bx﹣1,且g(1)=0,若函数g(x)在区间[0,1]上恰有3个零点,求实数a的取值范围.【试题解答】解:(1)根据题意,函数f(x)=e2﹣2(a﹣1)x﹣b,其导数为f'(x)=e x﹣2(a﹣1),当函数f(x)在区间[0,1]上单调递增时,f'(x)=e x﹣2(a﹣1)≥0在区间[0,1]上恒成立,∴2(a﹣1)≤(e x)min=1(其中x∈[0,1]),解得;当函数f(x)在区间[0,1]单调递减时,f'(x)=e x﹣2(a﹣1)≤0在区间[0,1]上恒成立,∴2(a﹣1)≥(e x)max=e(其中x∈[0,1]),解得.综上所述,实数a的取值范围是.(2)函数g(x)=e x﹣(a﹣1)x2﹣bx﹣1,则g'(x)=e x﹣2(a﹣1)x﹣b,分析可得f(x)=g'(x).由g(0)=g(1)=0,知g(x)在区间(0,1)内恰有一个零点,设该零点为x0,则g(x)在区间(0,x0)内不单调,所以f(x)在区间(0,x0)内存在零点x1,同理,f(x)在区间(x0,1)内存在零点x2,所以f(x)在区间(0,1)内恰有两个零点.由(1)知,当时,f(x)在区间[0,1]上单调递增,故f(x)在区间(0,1)内至多有一个零点,不合题意.当时,f(x)在区间[0,1]上单调递减,故f(x)在(0,1)内至多有一个零点,不合题意;所以.令f'(x)=0,得x=ln(2a﹣2)∈(0,1),所以函数f(x)在区间[0,ln(2a﹣2)]上单调递减,在区间(ln(2a﹣2),1]上单调递增.记f(x)的两个零点为x1,x2(x1<x2),因此x1∈(0,ln(2a﹣2)],x2∈(ln(2a﹣2),1),必有f(0)=1﹣b>0,f(1)=e﹣2a+2﹣b>0.由g(1)=0,得a+b=e,所以,又f(0)=a﹣e+1>0,f(1)=2﹣a>0,所以e﹣1<a<2.综上所述,实数a的取值范围为(e﹣1,2).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,圆C1的参数方程为(θ为参数,a 是大于0的常数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为.(1)求圆C1的极坐标方程和圆C2的直角坐标方程;(2)分别记直线l:,ρ∈R与圆C1、圆C2的异于原点的焦点为A,B,若圆C1与圆C2外切,试求实数a的值及线段AB的长.【试题解答】解:(1)圆C1:(θ是参数)消去参数θ,得其普通方程为(x+1)2+(y+1)2=a2,将x=ρcosθ,y=ρsinθ代入上式并化简,得圆C1的极坐标方程,由圆C2的极坐标方程,得ρ2=2ρcosθ+2ρsinθ.将x=ρcosθ,y=ρsinθ,x2+y2=ρ2代入上式,得圆C2的直角坐标方程为(x﹣1)2+(y﹣1)2=2.(2)由(1)知圆C1的圆心C1(﹣1,﹣1),半径r1=a;圆C 2的圆心C2(1,1),半径,,∵圆C1与圆C2外切,∴,解得,即圆C1的极坐标方程为.将代入C1,得,得;将代入C2,得,得;故.[选修4-5:不等式选讲]23.已知函数f(x)=|2x+1|.(1)求不等式f(x)≤10﹣|x﹣3|的解集;(2)若正数m,n满足m+2n=mn,求证:f(m)+f(﹣2n)≥16.【试题解答】解:(1)此不等式等价于或或解得或或3<x≤4.即不等式的解集为.(2)证明:∵m>0,n>0,m+2n=mn,,即m+2n≥8,当且仅当即时取等号.∴f(m)+f(﹣2n)=|2m+1|+|﹣4n+1|≥|(2m+1)﹣(﹣4n+1)|=|2m+4n|=2(m+2n)≥16,当且仅当﹣4n+1≤0,即时,取等号.∴f(m)+f(﹣2n)≥16.。
2018年高考数学模拟试卷(理科)带答案精讲

2018年高考数学模拟试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分.)1.(5分)已知复数z1=2+i,z2=a﹣i,z1•z2是实数,则实数a=()A.2 B.3 C.4 D.52.(5分)若集合A={0,1,2,3},集合B={x|x∈A且1﹣x∉A},则集合B的元素的个数为()A.1 B.2 C.3 D.43.(5分)一个几何体的正视图和侧视图都是边长为1的正方形,则这个几何体的俯视图一定不是()A.B.C.D.4.(5分)从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为()A.480 B.481 C.482 D.4835.(5分)函数f(x)的导函数f′(x)的图象是如图所示的一条直线l,l与x轴交点的坐标为(1,0),则f(0)和f(3)的大小关系为()A.f(0)<f(3)B.f(0)>f(3)C.f(0)=f(3)D.不能确定6.(5分)一个等比数列前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有()A.13项B.12项C.11项D.10项7.(5分)当0<x<1时,f(x)=,则下列大小关系正确的是()A.f2(x)<f(x)<f(x2)B.f(x2)<f2(x)<f(x)C.f(x)<f(x2)<f2(x)D.f2(x)<f(x2)<f(x)8.(5分)如图所示计算机程序的打印结果为()A.B.C.D.9.(5分)如图,已知双曲线﹣=1(a>0,b>0)的左右焦点分别为F1,F2,|F1F2|=4,P是双曲线右支上的一点,F2P与y轴交于点A,△APF1的内切圆在边PF1上的切点为Q,若|PQ|=1,则双曲线的离心率是()A.3 B.2 C.D.10.(5分)已知函数f(x)的导函数的图象如图所示,a、b、c分为△ABC的边且3a2+3b2﹣c2=4ab,则一定成立的是()A.f(sinA)≤f(cosB)B.f(sinA)≥f(cosB)C.f(sinA)≥f(sinB)D.f(cosA)≤f(cosB)二、填空题(本大题共4小题,考生共需作答5小题,每小题5分,共25分.)(一)必做题(11-14题)11.(5分)某天上午要排物理,化学,生物和两节自习课共5节,如果第一节不排自习课,那么不同的排法共有种(用数字作答).12.(5分)已知点P(t,2)在不等式组所表示的平面区域内运动,l 为过点P和坐标原点O的直线,则l的斜率的最大值为.13.(5分)某一物体在某种介质中作直线运动,已知t时刻,它的速度为v,位移为s,且它在该介质中所受到的阻力F与速度v的平方成正比,比例系数为k,若已知s=t2,则该物体由位移s=0移动到位移s=a时克服阻力所作的功为.(注:变力F做功W=∫F(s)ds,结果用k,a表示)14.(5分)已知椭圆+=1(a>b>0),P(x,y),Q(x′,y′)是椭圆上异于顶点的两点,有下列四个不等式①a2+b2≥(x+y)2;②+≥(+)2;③4()2≤()2;④+≤1.其中不等式恒成立的序号是.(填所有正确命题的序号)选考题(请考生在第15、16两题中任选一题作答,如果全选,则按第15题作答结果计分.)15.(5分)(几何证明选讲选做题)如图,半径为2的⊙O中,∠AOB=90°,D 为OB的中点,AD的延长线交⊙O于点E,则线段DE的长为.16.设直线l1的参数方程为(t为参数),以坐标原点为极点,x轴为极轴建立极坐标系得另一直线l2的方程为ρsinθ﹣3ρcosθ+4=0,若直线l1与l2间的距离为,则实数a的值为.三、解答题(本大题共6小题,前4题每题12分,21题13分,22题14分)17.(12分)已知向量=(,sinx),=(cos2x,﹣cosx),x∈R,设函数f (x)=•(Ⅰ)求f(x)的最小正周期及在区间[0,π]上的单调区间;(Ⅱ)若f(θ)=1,求cos2(﹣θ)+sinθcosθ的值.18.(12分)已知函数f(x)=4x,数列{a n}中,2a n+1﹣2a n+a n+1a n=0,a1=1且a n ≠0,若数列{b n}中,b1=2且b n=f()(n≥2).(Ⅰ)求证:数列{}是等差数列,并求出数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和T n.19.(12分)如图1,直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分别为边AD和BC上的点,且EF∥AB,AD=2AE=2AB=4FC=4.将四边形EFCD沿EF折起成如图2的位置,使AD=AE.(1)求证:AF∥平面CBD;(2)求平面CBD与平面DAE所成锐角的余弦值.20.(12分)由于雾霾日趋严重,政府号召市民乘公交出行.但公交车的数量太多会造成资源的浪费,太少又难以满足乘客需求.为此,某市公交公司在某站台的60名候车乘客中进行随机抽样,共抽取10人进行调查反馈,所选乘客情况如下表所示:(1)估计这60名乘客中候车时间少于10分钟的人数;(2)现从这10人中随机取3人,求至少有一人来自第二组的概率;(3)现从这10人中随机抽取3人进行问卷调查,设这3个人共来自X个组,求X的分布列及数学期望.21.(13分)若椭圆C:+=1(a>b>0)的离心率e为,且椭圆C的一个焦点与抛物线y2=﹣12x的焦点重合.(1)求椭圆C的方程;(2)设点M(2,0),点Q是椭圆上一点,当|MQ|最小时,试求点Q的坐标;(3)设P(m,0)为椭圆C长轴(含端点)上的一个动点,过P点斜率为k的直线l交椭圆与A,B两点,若|PA|2+|PB|2的值仅依赖于k而与m无关,求k的值.22.(14分)已知函数f(x)=x﹣xlnx,g(x)=f(x)﹣xf′(a),其中f′(a)表示函数f(x)在x=a处的导数,a为正常数.(1)求g(x)的单调区间;(2)对任意的正实数x1,x2,且x1<x2,证明:(x2﹣x1)f′(x2)<f(x2)﹣f (x1)<(x2﹣x1)f′(x1);(3)对任意的n∈N*,且n≥2,证明:.参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.)1.(5分)已知复数z1=2+i,z2=a﹣i,z1•z2是实数,则实数a=()A.2 B.3 C.4 D.5【分析】利用复数的运算法则和复数为实数的充要条件即可得出.【解答】解:∵z1•z2=(2+i)(a﹣i)=2a+1+(a﹣2)i为实数,∴a﹣2=0,解得a=2.故选:A.