导数典型题目
导数典型例题讲解

资料一 :导数.知识点1.导数的概念例1.已知曲线yP (0, 0),求过点P的切线方程·解析:如图,按切线的定义,当x →0时,割线PQ 的极限位置是y 轴(此时斜率不存在),因此过P 点的切线方程是x =0. 例2.求曲线y =x 2在点(2,4)处的切线方程·解析:∵ y =x 2, ∴ ∆y =(x 0+∆x )2-x 02=2x 0∆x +(∆x )2 =4∆x +(∆x )2∴ k =00limlim (4)4x x yx x ∆→∆→∆=+∆=∆. ∴ 曲线y =x 2在点(2,4)处切线方程为y -4=4(x -2)即4x -y -4=0. 例3.物体的运动方程是 S =1+t +t 2,其中 S 的单位是米,t 的单位是秒,求物体在t =5秒时的瞬时速度及物体在一段时间[5,5+∆t ]内相应的平均速度.解析:∵ S =1+t +t 2, ∴ ∆S =1+(t +∆t )+(t +∆t )2-(1+t +t 2)=2t ·∆t +∆t +(∆t )2,∴21St t t∆=++∆∆, 即()21v t t t =++∆, ∴ (5)11v t =∆+, 即在[5,5+∆t ]的一段时间内平均速度为(∆t +11)米/秒∴ v (t )=S ’=00limlim(21)21t t St t t t ∆→∆→∆=++∆=+∆ 即v (5)=2×5+1=11.∴ 物体在t =5秒时的瞬时速度是11米/秒. 例4.利用导数的定义求函数yx =1处的导数。
解析:∆y1=, ∴ y x ∆∆, ∴ 0limx y x ∆→∆∆=1lim 2x ∆→=-.例5.已知函数f (x )=21sin 00x x xx ⎧≠⎪⎨⎪=⎩, 求函数f (x )在点x =0处的导数解析:由已知f (x )=0,即f (x )在x =0处有定义,∆y =f (0+∆x )-f (0)=21()sin x x∆∆,y x∆∆=1sin x x ∆⋅∆, 0lim x yx ∆→∆∆=01lim sin x x x ∆→∆⋅∆=0, 即 f ’(0)=0.∴ 函数f (x )在x =0处导数为0.例6.已知函数f (x )=21(1)121(1)12x x x x ⎧+⎪⎪⎨⎪+>⎪⎩≤, 判断f (x )在x =1处是否可导?解析:f (1)=1, 20001[(1)1]112lim lim lim (1)12x x x x y x x x ---∆→∆→∆→+∆+-∆==+∆=∆∆,001(11)112lim lim 2x x x y x x ++∆→∆→+∆+-∆==∆∆, ∵00lim lim x x y y x x -+∆→∆→∆∆≠∆∆, ∴ 函数y =f (x )在x =1处不可导. 例7.已知函数 y =2x 3+3,求 y ’.解析:∵ y =2x 3+3, ∴ ∆y =2(x +∆x )3+3-(2x 3+3)=6x 2·∆x +6x ·(∆x )2+2(∆x )3,∴ y x∆∆=6x 2+6x ·∆x +2(∆x )2, ∴ y ’=0lim x y x ∆→∆∆=6x 2.例8.已知曲线y =2x 3+3上一点P ,P 点横坐标为x =1,求点P 处的切线方程和法线方程.解析:∵ x =1, ∴ y =5, P 点的坐标为(1, 5), 利用例7的结论知函数的导数为y ’=6x 2,∴ y ’1|x ==6, ∴ 曲线在P 点处的切线方程为y -5=6(x -1) 即6x -y -1=0, 又曲线在P 点处法线的斜率为-61, ∴ 曲线在P 点处法线方程为y -5=-61( x -1),即 6y +x -31=0. 例9.抛物线y =x 2在哪一点处切线平行于直线y =4x -5?解析:∵ y ’=0lim x yx ∆→∆∆=220()lim2x x x x x x∆→+∆-=∆, 令2x =4.∴ x =2, y =4, 即在点P (2,4)处切线平行于直线y =4x -5.例10.设mt ≠0,f (x )在x 0处可导,求下列极限值(1) 000()()lim x f x m x f x x ∆→-∆-∆; (2) 000()()lim x x f x f x t x∆→∆+-∆.解析:要将所求极限值转化为导数f ’(x 0)定义中的极限形式。