【点评】本题考查了复数的运算法则和复数为实数的充要条件,属于基础题.2.(5分)若集合A={0,1,2,3},集合B={x|x∈A且1﹣x∉A},则集合B的元素的个数为()A.1 B.2 C.3 D.4【分析】根据已知中集合A={0,1,2,3},集合B={x|x∈A且1﹣x∉A},逐一分析集合A中的元素是否满足B中元素的条件,进而得到答案.【解答】解:∵集合A={0,1,2,3},集合B={x|x∈A且1﹣x∉A},当x=0时,不满足B中元素的条件;当x=1时,不满足B中元素的条件;当x=2时,满足B中元素的条件;当x=3时,满足B中元素的条件;故B={2,3},则集合B的元素的个数为2,故选:B.【点评】本题考查的知识点是集合的包含关系判断及应用,正确理解集合B={x|x ∈A且1﹣x∉A}中元素所满足的条件,是解答的关键.3.(5分)一个几何体的正视图和侧视图都是边长为1的正方形,则这个几何体的俯视图一定不是()A.B.C.D.【分析】四个图形的高均可取1,A可以是三棱柱,B可是三分之一圆柱,C可以是正方体,D从俯视图看出正方体去掉四分之一圆锥后的几何体.【解答】解:A中几何体的侧视图是左侧面在过里面侧棱和中心高线确定面上的正投影,能满足和正视图侧视图为边长为1的正方形;满足题目的要求,正确;B的俯视图是一扇形,是三分之一圆柱,从正视图与侧视图的高为1的线段,正视图的长度大于1,不满足要求.C可以是正方体,以其正视图和侧视图也可是边长为1的正方形.满足题目的要求,正确;选项D从俯视图看出正方体去掉四分之一圆锥后的几何体.故其正视图与侧视图是边长为1的正方形.满足题目的要求,正确;故选:B.【点评】本题考查三视图的理解与应用,解决三视图问题,要掌握视图原则,关键是图形在与目光视线垂直面上的正投影.4.(5分)从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为()A.480 B.481 C.482 D.483【分析】根据系统抽样的定义得到,编号之间的关系,即可得到结论.【解答】解:∵样本中编号最小的两个编号分别为007,032,∴样本数据组距为32﹣07=25,则样本容量为,则对应的号码数x=7+25(n﹣1),当n=20时,x取得最大值为x=7+25×19=482,故选:C.【点评】本题主要考查系统抽样的应用,根据条件确定组距是解决本题的关键,比较基础.5.(5分)函数f(x)的导函数f′(x)的图象是如图所示的一条直线l,l与x轴交点的坐标为(1,0),则f(0)和f(3)的大小关系为()A.f(0)<f(3)B.f(0)>f(3)C.f(0)=f(3)D.不能确定【分析】根据导函数的图象,写出函数f(x)的单调区间,由导函数图象是一条直线知原函数是二次函数,对称轴是x=1,从而将f(0),f(3)转换到单调区间,就能比较大小了.【解答】解:由导函数f′(x)的图象可知:函数f(x)的增区间为(﹣∞,1),减区间为(1,+∞),又导函数f′(x)的图象是一条直线l,∴原函数是二次项系数小于0的二次函数,其图象的对称轴是x=1.∴f(x)=f(2﹣x),∴f(0)=f(2),由函数f(x)在(1,+∞)上是减函数,得f(2)>f(3),即f(0)>f(3).故选B.【点评】本题主要考查利用导数研究函数的性质:单调性,进而比较两数大小,解题时应注意导函数的图象与原函数的关系是解决问题的关键.6.(5分)一个等比数列前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有()A.13项B.12项C.11项D.10项【分析】先设数列的通项公式为a1q n﹣1,则前三项之积:a13q3=2,后三项之积:a13q3n﹣6=4两式相乘得即a12q n﹣1=2,又根据所有项的积为64,进而求出n.【解答】解析:设数列的通项公式为a1q n﹣1则前三项分别为a1,a1q,a1q2,后三项分别为a1q n﹣3,a1q n﹣2,a1q n﹣1.∴前三项之积:a13q3=2,后三项之积:a13q3n﹣6=4两式相乘得:a16q3(n﹣1)=8,即a12q n﹣1=2又a1•a1q•a1q2…a1q n﹣1=64,∴=64,即(a12q n﹣1)n=642,∴2n=642,∴n=12故选B【点评】本题主要考查了等比数列的性质.属基础题.7.(5分)当0<x<1时,f(x)=,则下列大小关系正确的是()A.f2(x)<f(x)<f(x2)B.f(x2)<f2(x)<f(x)C.f(x)<f(x2)<f2(x)D.f2(x)<f(x2)<f(x)【分析】根据不等式的性质,以及函数单调性和导致之间的关系判断函数f(x)的单调性即可得到结论.【解答】解:根据三角函数线的定义知|sinx|≤|x|,∴≤1,∵0<x<1,∴0<<1成立,即0<f(x)<1,则f2(x)<f(x),∵f(x)=,∴f′(x)=,设g(x)=xcosx﹣sinx,则g′(x)=﹣xsinx<0,(0<x<1),∴g(x)在0<x<1上单调递减,则g(x)<g(0)=0,∴f′(x)=<0,即在0<x<1上f(x)单调递减,∵此时x>x2,∴f2(x)<f(x)<f(x2),故选:A.【点评】本题主要考查函数的值的大小比较,利用函数单调性和导数之间的关系是解决本题的关键.8.(5分)如图所示计算机程序的打印结果为()A.B.C.D.【分析】根据框图的流程依次计算程序运行的结果,直到不满足条件z≤30,计算输出的值.【解答】解:由程序框图知:x=1,y=1,z=2,第一次循环x=1,y=2,z=1+2=3;第二次循环x=2,y=3,z=2+3=5;第三次循环x=3,y=5,z=3+5=8;第四次循环x=5,y=8,z=5+8=13;第五次循环x=8,y=13,z=8+13=21;第六次循环x=13,y=21,z=34.不满足条件z≤30,跳出循环体,输出=.故选:C.【点评】本题考查了循环结构的程序框图,根据框图的流程依次计算程序运行的结果是解答此类问题的常用方法.9.(5分)如图,已知双曲线﹣=1(a>0,b>0)的左右焦点分别为F1,F2,|F1F2|=4,P是双曲线右支上的一点,F2P与y轴交于点A,△APF1的内切圆在边PF1上的切点为Q,若|PQ|=1,则双曲线的离心率是()A.3 B.2 C.D.【分析】由|PQ|=1,△APF1的内切圆在边PF1上的切点为Q,根据切线长定理,可得|PF1|﹣|PF2|=2,结合|F1F2|=4,即可得出结论.【解答】解:由题意,∵|PQ|=1,△APF1的内切圆在边PF1上的切点为Q,∴根据切线长定理可得AM=AN,F1M=F1Q,PN=PQ,∵|AF1|=|AF2|,∴AM+F1M=AN+PN+NF2,∴F1M=PN+NF2=PQ+PF2∴|PF1|﹣|PF2|=F1Q+PQ﹣PF2=F1M+PQ﹣PF2=PQ+PF2+PQ﹣PF2=2PQ=2,∵|F1F2|=4,∴双曲线的离心率是e==2.故选:B.【点评】本题考查双曲线的离心率,考查三角形内切圆的性质,考查切线长定理,考查学生的计算能力,属于基础题.10.(5分)已知函数f(x)的导函数的图象如图所示,a、b、c分为△ABC的边且3a2+3b2﹣c2=4ab,则一定成立的是()A.f(sinA)≤f(cosB)B.f(sinA)≥f(cosB)C.f(sinA)≥f(sinB)D.f(cosA)≤f(cosB)【分析】根据函数f(x)的导函数f′(x)的图象可知f(x)在(0,+∞)上是增函数,然后判定sinA与cosB的大小,根据单调性的定义进行判定即可.【解答】解:根据函数f(x)的导函数f′(x)的图象可知f(x)在(0,+∞)上是增函数,又当3a2+3b2﹣c2=4ab时,cosC==,∴C≥90°,∴A+B≤90°,∴A≤90°﹣B,∴sinA≤sin(90°﹣B)=cosB,从而f(sinA)≤f(cosB)故选A.【点评】本题主要考查了函数的单调性与导数的关系,以及导函数图象与原函数的性质的关系,属于基础题.二、填空题(本大题共4小题,考生共需作答5小题,每小题5分,共25分.)(一)必做题(11-14题)11.(5分)某天上午要排物理,化学,生物和两节自习课共5节,如果第一节不排自习课,那么不同的排法共有36种(用数字作答).【分析】分两步进行,先排第一节课,再排其它四节,注意两节自习课只有一种顺序,进而由分步乘法公式计算可得答案【解答】解:先排第一节,从物理,化学,生物任选一科,有,剩下的四节从剩下的科目中任意排,有,而两节自习课只有一种顺序,不同的排法共有=36种.故答案为:36.【点评】本题考查分步计数原理的运用,要优先处理特殊的元素,即有特殊要求或受到限制的元素.12.(5分)已知点P(t,2)在不等式组所表示的平面区域内运动,l 为过点P和坐标原点O的直线,则l的斜率的最大值为2.【分析】由不等式组可得所表示的可行域,即可得到:当取点P(1,2)时,直线l的斜率取得最大值.【解答】解:由不等式组可得所表示的可行域,由图可知:当取点P(1,2)时,直线l的斜率的取得最大值,k==2.故答案为:2.【点评】本题考查了线性规划的可行域、斜率的计算公式,属于中档题.13.(5分)某一物体在某种介质中作直线运动,已知t时刻,它的速度为v,位移为s,且它在该介质中所受到的阻力F与速度v的平方成正比,比例系数为k,若已知s=t2,则该物体由位移s=0移动到位移s=a时克服阻力所作的功为ka2.(注:变力F做功W=∫F(s)ds,结果用k,a表示)【分析】将变力F用s表示出来,根据变力F做功的公式进行计算即可得到结论.【解答】解:∵在该介质中所受到的阻力F与速度v的平方成正比,比例系数为k,∴F=kv2,∵t时刻,它的速度为v,位移为s,∴s=t2,s′(t)=t,即v=s′(t)=t,∴s=t2=v2,即v2=2s,即F=kv2=2ks,则由W=∫F(s)ds得W=∫=ks2|=ka2,故答案为:ka2【点评】本题主要考查积分的物理意义,要求熟练掌握积分的公式.14.(5分)已知椭圆+=1(a>b>0),P(x,y),Q(x′,y′)是椭圆上异于顶点的两点,有下列四个不等式①a2+b2≥(x+y)2;②+≥(+)2;③4()2≤()2;④+≤1.其中不等式恒成立的序号是①②③④.(填所有正确命题的序号)【分析】利用三角换元,即可得出结论.