求导练习题经典

求导练习题经典【求导练习题经典】一、函数f(x) = x^2 - 3x + 2,求f'(x)。
对于这道经典的求导练习题,我们要求函数f(x)的导函数f'(x)。
根据求导的基本法则,我们可以按照以下步骤进行计算。
首先,根据幂函数的导数规则,我们可以求得(x^n)' = nx^(n-1)。
因此,f'(x) = (x^2 - 3x + 2)'= (x^2)' + (-3x)' + (2)'= 2x - 3。
所以,函数f(x)的导数f'(x)等于2x - 3。
二、函数g(x) = 3e^x + 2ln(x),求g'(x)。
对于这个题目,我们需要求函数g(x)的导函数g'(x)。
根据求导的基本法则,我们可以按照以下步骤进行计算。
首先,根据指数函数的导数规则,我们可以求得(e^x)' = e^x。
而根据对数函数的导数规则,我们可以求得(ln(x))' = 1/x。
因此,g'(x) = (3e^x + 2ln(x))'= (3e^x)' + (2ln(x))'= 3(e^x)' + 2(ln(x))'= 3e^x + 2(1/x)= 3e^x + 2/x。
所以,函数g(x)的导数g'(x)等于3e^x + 2/x。
三、函数h(x) = (sin x)^2 + 2cos(x),求h'(x)。
对于这个题目,我们需要求函数h(x)的导函数h'(x)。
根据求导的基本法则,我们可以按照以下步骤进行计算。
首先,根据三角函数的导数规则,我们可以求得(sin x)' = cos x。
而根据幂函数的导数规则,我们可以求得(x^n)' = nx^(n-1)。
因此,h'(x) = ((sin x)^2 + 2cos(x))'= (sin^2 x)' + (2cos(x))'= (sin^2 x)' + (2(cos x))'= 2(sin x)(cos x) + 2(-sin x)= 2sin x(cos x - 1)。
高中数学导数练习题

高中数学导数练习题一、基础题1. 求函数 $f(x) = x^3 3x$ 的导数。
2. 求函数 $f(x) = \sqrt{1+x^2}$ 的导数。
3. 求函数 $f(x) = \frac{1}{x^2}$ 的导数。
4. 求函数 $f(x) = \ln(x^2 + 1)$ 的导数。
5. 求函数 $f(x) = e^{2x}$ 的导数。
二、应用题1. 已知函数 $f(x) = ax^2 + bx + c$,求 $f'(x)$ 并说明其几何意义。
2. 某物体做直线运动,其位移 $s$ 与时间 $t$ 的关系为 $s =t^2 2t + 1$,求物体在 $t=2$ 时的瞬时速度。
3. 已知函数 $f(x) = \frac{1}{\sqrt{x}}$,求曲线在$x=4$ 处的切线方程。
4. 求函数 $f(x) = \sin(x)$ 在区间 $[0, \pi]$ 上的最大值和最小值。
5. 已知函数 $f(x) = \ln(x 1)$,求 $f(x)$ 的单调区间。
三、综合题1. 设函数 $f(x) = (x^2 1)^3$,求 $f'(x)$。
2. 已知函数 $f(x) = \frac{2x + 3}{x 1}$,求 $f'(x)$。
3. 求函数 $f(x) = \sqrt{1 + \sqrt{1 + x^2}}$ 的导数。
4. 已知函数 $f(x) = e^{x^2}$,求曲线在 $x=0$ 处的切线方程。
5. 设函数 $f(x) = \ln(\sin^2 x)$,求 $f'(x)$。
四、拓展题1. 已知函数 $f(x) = \frac{1}{x^2 + 1}$,求 $f''(x)$。
2. 设函数 $f(x) = (x^3 + 1)^4$,求 $f'''(x)$。
3. 已知函数 $f(x) = \arctan(x)$,求 $f'(x)$。
导数题目

1.设函数()()21x f x x e kx =--(其中k ∈R ).
(Ⅰ) 当1k =时,求函数()f x 的单调区间;(Ⅱ) 当1
,12k ⎛⎤∈ ⎥⎝⎦
时,求函数()f x 在[]0,k 上的最大值M .
2.设l 为曲线ln :x C y x =在点(1,0)处的切线. (Ⅰ)求l 的方程; (Ⅱ)证明:除切点(1,0)之外,曲线C 在直线l 的下方.
(1)若曲线()
=相切,求a与b的值;
y f x
a f a处与直线y b
=在点(,())
(2)若曲线()
=有两个不同交点,求b的取值范围.=与直线y b
y f x
4.已知函数32
=+++
f x x ax x
()331
(1)求当a=,讨论()
f x的单调性;
(1)若[2,)
f x≥,求a的取值范围.
x∈+∞时,()0
(1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程;
(2)求函数()f x 的极值.
6.已知函数()1(),x
a f x x a R e =-+∈(e 为自然对数的底数) (1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值;
(2)求函数()f x 的极值;
(3)当1a =时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.。
导数复习题(含答案)

因为 ,所以 ,即 ,
所以 化为 ,
当 时,不等式 等价于 ,即 ,解得 ;
当 时,不等式 等价于 ,即 ,解得 ;
综上,不等式 的解集为 .
点睛:本题考查了与函数有关的不等式的求解问题,其中解答中涉及到利用条件构造新函数和利用导数研究函数的单调性,以及根据单调性和奇偶性的关系对不等式进行转化,解答中一定要注意函数值为零是自变量的取值,这是题目的一个易错点,试题综合性强,属于中档试题.
A. B. C. D.
【答案】A
【解析】由题意得 ,令
,选A.
点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.
故答案为B。
11.已知函数 有两个零点,则 的取值范围是()
A. B. C. D.
【答案】D
【解析】函数 的定义域为 ,因为 ,当 时, ,则函数 在 上单调递增,不满足条件;当 时,令 ,得 ,所以 在 上单调递减,在 上单调递增,所以 为极小值点,要使 有两个零点,即要 ,即 ,则 的取值范围是 ,故选D.
6.函数 的图象是()
A. B.
C. D.
【答案】A
【解析】由函数 ,则 ,所以函数 为奇函数,
图象关于原点对称,
又 时, ,
所以当 时, 单调递增,当 时, 单调递减,
综上,函数的图象大致为选项A,故选A.