【解答】解:设x=asinα,y=bcosα,则x+y=sin(α+θ),∴a2+b2≥(x+y)2,即①正确;(+)a2b2=(+)a2b2=(sin2α+cos2α)(+)≥(a+b)2,∴+≥(+)2,即②正确;=4b2sin2αcos2α=b2sin22α≤b2,即③正确;设x′=acosβ,y′=bsinβ,∴+=sin(α+β)≤1,即④正确.故答案为:①②③④.【点评】本题考查椭圆方程,考查三角函数知识,考查学生分析解决问题的能力,属于中档题.选考题(请考生在第15、16两题中任选一题作答,如果全选,则按第15题作答结果计分.)15.(5分)(几何证明选讲选做题)如图,半径为2的⊙O中,∠AOB=90°,D为OB的中点,AD的延长线交⊙O于点E,则线段DE的长为.【分析】延长BO交⊙O与点C,我们根据已知中⊙O的半径为2,∠AOB=90°,D为OB的中点,我们易得,代入相交弦定理,我们即可求出线段DE的长.【解答】解:延长BO交⊙O与点C,由题设知:,又由相交弦定理知AD•DE=BD•DC,得故答案为:【点评】本题考查的知识是与圆有关的比例线段,其中延长B0交圆于另一点C,从而构造相交弦的模型是解答本题的关键.16.设直线l1的参数方程为(t为参数),以坐标原点为极点,x轴为极轴建立极坐标系得另一直线l2的方程为ρsinθ﹣3ρcosθ+4=0,若直线l1与l2间的距离为,则实数a的值为a=9或a=﹣11.【分析】先利用直线l1的参数方程化为普通方程,再利用直角坐标与极坐标间的关系,进行代换将直线l2的方程化为直角坐标方程.最后利用两平行线的距离公式即可求得实数a的值.【解答】解:将直线l1的方程化为普通方程得3x﹣y+a﹣3=0,将直线l2的方程化为直角坐标方程得3x﹣y﹣4=0,由两平行线的距离公式得⇒a=9或a=﹣11.故答案为:a=9或a=﹣11.【点评】本题考查直线的参数方程、直线的极坐标和直角坐标的互化、两平行线的距离公式等知识,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.三、解答题(本大题共6小题,前4题每题12分,21题13分,22题14分)17.(12分)已知向量=(,sinx),=(cos2x,﹣cosx),x∈R,设函数f (x)=•(Ⅰ)求f(x)的最小正周期及在区间[0,π]上的单调区间;(Ⅱ)若f(θ)=1,求cos2(﹣θ)+sinθcosθ的值.【分析】(Ⅰ)利用向量积的知识,求得f(x)的解析式,进而化简,利用三角函数的图象和性质求得函数的最小正周期T和在区间[0,π]上的单调区间.(Ⅱ)通过f(θ)=1,求得cos(2θ+)的值,代入原式求得答案.【解答】解:(Ⅰ)f(x)=•=cos2x﹣sinxcosx=cos2x﹣sin2x=cos(2x+),∴T==π,当,即时,函数单调增,∵x∈[0,π]∴f(x)在区间[0,π]上的单调减区间为,单调增区间为.(Ⅱ)∵f(θ)=1,∴∴=.【点评】本题主要考查了三角函数恒等变换的应用,三角函数图象和性质.18.(12分)已知函数f(x)=4x,数列{a n}中,2a n+1﹣2a n+a n+1a n=0,a1=1且a n ≠0,若数列{b n}中,b1=2且b n=f()(n≥2).(Ⅰ)求证:数列{}是等差数列,并求出数列{a n}的通项公式;(Ⅱ)求数列{}的前n 项和T n .【分析】(Ⅰ)由2a n +1﹣2a n +a n +1a n =0,得,,由此能证明数列{}是首项为1,公差为的等差数列,从而能求出.(Ⅱ)b 1=2,当n ≥2时,==2n ,从而得到,由此利用错位相减法能求出数列{}的前n 项和T n .【解答】解:(Ⅰ)由2a n +1﹣2a n +a n +1a n =0,两边同时除以2a n +1a n , 得,,∴数列{}是首项为1,公差为的等差数列,(3分)∴, ∴.(6分)(Ⅱ)b 1=2,当n ≥2时==2n当n=1时b 1=2也符合 ∴b n =2n (n ∈N *) ∴(8分)+4×22+…+(n +1)×2n ﹣1①2T n =2×21+3×22+…+n ×2n ﹣1+(n +1)×2n ②(10分) ①﹣②得∴(12分)【点评】本题考查等差数列的证明,考查数列的通项公式的求法,考查数列的前n 项和的求法,解题时要认真审题,注意错位相减法的合理运用.19.(12分)如图1,直角梯形ABCD 中,AD ∥BC ,∠ABC=90°,E 、F 分别为边AD和BC上的点,且EF∥AB,AD=2AE=2AB=4FC=4.将四边形EFCD沿EF折起成如图2的位置,使AD=AE.(1)求证:AF∥平面CBD;(2)求平面CBD与平面DAE所成锐角的余弦值.【分析】(1)取DE的中点G,连结FG,AG,CG,由已知条件推导出FG∥CD,AG∥BC,从而得到平面AFG∥平面CBD,由此能证明AF∥平面CBD.(2)如图以AE中点为原点,AE为x轴,建立空间直角坐标系,利用向量法能求出面CBD与面DAE所面角的余弦值.【解答】(1)证明:取DE的中点G,连结FG,AG,CG,∵翻折前E、F分别为边AD和BC上的点,且EF∥AB,AD=2AE=2AB=4FC=4,∴翻折后AD=AE=2CF,∴CF DG,CG AB,∴FG∥CD,AG∥BC,∴平面AFG∥平面CBD,∴AF∥平面CBD.(2)如图以AE中点为原点,AE为x轴,建立如图所示的空间直角坐标系,则由题意知A(﹣1,0,0),D(0,0,),B(﹣1,﹣2,0),E(1,0,0),∴DE的中点坐标为(),∵,∴C(),∵是平面ADE的一个法向量,即,设平面BCD的一个法向量为,∵,,∴,令x=2,则y=2,z=﹣2,∴,∴cos<>==,∴面CBD与面DAE所面角的余弦值为.【点评】本题考查直线与平面平行的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.20.(12分)由于雾霾日趋严重,政府号召市民乘公交出行.但公交车的数量太多会造成资源的浪费,太少又难以满足乘客需求.为此,某市公交公司在某站台的60名候车乘客中进行随机抽样,共抽取10人进行调查反馈,所选乘客情况如下表所示:(1)估计这60名乘客中候车时间少于10分钟的人数;(2)现从这10人中随机取3人,求至少有一人来自第二组的概率;(3)现从这10人中随机抽取3人进行问卷调查,设这3个人共来自X个组,求X的分布列及数学期望.【分析】(1)根据15名乘客中候车时间少于10分钟频数和为6,可估计这60名乘客中候车时间少于10分钟的人数;(2)利用对立事件的概率公式,可求至少有一人来自第二组的概率;(3)X的可能值为1,2,3,求出相应的概率,即可求出求X的分布列及数学期望.【解答】解:(1)候车时间少于10分钟的人数为人;…(3分)(2)设“至少有一人来自第二组为事件A”…(7分)(3)X的可能值为1,2,3,,…(10分)所以X的分布列为…(13分)【点评】本题考查的知识点是频率分布直方表,古典概型概率公式,考查随机变量的分布列及数学期望,正确求概率是关键.21.(13分)若椭圆C:+=1(a>b>0)的离心率e为,且椭圆C的一个焦点与抛物线y2=﹣12x的焦点重合.(1)求椭圆C的方程;(2)设点M(2,0),点Q是椭圆上一点,当|MQ|最小时,试求点Q的坐标;(3)设P(m,0)为椭圆C长轴(含端点)上的一个动点,过P点斜率为k的直线l交椭圆与A,B两点,若|PA|2+|PB|2的值仅依赖于k而与m无关,求k 的值.【分析】(1)先求出焦点的坐标,再由离心率求得半长轴的长,从而得到短半轴长,即可写出椭圆的标准方程;(2)用坐标表示出|MQ|2,利用配方法可得结论;(3)设出直线方程,代入椭圆方程,利用韦达定理,表示出|PA|2+|PB|2,根据|PA|2+|PB|2的值仅依赖于k而与m无关,可得等式,从而可求k的值.【解答】解:(1)由题意可得:抛物线y2=﹣12x的焦点(﹣3,0),∵=,∴a=5,∴=4∴椭圆C的方程为;(2)设Q(x,y),﹣5≤x≤5∴|MQ|2=(x﹣2)2+y2=∵对称轴为x=>5,∴x=5时,|MQ|2取得最小值∴当|MQ|最小时,点Q的坐标为(5,0);(3)设A(x1,y1),B(x2,y2),直线l:y=k(x﹣m)直线代入椭圆方程,消去y可得(25k2+16)x2﹣50mk2x+25m2k2﹣400=0∴x1+x2=,x1x2=∴y1+y2=k(x1+x2)﹣2km=﹣,y1y2=∴|PA|2+|PB|2=+=(k2+1)•∵|PA|2+|PB|2的值仅依赖于k而与m无关,∴512﹣800k2=0,解得k=.【点评】本题考查椭圆的标准方程,考查配方法的运用,考查直线与椭圆的位置关系,考查学生的计算能力,正确运用韦达定理是关键.22.(14分)已知函数f(x)=x﹣xlnx,g(x)=f(x)﹣xf′(a),其中f′(a)表示函数f(x)在x=a处的导数,a为正常数.(1)求g(x)的单调区间;(2)对任意的正实数x1,x2,且x1<x2,证明:(x2﹣x1)f′(x2)<f(x2)﹣f (x1)<(x2﹣x1)f′(x1);(3)对任意的n∈N*,且n≥2,证明:.【分析】(1)求导函数,利用导数的正负,可确定函数的单调区间;(2)先证明f(x2)﹣f(x1)<(x2﹣x1)f'(x1),f(x2)﹣f(x1)>(x2﹣x1)f'(x2),即可得(x2﹣x1)f'(x2)<f(x2)﹣f(x1)<(x2﹣x1)f'(x1);(3)构造函数φ(x)=,确定φ(x)在(1,+∞)上单调递减,从而可得,即ln2lnn≤ln(2+k)ln(n﹣k),再利用放缩法,即可证得结论.【解答】(1)解:f'(x)=﹣lnx,g(x)=x﹣xlnx+xlna,g'(x)=f'(x)﹣f'(a)=﹣lnx+lna=ln.所以,x∈(0,a)时,g'(x)>0,g(x)单调递增;x∈(a,+∞)时,g'(x)<0,g(x)单调递减.所以,g(x)的单调递增区间为(0,a],单调递减区间为[a,+∞).(2)证明:∵f′(x)=﹣lnx,∴f′(x)在(0,+∞)上是一个减函数,对任意的正实数x1,x2,且x1<x2,由拉格朗日中值定理,可知,存在b∈(x1,x2),使得,∴x1<b<x2,又f′(x)在(0,+∞)上是一个减函数,∴f′(x2)<f′(b)<f′(x1),∴f′(x2)<<f′(x1),∴(x2﹣x1)f′(x2)<f(x2)﹣f(x1)<(x2﹣x1)f′(x1).(3)证明:对k=1,2,…,n﹣2,令φ(x)=,则φ′(x)=,显然1<x<x+k,0<lnx<ln(x+k),所以xlnx<(x+k)ln(x+k),所以φ′(x)<0,φ(x)在(1,+∞)上单调递减.由n﹣k≥2,得φ(n﹣k)≤φ(2),即.所以ln2lnn≤ln(2+k)ln(n﹣k),k=1,2,…,n﹣2.所以=≤=2又由(2)知f(n+1)﹣f(n)<f′(n)=﹣lnn,所以lnn<f(n)﹣f(n+1).∴ln1+ln2+…+lnn<f(1)﹣f(2)+f(2)﹣f(3)+…+f(n)﹣f(n+1)=f(1)﹣f(n+1)=1﹣f(n+1).所以,.【点评】本题考查导数知识的运用,考查函数的单调性,考查不等式的证明,考查放缩法的运用,综合性强,难度较大.。
山东省济南市2018届高三第二次模拟考试理数试题word含答案

山东省济南市2018届高三第二次模拟考试理数试题word含答案山东省济南市2018届高三第二次模拟(5月)考试理科数学参考公式:锥体的体积公式:V=1/3Sh,其中S为锥体的底面积,h为锥体的高。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
21.设全集U=R,集合A={x|x-1≤0},集合B={x|x-x-6<0},则下图中阴影部分表示的集合为()小幅度改写:已知全集U=R,集合A={x|x-1≤0},集合B={x|x-x-6<0},则下图中阴影部分为集合A和集合B的交集。
2.设复数z满足z(1-i)=2(其中i为虚数单位),则下列说法正确的是()小幅度改写:已知复数z满足z(1-i)=2(其中i为虚数单位),则下列说法正确的是z=-1+i。
3.已知角α的终边经过点(m,-2m)(其中m≠0),则sinα+cosα等于()小幅度改写:已知角α的终边经过点(m,-2m)(其中m≠0),则sinα+cosα=±3/5.4.已知F1、F2分别为双曲线2-2/b2=1(a>0,b>0)的左、右焦点,P为双曲线上一点,PF2与x轴垂直,∠PF1F2=30°,且虚轴长为2b2,则双曲线的标准方程为()小幅度改写:已知F1、F2分别为双曲线2-2/b2=1(a>0,b>0)的左、右焦点,P为双曲线上一点,PF2与x轴垂直,∠PF1F2=30°,且虚轴长为2b2,则双曲线的标准方程为x2/b2-y2/a2=1.5.某商场举行有奖促销活动,抽奖规则如下:从装有形状、大小完全相同的2个红球、3个蓝球的箱子中,任意取出两球,若取出的两球颜色相同则中奖,否则不中奖。
则中奖的概率为()小幅度改写:某商场举行有奖促销活动,抽奖规则如下:从装有形状、大小完全相同的2个红球、3个蓝球的箱子中,任意取出两球,若取出的两球颜色相同则中奖,否则不中奖。
最新-2018学年高三理科数学高考模拟考试试题及答案【安徽省宿州二中】 精品

安徽省宿州二中2018—2018学年度高三模拟考试数学试题(理工类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分,测试时间120分钟.第Ⅰ卷(选择题 共60分)注意事项: 1.答第1卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上. 2.每小题选出答案后,用HB 或者2B 铅笔把答题卡上的对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试题卷上.一、选择题:本大题共12个小题. 每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若iim -+1是纯虚数,则实数m 的值为 ( )A .-1B .0C .1D .22.若以连续掷两次骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 在直线x +y=5下方的概率为 ( )A .61B .41 C .121 D .91 3.若⎰⎰⎰===220232,sin ,,则xdx c dx x b dx x a a 、b 、c 大小关系是 ( ) A .a <c <b B .a <b <cC .c <b <aD .c <a <b4.如图所示给出的是计算201614121++++ 的值的一个程序框图,其中判断框内填入的条件是 ( )A .10>iB .10<iC .20>iD .20<i5.如右图,一个空间几何体的主视图和侧视图(左视图)都是边长为1的正三角形,俯视图是一个圆,那么该几何体的侧面积 ( )A .4πB .π42C .π22 D .π216.已知函数]3,3[sin ππω-=在x y 上是减函数,则实数的ω的取值范围是 ( )A .]23,(--∞B .)0,23[-C .]23,0(D .),23[+∞7.一船向正北匀速行驶,看见正西方两座相距10海里的灯塔恰好与该船在同一直线上,继续航行半小时后,看见其中一座灯塔在南偏西60°方向上,另一灯塔在南偏西75°方向上,则该船的速度应该是 ( )A .10海里/小时B .103海里/小时C .5海里/小时D .53海里/小时 8.函数|2|||ln --=x e y x 的图象大致是( )9.已知直线x +y=a 与圆x 2+y 2=4交于A 、B 两点,且||||-=+,其中O 为坐标原点,则实数a 的值为 ( )A .2B .±2C .-2D .2±10.已知L 、M 、N 是平面α内的三点,点P 在平面α外,有三个命题①若PL ⊥α,LN ⊥MN ,则PN ⊥MN ②若PL ⊥α,PN ⊥MN ,则LN ⊥MN ③若LN ⊥MN ,PN ⊥MN ,则PL ⊥α 对这三个命题的正确评价是 ( ) A .仅①是真命题 B .仅②是假命题 C .仅③是假命题 D .全是真命题11.已知F 1、F 2是两个定点,点P 是以F 1和F 2为公共焦点的椭圆和双曲线的一个交点,并且PF 1⊥PF 2,e 1和e 2分别是上述椭圆和双曲线的离心率,则有 ( )A .4112221=+e e B .2112221=+e e C .42221=+e eD .22221=+e e12.设函数)(x f 在定义域为D ,如果对任意的D x ∈1,存在唯一的D x ∈2,使C x f x f =+2)()(21(C 为常数)成立,则称函数)(x f 在D 上的均值为C . 给出下列四个函数:①y=x 3;②y=4sin x ;③y=lg x ;④y=2x ,则满足在其定义域上的均值为2的所有函数是 ( ) A .①② B .③④ C .②④ D .①③第II 卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题4分,共16分, 13.观察下列式子: ,474131211,3531211,2321122222<+++<++<+,则可以猜想:当2≥n 时,有 . 14.若二项式6)sin (x x-θ展开式中的常数项为20,则θ的值为 . 15.在两个实数间定义一种运算“#”,规定⎩⎨⎧≥-<=)(1)(1#b a b a b a ,则方程12|#21|=-x 的解集是 .16.给出下列四个结论:①函数)10(log )10(≠>=≠>=a a a y a a a y x a x 且与函数且在其各自定义域上具备相同单调性; ②函数k k y k (3⋅=为非零常数)的图象可由函数y=3x 的图象经过平移得到;③函数)0)(21131()0(12121≠+-=≠-+=x x y x y x x 是奇函数且函数是偶函数; ④函数y=cos|x |是周期函数.其中正确结论的序号是 .(填写你认为正确的所有结论序号)三、解答题:本大题共6个小题,共74分. 解答应写出文字说明,证明过程或演算步骤. 请 17.(12分)已知△ABC 的面积S 满足.,6,333θ的夹角为与且S =⋅≤≤(I )求θ的取值范围; (2)求函数θθθθθ22cos 3cos sin 2sin)(+⋅+=f 的最大值.18.(12分) 如图,在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB ,PB 的中点. (I )求证:EF ⊥CD ;(II )求DB 与平面DEF 所成角的正弦值; (III )在平面PAD 内是否存在一点G ,使G 在平面PCB 上的射影为△PCB 的外心,若存在,试确定点G 的位置;若不存在,说明理由.19.(12分) 某班从6名干部中(其中男生4人,女生2人),选3人参加学校的义务劳动. (I )设所选3人中女生人数为ξ,求ξ的分布列及E ξ;(II )求男生甲或女生乙被选中的概率;(III )在男生甲被选中的情况下,求女生乙也被选中的概率.20.(12分)已知在曲线点项和为的前数列))(1,(,}{,14)(*12N n a a P S n a xx f n n n n n ∈+=+.0,1,)(1>==n a a x f y 且上(I )求数列{n a }的通项公式n a ;(II )数列{n b }的首项b 1=1,前n 项和为T n ,且381622121--+=++n n a T a T n n n n ,求数列{n b }的通项公式b n .21.(12分) 设M 是由满足下列两个条件的函数)(x f 构成的集合:①议程0)(=-x x f 有实根;②函数)(x f 的导数)(x f '满足0<)(x f '<1.(I )若4sin 2)(xx x f +=,判断方程0)(=-x x f 的根的个数; (II )判断(I )中的函数)(x f 是否为集合M 的元素;(III )对于M 中的任意函数)(x f ,设x 1是方程0)(=-x x f 的实根,求证:对于)(x f 定义域中任意的x 2,x 3,当| x 2-x 1|<1,且| x 3-x 1|<1时,有.2|)()(|23<-x f x f22.(14分)过点T (2,0)的直线2:+=my x l 交抛物线y 2=4x 于A 、B 两点.(I )若直线l 交y 轴于点M ,且,,21λλ==当m 变化时,求21λλ+的值;(II )设A 、B 在直线n x g =:上的射影为D 、E ,连结AE 、BD 相交于一点N ,则当m变化时,点N 为定点的充要条件是n =-2.参考答案一、选择题:本大题共12小题,每小题5分,共60分. 1—5CADAD 6—10BACBC 11—12BD二、填空题:本大题共4个小题,每小题4分,共16分. 13.n n n 12131211222-<++++14.)