7.已知函数 是函数 的导函数, ,对任意实数都有 ,设 则不等式 的解集为()
专升本导数练习题及答案

专升本导数练习题及答案### 专升本导数练习题及答案#### 练习题一:基础导数计算题目:计算以下函数的导数:1. \( f(x) = 3x^2 + 2x - 5 \)2. \( g(x) = \sin(x) + e^x \)3. \( h(x) = (x^3 - 1)^4 \)解答:1. 对于 \( f(x) = 3x^2 + 2x - 5 \),我们使用幂函数的导数规则: \[ f'(x) = 6x + 2 \]2. 对于 \( g(x) = \sin(x) + e^x \),我们分别求导:\[ g'(x) = \cos(x) + e^x \]3. 对于 \( h(x) = (x^3 - 1)^4 \),我们使用链式法则和幂函数的导数规则:\[ h'(x) = 4(x^3 - 1)^3 \cdot (3x^2) = 12x^2(x^3 - 1)^3 \]#### 练习题二:复合函数的导数题目:计算以下复合函数的导数:1. \( F(x) = (\ln(x))^2 \)2. \( G(x) = \sqrt{x} \cdot \sin(x) \)解答:1. 对于 \( F(x) = (\ln(x))^2 \),我们使用链式法则和对数函数的导数:\[ F'(x) = 2(\ln(x)) \cdot \frac{1}{x} = \frac{2\ln(x)}{x} \]2. 对于 \( G(x) = \sqrt{x} \cdot \sin(x) \),我们使用乘积法则: \[ G'(x) = \frac{1}{2\sqrt{x}} \cdot \sin(x) + \sqrt{x}\cdot \cos(x) \]\[ G'(x) = \frac{\sin(x)}{2\sqrt{x}} + \sqrt{x}\cos(x) \]#### 练习题三:隐函数的导数题目:计算以下隐函数的导数:1. \( x^2 + y^2 = 9 \) 求 \( \frac{dy}{dx} \)2. \( y^3 + xy = 2 \) 求 \( \frac{dy}{dx} \)解答:1. 对于 \( x^2 + y^2 = 9 \),我们对等式两边求导:\[ 2x + 2y\frac{dy}{dx} = 0 \]\[ \frac{dy}{dx} = -\frac{x}{y} \]2. 对于 \( y^3 + xy = 2 \),我们对等式两边求导:\[ 3y^2\frac{dy}{dx} + (x + y)\frac{dy}{dx} = 0 \]\[ \frac{dy}{dx}(3y^2 + x + y) = -x \]\[ \frac{dy}{dx} = -\frac{x}{3y^2 + x + y} \]#### 练习题四:高阶导数题目:计算以下函数的二阶导数:1. \( f(x) = x^3 - 6x^2 + 9x \)2. \( g(x) = \ln(x) - e^x \)解答:1. 对于 \( f(x) = x^3 - 6x^2 + 9x \),我们首先求一阶导数: \[ f'(x) = 3x^2 - 12x + 9 \]然后求二阶导数:\[ f''(x) = 6x - 12 \]2. 对于 \( g(x) = \ln(x) - e^x \),我们首先求一阶导数:\[ g'(x) = \frac{1}{x} - e^x \]然后求二阶导数:\[ g''(x) = -\frac{1}{x^2} - e^x \]这些练习题涵盖了基础导数计算、复合函数导数、隐函数导数以及高阶导数,是专升本数学考试中常见的题型。
导数概念练习题

导数概念练习题导数是微积分的一个重要概念,它描述了函数在某一点处的变化率,即函数在该点处的斜率。
导数的概念在许多学科中都有广泛的应用,如物理学、工程学、经济学等。
下面是一些导数概念的练习题,帮助大家更好地理解这个概念。
已知函数f(x) = x^2 + 2x + 1,求f'(x)。
已知函数f(x) = sin(x),求f'(x)。
已知函数f(x) = log(x),求f'(x)。
已知函数f(x) = e^x,求f'(x)。
已知函数f(x) = x^n,求f'(x)。
已知函数f(x) = x/ln(x),求f'(x)。
解:f'(x) = (ln(x)-1)/(ln(x))^2已知函数f(x) = arctan(x),求f'(x)。
已知函数f(x) = e^(arctan(x)),求f'(x)。
解:f'(x) = e^(arctan(x))*(1/(1+x^2))已知函数f(x) = sin(e^x),求f'(x)。
解:f'(x) = cos(e^x)*e^x已知函数f(x) = x^sin(x),求f'(x)。
解:f'(x) = sin(x)x^(sin(x)-1)(cos(x)-1)以上练习题可以帮助大家理解导数的概念,并掌握一些常见的导数计算方法。
导数是数学中一个非常重要的概念,它描述了一个函数在某一点处的变化率。