(22Z k k ∈-ππ 15.),41(+∞ 16.③④ 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分) 解:(I )由题意知.6cos ||||==⋅θ……………………1分θθθθtan cos ||||21sin ||||21)sin(||||21x S ==-=.tan 3tan 621ϑθ=⨯=………………………………………………………6分.3tan 1.33tan 33,333≤≤∴≤≤≤≤θθ即S].3,4[],,0[ππθπθ∈∴∈ 又………………………………………………8分(II )θθθθθθθ222cos 22sin 1cos 3cos sin 2sin )(++=++=f).42sin(222cos 2sin 2πθθθ++=++=…………………………10分].1211,43[42],3,4[πππθππθ∈+∈)(,4,4342θπθππθf 时即当==+∴最大,其最大值为3.………………12分18.(本小题满分12分)解:以DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系(如图). 设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,a ,0),C (0,a ,0),E (a ,2a,0),P (0,0,a ),F (2a ,2a ,2a).………………2分 (I ),0)0,,0()2,0,2(=⋅-=⋅a aa.DC EF ⊥∴…………………………………………4分(II )设平面DEF 的法向量为⎪⎩⎪⎨⎧=⋅=⋅=0),,,(z y x n 由得⎪⎪⎩⎪⎪⎨⎧=+=++⎪⎪⎩⎪⎪⎨⎧=⋅=⋅.02,0)(2,0)0,2,(),,(,0)2,2,2(),,(y a ax z y x aa a z y x a a a z y x 即取x =1,则y=-2,z=1.).1,2,1(-=∴………………………………………………6分.6362||||,cos =⋅=⋅>=<∴a a n BD设DB 与平面DEF 所成角为.63sin ,=θθ则……………………………………8分 (III )假设存在点G 满足题意因为).,0,(,z x G PAD G 点坐标为可设平面∈.0,0)2(2),,0()2,2,2(.2,0)2()0,0,()2,2,2()2,2,2(10.)2,2,2(,,.,0),,0()0,0,(2==-+=-⋅---=⋅==-=⋅---=⋅---=∆∴∆⊥∴=-⋅=⋅z ax a a a a a z a a x CP FG ax a x a a a z a a x ax a a x PBC Rt aa a F PB F PBC Rt PC BC a a a 得由得由分的外心为中点为中在∴存在点G ,其坐标为(2a,0,0),即G 点为AD 的中点.……………………12分19.(本小题满分12分) 解:(I )ξ的所有可能取值为0,1,2,依题意得: ;51)2(;53)1(;51)0(3622143612243634=========C C C P C c C P C C P ξξξ…………3分 ∴ξ的分布列为∴E ξ=0×5+1×5+2×5=1.…………………………………………4分(II )设“甲、乙都不被选中”的事件为C ,则.51204)(3634===C C C P ……6分∴所求概率为.54511)(1)(=-=-=C P C P …………………………………8分 (III )记“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,.51)(;212010)(36143625==⋂===C C A B P C C A P ………………………………10分)52104)|(.(52)()()|(2514=====C C A B P A P BA P A B P 或直接得……………12分20.(本小题满分12分)解:(I )由题意知.141.14122121nn n n a a a a +=∴+=++}1{,4112221nn n a a a 即=-∴+是等差数列.…………………………………………2分.34441)1(411212-=-+=-+=∴n n n a a n.341,0.3412-=∴>-=∴n a a n a n n n 又………………………………5分(II )由题设知).34)(14()14()34(1-+++=-+n n T n T n n n.1,34.1341411=-=-=--+∴++n n n n n n c c c n Tn T n T 则上式变为设}{n c ∴是等差数列.…………………………………………………………8分.1111111n n b n T n c c n =-+=-+=-+=∴.34)34(.342n n n n T n n T n n-=-==-∴即………………………………10分∴当n =1时,11==T b n ;当.78)1(3)1(434,2221-=-+---=-=≥-n n n n n T T b n n n n 时经验证n=1时也适合上式. ).(78*N n n b n ∈-=∴…………………………12分21.(本小题满分12分) 解:(I )令.24sin )(,)()(xx x F x x f x F -=-=即 则.0)(,1cos 1.214cos )(≤'∴≤≤--='x F x x x F x x f x F -=∴)()(是单调递减函数.……………………………………2分又取).)((02)(,,02)(,为奇函数或说明取x F F x F x <-==>=--=ππππππ0)(=-∴x x f 方程在其定义域上有唯一实根.……………………………4分(II )由(I )知方程0)(=-x x f 有实根(或者由0)(=-x x f ,易知x =0就是方程的一个根),)(x f 满足条件①.………………………………………………5分 .43)(41,1cos 1,4cos 21)(≤'≤≤≤-+='x f x x x f 得由又)(x f ∴满足条件②.故)(x f 是集合M 中的元素.……………………………7分(III )不妨设)(,1)(0,32x f x f x x 知由<'<<在其定义域上是增函数. ).()(32x f x f <∴………………………………………………………………8分 x x f x f -∴<-')(,01)(又是其定义域上的减函数.23233322)()(0,)()(x x x f x f x x f x x f -<-<->-∴即.………………10分 |)()(||||)()(|12132323x x x x x x x f x f ---=-<-∴.211||||1213<+<---≤x x x x …………………………………………12分22.(本小题满分14分)解:(I )设),(),,(2211y x B y x A由.0844222=--⎩⎨⎧=+=my y xy my x 得.8,42121-==+∴y y m y y ………………………………………………2分又),,2()2,(,),2,0(111111y x my x AT MA n M --=+=-λλ即.21,211111my y m y --=-=+∴λλ得同理,由.21,222my --==λλ得………………………………4分.1882)(22)11(2221212121-=+-=+--=+--=+∴mmy my y y y y m λλ…………6分 (II )方法一:当m =0时,A (2,22),B (2,-2),D (n ,22),E (n ,-22).∵ABED 为矩形,∴直线AE 、BD 的交点N 的坐标为().0,22+n ………………8分当),,22(),,22(),,(),,(,021121y n y x n y n E y n D m -=--+=≠ 时(*))2(28)2(2)(2222)222(22)22(2112121121n m m n m y m y y y n y n y m y n y n y x n +=+-=-+-=-+--+=-+-+则同理,对BN 、ND 进行类似计算也得(*)式.………………………………12分 即n =-2时,N 为定点(0,0).反之,当N 为定点,则由(*)式等于0,得n =-2.…………………………14分方法二:首先n =-2时,则D (-2,y 1),A (),,2(),,2(),,222211y my B y E y my +-+)2(4:2121++-=-x my y y y y l DB ①)2(4:1212++-=-x my y y y y l EA ②…………………………………………8分①-②得,).4141)()(2(12121212y y my my y y x y y ≠+++-+=-.04884241411222121212=+-=++=-+++=∴my m m my y my y y m my my x.)0,0(为定点N ∴…………………………………………………………10分反之,若N 为定点N (0,0),设此时),,(),,(21y n E y n D 则).,2(),,(221y my y n +==由D 、N 、B 三点共线,.022121=-+∴ny y y my ③同理E 、N 、A 三点共线,.021221=-+∴ny y y my ④………………12分 ③+④得,0)()(22212121=+-++y y n y y y my即-16m +8m -4m =0,m (n +2)=0.故对任意的m 都有n =-2.……………………………………………………14分。
2018年高三一模考试理科数学试卷及答案

. 第 17~ 21 题为必考题,
每个试题考生都必须作答 . 第( 22)、( 23)题为选考题,考生根据要求作答 .
(一)必考题:共 60 分 .
17. 已知数列 { a n } 为单调递增数列,
S n 为其前
n 项和,
2S n
a2 n
n.
( 1)求 { a n } 的通项公式;
( 2)若 b n
PQ
的平行线交抛物线于点 M ,直线 Q M 交 y 轴于点 N ,则
.
NO
16. 在 A B C 中,角 A , B , C 的对边分别为 a , b , c , A B 边上的高为 h ,若 c 2 h ,
则a
b
的取值范围是.
ba
三、解答题:共 70 分 . 解答应写出文字说明、证明过程或演算步骤
6
D.向左平移 个单位长度
3
9. 某几何体的三视图如图所示,则该几何体的表面积是(
)
5
A. 5 4 2 B. 9 C. 6 5 2 D.
3
2
2
10. 已知 F 为双曲线 C : x 2
y
2
1 ( a 0 , b 0 ) 的右焦点, 过点 F 向 C 的一条渐近线引垂
ab
线,垂足为 A ,交另一条渐近线于点 B . 若 O F F B ,则 C 的离心率是(
12. 已知 P , A , B , C 是半径为 2 的球面上的点, P A P B P C 2 , A B C 9 0 ,点
B 在 A C 上的射影为 D ,则三棱锥 P A B D 体积的最大值是(
)
A. 3 3 B. 3 3
4
8
C. 1 D. 3
2018年高考数学(理科)模拟试卷一附答案解析

2018 年高考数学 (理科 )模拟试卷 (一) (本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分 150 分,考试时间 120 分钟 )第Ⅰ卷(选择题满分60分)一、选择题:本大题共12 小题,每题 5 分,满分60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.(2016 年四川)设会合A= {x|1≤x≤ 5},Z 为整数集,则会合A∩Z 中元素的个数是() A. 6 B. 5C. 4D. 3分析:由题意,A∩Z= {1,2,3,4,5} ,故此中的元素的个数为 5.应选 B.2. (2016 年山东 )若复数 z 知足 2z+ z =3-2i, 此中 i 为虚数单位,则z= ()A. 1+ 2i B. 1- 2iC.- 1+ 2i D.- 1- 2i2.B 分析:设 z= a+ bi(a ,b∈ R),则 2z+ z =3a+ bi= 3- 2i,故 a= 1,b=- 2,则z =1 -2i.应选 B.3. (2015 年北京 )某四棱锥的三视图如图M1-1 ,该四棱锥最长棱的棱长为()图 M1-1A.1D.23. C 分析:四棱锥的直观图如图D188:由三视图可知,SC⊥平面 ABCD, SA 是四棱锥最长的棱, SA=22=222= 3.应选 C. SC+AC SC+ AB + BC图 D1884.曲线 y= x3- 2x+4 在点 (1,3)处的切线的倾斜角为()π4. C分析:f′(x)=3x2-2,f′(1)=1,所以切线的斜率是1,倾斜角为4.5.设 x∈ R, [x]表示不超出x 的最大整数 . 若存在实数t,使得 [t]=1, [t 2]= 2,, [t n]=n 同时成立,则正整数n 的最大值是 ()A.3 B.4 C.5 D.65.B分析:由于[x]表示不超出x 的最大整数.由[t ]= 1,得 1≤t<2,由 [t 2]= 2,得 2≤t2<3.由[t3 ]=3,得 3≤t3<4.由 [t4]=4,得 4≤t4<5.所以 2≤t2< 5.所以 6≤t5<4 5.由 [t5]= 5,得 5≤t5<6,与 6≤t5 <4 5矛盾,故正整数n 的最大值是 4.6.(2016 年北京 )履行如图M1-2 所示的程序框图,若输入的 a 值为 1,则输出的k 值为()图 M1-2A .1B .2C .3D .46. B 分析:输入 a = 1,则 k = 0, b = 1;进入循环体, a =- 1,否, k =1, a =- 2,否, k = 2, a = 1,2此时 a =b =1,输出 k ,则 k = 2.应选 B.7.某市要点中学奥数培训班共有14 人,分为两个小组, 在一次阶段考试中两个小构成绩的茎叶图如图 M1-3 ,此中甲组学生成绩的均匀数是 88,乙组学生成绩的中位数是89,则m + n 的值是 ()图 M1-3A. 10 B. 11 C. 12D. 1378+ 88+ 84+ 86+92+ 90+ m+ 957.C分析:由题意,得=88,n=9.所以m+n=12.应选 C.8. (2015 年陕西 )某公司生产甲、乙两种产品均需用吨甲、乙产品需原料及每日原料的可用限额如表所示,A, B假如生产两种原料.已知分别生产1 吨甲、乙产品可获收益分1别为 3 万元、 4 万元,则该公司每日可获取最大收益为()项目甲乙原料限额A/ 吨3212B/ 吨128万元B.16 万元C. 17万元D. 18万元8. D分析:设该公司每日生产甲、乙两种产品分别为x 吨、 y 吨,则收益z= 3x+ 4y.3x+ 2y≤ 12,x+ 2y≤8,由题意可得其表示如图D189 暗影部分地区:x≥0,y≥ 0.图 D189当直线 3x + 4y - z = 0 过点 A(2,3) 时, z 获得最大值,所以 z max = 3×2+ 4×3= 18.应选 D.9. (2016 年新课标Ⅲ )定义 “规范 01 数列 ”{a n }以下: {a n }共有 2m 项,此中 m 项为 0 ,m项为 1,且对随意 k ≤2m ,a 1,a 2, ,a k 中 0 的个数许多于 1 的个数. 若 m = 4,则不一样的“规范 01数列”共有()A .18 个B .16 个C . 14 个D .12 个9. C 分析:由题意,必有a 1= 0, a 8= 1,则详细的排法列表以下:10. (2016 年天津 )已知函数 f(x)=sin2ωx 1 1 2+ sin ωx- (ω>0), x ∈R.若 f(x)在区间 ( π, 2π)22内没有零点,则 ω的取值范围是 ()5∪8,11 5∪4,8分析: f(x)=1- cos ωx sin ωx 12sinωx-π, f(x)= 0sin ωx-π= 0,2+2-=2442π所以 x=kπ+4( π, 2π),(k∈Z).ω所以ω1,1∪5,5 ∪9,9∪ =1,1∪5,+∞ ω∈ 0,1∪1,5.应选 D.84848484884811.四棱锥P-ABCD的底面 ABCD为正方形, PA⊥底面 ABCD, AB= 2,若该四棱锥的所243 π)有极点都在体积为的同一球面上,则 PA= (16A. 3C. 2311. B分析:如图D190,连结 AC,BD 交于点 E,取 PC的中点 O,连结 OE,则 OE∥11 PA,所以 OE⊥底面 ABCD,则 O 到四棱锥的全部极点的距离相等,即O 为球心,2PC=21 4 1243 π7PA2+AC2=2 PA2+ 8,所以由球的体积可得3π2PA2+8 3=16,解得 PA=2.应选 B.图 D1902→ →12.已知 F 为抛物线 y = x 的焦点,点 A、B 在该抛物线上且位于 x 轴双侧,若 OA·OB=6(O 为坐标原点 ),则△ ABO 与△ AOF 面积之和的最小值为 ()A. 413,2)2,4)12. B分析:设直线 AB 的方程为 x= ty+ m,点 A(x1,y1), B(x2, y2),直线 AB 与 x 轴的交点为 M(m,0),将直线方程与抛物线方程联立,可得 y2- ty- m=0,依据韦达定理有y1·y2=- m,由于→ →位于 x 轴的双侧,OA·OB=6,所以 x1·x2+ y1·y2= 6,进而 (y1·y2 )2+ y1·y2- 6= 0,由于点 A, B1所以 y 1·y 2=- 3,故 m = 3,不如令点 A 在 x 轴上方,则 y 1>0,又 F 4, 0 ,所以 S △ ABO + S △1 1 1 13 y 1+ 9 ≥213 9 1 = 3 13 ,当且仅当 13y 1 9,即 y 1 = AFO = × 3×(y 1- y 2)+ 2 × y 1 = 8 2y 8 ·y 1·· 2 8 = 2y 1 1 16 13时取等号,故其最小值为3 13 .应选 B. 132第Ⅱ卷 (非选择题 满分 90 分)本卷包含必考题和选考题两部分.第13~ 21 题为必考题,每个试题考生一定作答.第22~ 23 题为选考题,考生依据要求作答.二、填空题:本大题共 4 小题,每题 5 分.13.平面向量 a = (1,2), b = (4,2), c = ma + b(m ∈ R),且 c 与 a 的夹角等于 c 与 b 的夹角,则 m = ________.13.2 分析: a =(1,2) ,b = (4,2),则 c =ma + b = (m + 4,2m + 2),| a| = 5,| b| =2 5,c ·a c ·b5m + 8 a ·c = 5m +8,b ·c = 8m +20.∵ c 与 a 的夹角等于 c 与 b 的夹角,∴ |c| |a|· = |c| |b|· .∴58m + 20=.解得 m = 2.2 5x 2 y 214.设 F 是双曲线 C : a 2- b 2 =1 的一个焦点,若 C 上存在点 P ,使线段 PF 的中点恰为其虚轴的一个端点,则C 的离心率为 __________.分析:依据双曲线的对称性,不如设F(c,0),虚轴端点为 (0, b),进而可知点 (-c,2b)c 2 4b 2在双曲线上,有 a 2- b 2 = 1,则 e 2= 5, e = 5.15. (2016 年北京 )在(1- 2x)6 的睁开式中, x 2 的系数为 ________. (用数字作答 )r + 1 r r r2 的系数为 22 =15.60 分析:依据二项睁开的通项公式6可知, xC 6(- 2)T = C ·(- 2) x60,故填 60.16.在区间 [0, π]上随机地取一个数1x ,则事件 “ sinx ≤”发生的概率为 ________.2 分析:由正弦函数的图象与性质知,当x ∈π 5π 1 0, ∪ , π时, sin x ≤6 6 2. π + π- 5π- 0 66 1 .所以所求概率为 π =3三、解答题:解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12 分 )已知 {a n}是各项均为正数的等比数列,{b n }是等差数列,且a1=b1= 1, b2+ b3= 2a3, a5- 3b2=7.(1)求{a n}和 {b n}的通项公式;(2)设 c n= a n b n, n∈ N*,求数列 {c n}的前 n 项和.17.解:(1)设 {a n}的公比为q,{b n}的公差为d,由题意知q>0.由已知,有消去 d,得 q4- 2q2- 8= 0.解得 q= 2, d= 2.所以 {a n}的通项公式为a n= 2n-1,n ∈N*,n n*.{b }的通项公式为b=2n- 1, n∈ N(2)由(1)有 c n=(2n- 1)2n- 1,设{cn}的前n项和为S n,则 S n01n-1,+ 3×2+ 5×2++(2n- 1) ×2= 1×21+3×2+3n5×2++ (2n -1) ×22S n=1×2.23n n n 两式相减,得- S n= 1+2 +2++ 2 -(2n- 1)×2=- (2n- 3)×2- 3.n*所以 S n= (2n-3) 2·+3, n∈ N .2q2- 3d=2,q 4- 3d= 10.18.(本小题满分12 分 )(2014 年纲领 )设每个工作日甲、乙、丙、丁4人需使用某种设施的概率分别为,, ,,各人能否需使用设施互相独立.(1)求同一工作日起码 3 人需使用设施的概率;(2)X 表示同一工作日需使用设施的人数,求X 的数学希望.18.解:记A1表示事件:同一工作日乙、丙中恰有i 人需使用设施,i=0,1,2.B 表示事件:甲需使用设施.C表示事件:丁需使用设施.D 表示事件:同一工作日起码 3 人需使用设施.