求导数是数学分析中的一个基本技能,也是解决许多实际问题中必不可少的工具。
下面是一些求导数的练习题,供大家参考。
(1)θ=sinx,y=cosx。
(x)=3xx=0为函数的极值点。
随着素质教育的不断推进,高中数学课程中引入了越来越多的抽象概念,其中导数概念便是之一。
导数概念作为微积分的核心概念之一,对于高中生而言,是一个极具挑战性的知识点。
因此,本文旨在探讨高中学生对导数概念的理解情况,为教师提供有益的教学参考,从而提高学生对导数概念的理解和掌握程度。
高考数学专题:导数大题专练含答案

高考数学专题:导数大题专练含答案一、解答题1.已知函数()ln f x ax x =+ (1)讨论()f x 的单调区间;(2)设()2xg x =,若对任意的[]11,100x ∈,存在[]20,1x ∈,使()()12f x g x <成立,求实数a 的取值范围. 2.已知函数()ln f x x =.(1)当()()sin 1g x x =-,求函数()()()T x f x g x =+在()0,1的单调性; (2)()()12h x f x b x=+-有两个零点1x ,2x ,且12x x <,求证:121x x +>. 3.已知函数()21si cos n 2f x x x a x x =-++.(1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围.4.已知a R ∈,函数()22e 2xax f x =+. (1)求曲线()y f x =在0x =处的切线方程 (2)若函数()f x 有两个极值点12,x x ,且1201x x ,(ⅰ)求a 的取值范围;(ⅱ)当9a <-时,证明:21x x <-<. (注: 2.71828e =…是自然对数的底数) 5.求下列函数的导数: (1)2cos x xy x -=; (2)()e 1cos 2x x y x =+-; (3)()3log 51y x =-.6.已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围.7.已知函数()323f x x ax x =-+.(1)若3x =是()f x 的极值点,求()f x 在[]1,a 上的最大值和最小值;(2)若()f x 在[)1,+∞上是单调递增的,求实数a 的取值范围.8.2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”为了进一步了解普通大众对“碳中和”及相关举措的认识,某机构进行了一次问卷调查,部分结果如下:(1)根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)经调查后,有关部门决定加大力度宣传“碳中和”及相关措施以便让节能减排的想法深入人心.经过一段时间后,计划先随机从社会上选10人进行调查,再根据检验结果决定后续的相关举措.设宣传后不了解“碳中和”的人概率都为()01p p <<,每个被调查的人之间相互独立.①记10人中恰有3人不了解“碳中和”的概率为()f p ,求()f p 的最大值点0p ; ②现对以上的10人进行有奖答题,以①中确定的0p 作为答错的概率p 的值.已知回答正确给价值a 元的礼品,回答错误给价值b 元的礼品,要准备的礼品大致为多少元?(用a ,b 表示即可)9.已知函数()ln 2f x x x ax =++在点()()1,1f 处的切线与直线220x y 相互垂直.(1)求实数a 的值;(2)求()f x 的单调区间和极值.10.已知函数()222(0)e xmx x f x m +-=>. (1)判断()f x 的单调性;(2)若对[]12,1,2x x ∀∈,不等式()()1224e f x f x -≤恒成立,求实数m 的取值范围.【参考答案】一、解答题1.(1)答案见解析 (2)31a e ≤-【解析】 【分析】(1)由()()110ax f x a x xx+=+=>',按0a ≥,0a <进行分类讨论求解; (2)由已知,转化为()()max max f x g x <,由已知得()()max 12g x g ==,由此能求出实数a 的取值范围. (1)()(]110ax f x a x x x+'=+=>, ①当0a ≥时,由于0x >,故10ax +>,()0f x '>, 所以()f x 的单调递增区间为()0,∞+;②当0a <时,由()0f x '=,得1x a=-,在区间10,a ⎛⎫- ⎪⎝⎭上()0f x '>,在区间1,a∞⎛⎫-+ ⎪⎝⎭上()0f x '<,所以,函数()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,单调递减区间为1,a∞⎛⎫-+ ⎪⎝⎭;(2)由题目知,只需要()()max max f x g x <即可又因为()()max 12g x g ==,所以只需要()max 2f x <即可()max 2f x <即等价于()2f x <恒成立,由变量分离可知2ln xa x-<,[]1,100x ∈, 令()2ln xh x x -=,下面求()h x 的最小值, 令()23ln xh x x-+'=,所以()0h x '=得3x e =, 所以()h x 在31,e ⎡⎤⎣⎦为减函数,3,100e ⎡⎤⎣⎦为增函数,所以()()33min 1h x h e e -==,所以31a e ≤-. 