(1)由于 P(B)=, P(C)=, P(A i )=C i2×, i= 0,1,2 ,所以 P(D)= P(A1·B·C+ A2·B+ A2·B ·C)= P(A1·B·C)+ P(A2·B)+ P(A2·B ·C)=P(A1)P(B)P(C)+ P(A2)P(B)+ P(A2)P( B )P(C)= .(2)X 的可能取值为 0,1,2,3,4 ,其散布列为P(X= 0)= P( B ·A0·C )=P( B )P(A0)P( C )=(1-××-(1=,P(X= 1)= P(B·A0·C + B ·A0·C+ B ·A1·C )=P(B)P(A0 )P( C )+ P( B )P(A0)P(C)+ P( B )P(A1)P( C )=××-(1+ (1-××+ (1-×2××-(1=,P(X= 4)= P(A2·B·C)= P(A2)P(B)P(C)=××=,P(X= 3)= P(D)- P(X= 4)=,P(X= 2)=1- P(X= 0)- P(X=1)- P(X= 3)-P(X= 4)= 1----=,所以 E(X)= 0×P(X=0)+ 1×P(X= 1)+ 2×P(X= 2)+3×P(X= 3)+ 4×P(X=4)=+ 2×+ 3×+ 4×=2.19.(本小题满分12 分 )(2016 年四川 )如图 M1-4 ,在四棱锥P-ABCD中, AD∥ BC,∠ ADC=∠1PAB= 90°, BC= CD=2AD, E 为边 AD 的中点,异面直线PA 与 CD 所成的角为90°.(1)在平面 PAB内找一点M,使得直线CM∥平面 PBE,并说明原因;(2)若二面角P-CD-A 的大小为45°,求直线PA与平面 PCE所成角的正弦值.图 M1-419.解: (1)在梯形 ABCD中, AB 与 CD 不平行.延伸 AB, DC,订交于点M(M∈平面 PAB),点 M 即为所求的一个点.原因以下:由已知, BC∥ ED,且 BC= ED,所以四边形BCDE是平行四边形.所以 CD∥ EB.进而 CM∥ EB.又 EB平面 PBE, CM 平面 PBE,所以 CM∥平面 PBE.MN上随意一点) (说明:延伸AP 至点 N,使得 AP= PN,则所找的点能够是直线(2)方法一,由已知,CD⊥PA,CD⊥ AD, PA∩AD= A,所以 CD⊥平面 PAD.进而 CD⊥ PD.所以∠ PDA是二面角P-CD-A 的平面角.所以∠ PDA= 45°.设 BC=1,则在 Rt△ PAD中, PA= AD=2.如图 D191,过点 A 作 AH⊥ CE,交 CE的延伸线于点H,连结 PH.易知 PA⊥平面 ABCD,进而 PA⊥ CE.于是 CE⊥平面 PAH.所以平面 PCE⊥平面 PAH.过 A 作 AQ⊥ PH 于 Q,则 AQ⊥平面 PCE.所以∠ APH 是 PA 与平面 PCE所成的角.在 Rt△AEH 中,∠ AEH= 45°, AE=1,2所以AH=2.在 Rt△ PAH中, PH= PA2+AH2=322,AH 1所以 sin∠APH=PH=3.图 D191图D192方法二,由已知,CD⊥ PA, CD⊥AD, PA∩AD= A,所以 CD⊥平面 PAD.于是 CD⊥ PD.进而∠ PDA是二面角P-CD-A 的平面角.所以∠ PDA= 45°.由 PA⊥ AB,可得 PA⊥平面 ABCD.设 BC=1,则在 Rt△ PAD中, PA= AD=2.→→x 轴,z 轴的正方向,成立如图 D192作 Ay⊥ AD,以 A 为原点,以 AD ,AP的方向分别为所示的空间直角坐标系Axyz,则 A(0,0,0), P(0,0,2), C(2,1,0) , E(1,0,0) ,→→→所以 PE= (1,0,- 2), EC=(1,1,0),AP=(0,0,2)设平面 PCE的法向量为n= (x,y, z),→= 0,x- 2z= 0,n·PE由得→= 0,x+ y= 0.n·EC设 x=2,解得 n= (2,- 2,1).设直线 PA 与平面 PCE所成角为α,→=1则 sin α=| n ·AP|=2→2×22+- 22+ 12 3 .| n| ·|AP|所以直线 PA 与平面 PCE所成角的正弦值为13.20. (本小题满分12 分 )(2016 年新课标Ⅲ )设函数 f(x)=ln x- x+ 1.(1)议论 f(x)的单一性;x- 1(2)证明当 x∈(1,+∞)时, 1< ln x <x;(3)设 c>1,证明当x∈ (0,1) 时, 1+ (c- 1)x>c x.20.解: (1)由题设, f(x)的定义域为 (0,+∞), f′(x)=1x- 1,令 f′(x)= 0,解得 x=1.当 0<x<1 时, f ′(x)>0, f(x)单一递加;当 x>1 时, f ′(x)<0,f(x)单一递减.(2)由(1)知, f(x)在 x= 1 处获得最大值,最大值为f(1)= 0.所以当 x≠1时, ln x<x-1.故当 x∈ (1,+∞)时, ln x<x- 1, ln 1 1x- 1< -1,即 1<<x. x x ln x(3)由题设 c>1,设 g(x)= 1+ (c- 1)x- c x,则 g′(x)= c- 1- c x ln c.c-1lnln c令 g′(x)= 0,解得 x0=ln c .当x<x0时,g′(x)>0,g(x)单一递加;当 x>x0时, g′(x)<0,g(x)单一递减.c- 1由 (2)知, 1< ln c <c,故 0<x0<1.又 g(0)= g(1)= 0,故当 0<x<1 时, g(x)>0.所以 x∈ (0,1)时, 1+ (c- 1)x>c x.21. (本小题满分 12分 )(2016 年广东广州综合测试一 )已知椭圆 C 的中心在座标原点,焦点在 x 轴上,左极点为A,左焦点为 F1(-2, 0),点 B(2, 2)在椭圆 C 上,直线 y= kx(k≠ 0)与椭圆 C 交于 E, F 两点,直线AE, AF 分别与 y 轴交于点M, N.(1)求椭圆 C的方程;(2)以 MN 为直径的圆能否经过定点若经过,求出定点的坐标;若不经过,请说明原因.2221.解: (1)设椭圆 C 的方程为 x 2 + y2= 1(a>b>0),a b由于椭圆的左焦点为F 1(- 2,0),所以 a 2- b 2= 4.① 4 2 由于点 B(2, 2)在椭圆 C 上,所以 a 2+ b 2= 1.②由①②,解得 a =2 2,b =2.所以椭圆 C 的方程为x 2+ y 2=1.8 4(2)由于椭圆 C 的左极点为 A ,则点 A 的坐标为 (- 22, 0).2 2由于直线 y = kx(k ≠0)与椭圆 x+ y= 1 交于两点 E , F ,84设点 E(x 0, y 0)(不如设 x 0>0),则点 F(- x 0,- y 0).y = kx ,8联立方程组x 2 y 2 消去 y ,得 x 2=1+ 2.8+ 4=12k所以 x 0=22 ,则 y 0= 2 2k.1+ 2k 21 +2k 2所以直线 AE 的方程为y =k1+ 1+ 2k 2(x +22).由于直线 AE , AF 分别与 y 轴交于点 M , N ,令 x =0 得 y =22kM 0,2 2k,即点 1+ 1+ 2k 2.1+ 1+ 2k 2同理可得点 N 0, 2 2k2 .1+1- 2k2 2k 22k2所以|MN| = -= 221+ 2k .1+ 1+ 2k 2 1- 1+ 2k 2| k| 设 MN 的中点为 P ,则点 P 的坐标为 P2.0,- k22 2 21+ 2k 22222 2则以 MN 为直径的圆的方程为 x +y + k = | k|,即 x + y +k y = 4.令 y = 0,得 x 2= 4,即 x = 2 或 x =- 2. 故以 MN 为直径的圆经过两定点 P 1 2 (2,0) ,P (-2,0),请考生在第 (22)(23) 两题中任选一题作答.注意:只好作答在所选定的题目上.假如多做,则按所做的第一个题目计分.22. (本小题满分 10 分 )选修 4-4:极坐标与参数方程x = 2cos θ,(θ为参数 ),以坐标原点为极点, x 轴的正半轴已知曲线 C 的参数方程是y = sin θ为极轴成立极坐标系,A 、B 的极坐标分别为 A(2, π)、 B 2, 4π.3(1)求直线 AB 的直角坐标方程;(2)设 M 为曲线 C 上的动点,求点 M 到直线 AB 距离的最大值.22.解: (1)将 A 、 B 化为直角坐标为 A(2cos π, 2sin π),B 2cos 4π 4π,即 A ,B, 2sin 33 的直角坐标分别为 A(-2,0), B(- 1,- 3),- 3 -0k AB = - 1+2 =-3,∴直线 AB 的方程为 y - 0=- 3(x + 2),即直线 AB 的方程为3x + y + 23= 0.(2)设 M (2cos θ, sin θ),它到直线 AB 的距离d = |2 3cos θ+ sin θ+ 2 3| = |13sin θ+ φ+ 2 3| ,2 2∴ d max =13+2 32.23. (本小题满分 10 分 )选修 4-5:不等式选讲已知函数 f(x)= | x - 2| - |2 x - a| , a ∈ R.(1)当 a = 3 时,解不等式 f(x)>0;(2)当 x ∈ (-∞, 2)时, f(x)<0 恒成立,求 a 的取值范围.23.解: (1)当 a =3 时, f(x)>0,即 | x -2| -|2 x - 3|>0 ,33<x<2,x ≥2,x ≤ ,或2等价于2或x - 1>0,- x + 1>0.- 3x + 5>0,3 35解得 1<x ≤ ,或 2 <x< .2 35 .所以原不等式的解集为x 1<x<3(2)f(x)= 2- x - |2 x - a| ,所以 f(x)<0 可化为 |2 x - a|>2 - x ,①即 2x -a>2- x ,或 2x - a<x -2. ①式恒成立等价于 (3x - 2)min >a 或 (x + 2)max <a ,∵ x ∈(- ∞, 2),∴ a ≥4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑池中学2018级高三数学期末模拟试题理科(四)一、选择题:本大题共12小题,每小题5分,共60分.1.已知集合{}2,101,,-=A ,{}2≥=x x B ,则A B =IA .{}2,1,1- B.{}2,1 C.{}2,1- D. {}2 2.复数1z i =-,则z 对应的点所在的象限为A .第一象限 B.第二象限 C.第三象限 D.第四象限3 .下列函数中,是偶函数且在区间(0,+∞)上单调递减的函数是A .2xy =B .y x =C .y x =D .21y x =-+4.函数y=cos 2(x + π4)-sin 2(x + π4)的最小正周期为A. 2πB. πC. π2D. π45. 以下说法错误的是( )A .命题“若x 2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x 2-3x+2≠0”B .“x=2”是“x 2-3x+2=0”的充分不必要条件C .若命题p:存在x 0∈R,使得20x -x 0+1<0,则﹁p:对任意x∈R,都有x 2-x+1≥0D .若p 且q 为假命题,则p,q 均为假命题 6.在等差数列{}n a 中, 1516a a +=,则5S =A .80B .40C .31D .-317.如图为某几何体的三视图,则该几何体的体积为A .π16+B .π416+C .π8+D .π48+8.二项式621()x x+的展开式中,常数项为A .64B .30C . 15D .19.函数3()ln f x x x=-的零点所在的区间是A .(1,2)B .(2,)eC . (,3)eD .(3,)+∞10.执行右边的程序框图,若0.9p =,则输出的n 为 A. 6 B. 5 C.4 D. 3开始 10n S ==,S p <?是输入p结束输出n 12nS S =+否1n n =+121221主视图 左视图俯视图11.若抛物线y 2 = 2px (p >0)上一点到焦点和抛物线的对称轴的距离分别是10和6, 则p 的值为A .2B .18C .2或18D .4或16 12.已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点 为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )A. 0 B . m C. 2m D. 4m第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n 的样本,其中甲种产品有18件,则样本容量n =________.14. 已知向量21a =r (,),(,1)b x =-r,且a b -r r 与b r 共线,则x 的值为 . 15.已知随机变量X 服从正态分布2(4,)N σ,且(26)0.98P X <≤=, 则(2)P X <= .16. 设不等式组⎪⎩⎪⎨⎧-≥≤≥+-2,4,022y x y x 表示的平面区域为错误!未指定书签。
错误!未指定书签。
错误!未找到引用源。
D ,在区域D 内随机取一个点,则此点到直线x -5=0的距离大于7的概率是 .三、解答题:本大题共6小题,满分70分,解答应写出文字说明,证明过程或演算步骤.17.(本题满分12分)在△ABC 中,已知A=π4 ,cosB=235.(I )求sinC 的值;(II )若BC=2 5 ,D 为AB 的中点,求CD 的长.18.(本题满分12分)在如图所示的几何体中,四边形ABCD 为正方形,PA ⊥平面ABCD ,PA //BE ,6, 3.AB PA BE ===(Ⅰ)求证:CE //平面PAD ;(Ⅱ)求PD 与平面PCE 所成角的正弦值.19.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为22,其中左焦点F (-2,0).(1)求椭圆C 的方程;(2)若直线y x m =+与椭圆C 交于不同的两点,A B ,且线段AB 的中点M 在曲线222x y +=上,求m 的值.20. (本小题满分12分)如图所示的茎叶图记录了华润万家在渭南城区甲、乙连锁店四天内销售情况的某项指标统计:(I )求甲、乙连锁店这项指标的方差,并比较甲、乙该项指标的稳定性;(Ⅱ)每次都从甲、乙两店统计数据中随机各选一个进行比对分析,共选了3次(有放回选取).设选取的两个数据中甲的数据大于乙的数据的次数为X ,求X 的分布列及数学期望.21.(本题满分12分) 已知函数e =1axf x x -()(I ) 当1a =时,求曲线()f x 在(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 的单调区间.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题目计分,作答时请写清题号.22.(本小题满分10分)选修4—4:坐标系与参数方程已知直线l 的参数方程为⎩⎨⎧x =3-22t ,y =5+22t (t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为.ρθ=(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|PA |+|PB |.23.(本小题满分10分)选修4—5:不等式选讲已知函数f (x )=m -|x -2|,m ∈R ,且f (x +2)≥0的解集为[-1,1]. (1)求m 的值;(2)若a ,b ,c ∈R +,且1a +12b +13c =m ,求a +2b +3c 的最小值.GPEDCBA数学试题(理四)参考答案一.选择题:本大题共12小题,每小题5分,共60分.13. 90 14. 2 15. 0.01 16. 254 三.解答题:本大题共6小题,共70分. 17.18、(本题满分12分)解:(Ⅰ)设PA 中点为G ,连结EG ,DG .因为PA //BE ,且6PA =,3BE =,所以BE //AG 且BE AG =,所以四边形BEGA 为平行四边形.……………2分 所以EG //AB ,且EG AB =.因为正方形ABCD ,所以CD //AB ,CD AB =, 所以EG //CD ,且EG CD =.所以四边形CDGE 为平行四边形……………4分 所以CE //DG .因为DG ⊂平面PAD ,CE ⊄平面PAD ,所以CE //平面PAD . ……………………6分(Ⅱ)如图建立空间坐标系,则(6,6,0)C ,(6,0,3)E ,(0,0,6)P ,(0,6,0)D ,所以(6,6,6)PC =-u u u r ,(6,0,3)PE =-u u u r, (0,6,6)PD =-u u u r.……………8分 设平面PCE 的一个法向量为(,,)m x y z =u r,所以00200m PC x y z x z m PE ⎧⋅=+-=⎧⎪⇒⎨⎨-=⋅=⎩⎪⎩u r u u u r u r u u u r. 令1x =,则112x y z =⎧⎪=⎨⎪=⎩,所以(1,1,2)m =u r . ……………10分设PD 与平面PCE 所成角为α,则sin cos ,m α=<u r u u u r . 所以PD 与平面PCE. ……………………12分19. (本小题满分12分)解:(Ⅰ)由题意得,c a =22,c =2,解得:2a b ⎧=⎪⎨=⎪⎩.......................3分所以椭圆C 的方程为:x28+y24=1. .....................5分(Ⅱ)设点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),线段AB 的中点为M (x 0,y 0),由22184x y y x m ⎧+=⎪⎨⎪=+⎩消去y 得3x 2+4mx +2m 2-8=0, 由Δ=96-8m 2>0,解得-23<m <23,..............................9分所以x 0=x 1+x 22=-2m 3,y 0=x 0+m =m3因为点M (x 0,y 0)在曲线x 2+2y =2上,所以222233m m ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,解得332m m ==-或..............................................11分 经检验,332m m ==-或 .....................................................12分 20. (本小题满分12分)解:(Ⅰ)由茎叶图可知,甲连锁店的数据是6,7,9,10,乙连锁店的数据是5,7,10,10………2分甲、乙数据的平均值为8.设甲的方差为21S ,乙的方差为22S 则 215,2S =229,2S = ………4分 因为2212,S S < 所以甲连锁店该项指标稳定 . ............................6分(Ⅱ)从甲、乙两组数据中各随机选一个, 甲的数据大于乙的数据概率为63=,168....................................7分 由已知,3(3,),8X B X 服从的分布列.........8分X 的分布列为:........................................................10分数学期望393.88EX =⨯=………12分21.(本小题满分12分)解:(Ⅰ)'2e (-2)e 1,=,=1(1)x x x a f x f x x x =--当时()() 又(0)1f =-,'(0)2f =-,所以()f x 在(0,(0))f 处的切线方程为21y x =-- ………4分(II )2e [(1)]'()(1)ax ax a f x x -+=-当0a =时,21'()0(1)f x x -=<- 又函数的定义域为{|1}x x ≠所以 ()f x 的单调递减区间为(,1),(1,)-∞+∞ ………6分 当 0a ≠时,令'()0f x =,即(1)0ax a -+=,解得1a x a+=………7分 当0a >时,11a x a+=>, 所以()f x ',()f x 随x 的变化情况如下表所以()f x 的单调递减区间为(,1)-∞,1(1,)a a+ , 单调递增区间为1(,)a a++∞ ........................................................10分当0a <时,11a x a+=< 所以()f x ',()f x 随x 的变化情况如下表:所以()f x 的单调递增区间为1(,)a a+-∞ 单调递减区间为1(,1)a a+,(1,)+∞ ..................................12分22.本小题满分10分)选修4—4:坐标系与参数方程解 (Ⅰ)由ρ=25sin θ,得x 2+y 2-25y =0,即x 2+(y -5)2=5. .......................................4分 法一(Ⅱ)将l 的参数方程代入圆C 的直角坐标方程, 得⎝ ⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0. 由于Δ=(32)2-4×4=2>0,故可设t 1,t 2是上述方程的两实根, 所以⎩⎨⎧t 1+t 2=32,t 1·t 2=4.又直线l 过点P (3,5), 故由上式及t 的几何意义得|PA |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2..................10分 法二 (Ⅱ)因为圆C 的圆心为(0,5),半径r =5, 直线l 的普通方程为:y =-x +3+ 5.222(2)5,3+2=0.3x y x x y x ⎧+-=⎪-⎨=-++⎪⎩由得得x 2-3x +2=0. 1221x x y y ==⎧⎧⎪⎪⎨⎨==+⎪⎪⎩⎩解得不妨设A (1,2+5),B (2,1+5),又点P 的坐标为(3, 5) 故|PA |+|PB |=8+2=3 2..............................10分23.(本小题满分10分)选修4—5:不等式选讲 解 (Ⅰ)因为f (x +2)=m -|x |, 所以f (x +2)≥0等价于|x |≤m ,由|x |≤m 有解,得m ≥0,且其解集为{x |-m ≤x ≤m }.又f (x +2)≥0的解集为[-1,1],故m =1. .......................................5分(Ⅱ)由(1)知1a +12b +13c =1,又a ,b ,c ∈R +,由柯西不等式得a +2b +3c =(a +2b +3c )⎝ ⎛⎭⎪⎫1a +12b +13c≥⎝⎛⎭⎪⎫a ·1a +2b ·12b +3c ·13c 2=9.所以a +2b +3c 的最小值为9. ............................................10分。