2.(1)单调递增 (2)证明见解析 【解析】 【分析】(1)直接求导,判断出导数大于0,即可得到单调性;(2)直接由1x ,2x 是函数()1ln 2h x x b x =+-的两个零点得到1212122ln x xx x x x -=,分别解出1211212ln x xx x x -=,2121212ln xx x x x -=,再换元令12x t x =构造函数()12ln l t t t t=--,求导确定单调性即可求解. (1)由题意,函数()()sin 1ln T x x x =-+,则()()1cos 1T x x x'=--+,又∵()0,1x ∈,∴11x>,()()10,1,cos 11x x -∈-<,∴()0T x '>,∴()T x 在(0,1)上单调递增. (2)根据题意,()()1ln 02h x x b x x =+->, ∵1x ,2x 是函数()1ln 2h x x b x=+-的两个零点,∴111ln 02x b x +-=,221ln 02x b x +-=. 两式相减,可得122111ln22x x x x =-,即112221ln 2x x x x x x -=, ∴1212122ln x x x x x x -=,则1211212ln x x x x x -=,2121212ln xx x x x -=. 令12x t x =,()0,1t ∈,则1211112ln 2ln 2ln t t t t x x t t t---+=+=.记()12ln l t t t t =--,()0,1t ∈,则()()221t l t t-'=. 又∵()0,1t ∈,∴()0l t '>恒成立,∴()l t 在()0,1上单调递增,故()()1l t l <,即12ln 0t t t --<,即12ln t t t-<.因为ln 0t <,可得112ln t t t->,∴121x x +>.【点睛】本题关键点在于对双变量的处理,通过对111ln 02x b x +-=,221ln 02x b x +-=作差,化简得到1212122ln x x x x xx -=, 分别得到12,x x 后,换元令12x t x =,这样就转换为1个变量,再求导确定单调性即可求解. 3.(1)10y +=; (2)[)1,+∞. 【解析】 【分析】(1)将1a =-代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件可以将问题转化为恒成立问题,进而转化为求函数的最值问题,利用导数法求函数的最值即可求解. (1)当1a =-时,()2cos 1sin 2f x x x x x =--+()2cos 10000sin 012f =⨯--+=-,所以切点为0,1,()1sin cos x f x x x '=-++,∴(0)01sin 0cos00f '=-++=,所以曲线()y f x =在点()()0,0f 处的切线的斜率为(0)0k f '==, 所以曲线()y f x =在点0,1处的切线的斜率切线方程为()()100y x --=⨯-,即10y +=.(2)由()21si cos n 2f x x x a x x =-++,得()s 1co i s n f x x a x x '=--+因为函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,可得()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 设()()1c s os in g x f x x a x x '==--+,则()cos 1sin g x a x x '=--. 因为si (n 0)001cos00g a =--+=, 所以使()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 则至少满足()00g '≤,即10a -≤,解得1a ≥. 下证明当1a ≥时,()0f x '≤恒成立,因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以sin 0x ≥, 因为1a ≥,所以()sin 1cos f x x x x '≤--+.记s ()cos n 1i h x x x x =--+,则π()1sin 14cos h x x x x ⎛⎫'=-=+ ⎝-⎪⎭.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当π3π,24x ⎛⎫∈ ⎪⎝⎭时,()0h x '>. 所以函数()h x 在π0,2⎡⎫⎪⎢⎣⎭上单调递减,在π3π,24⎛⎤⎥⎝⎦上单调递增.因为ππ(),h h ⎛⎫==- ⎪⎝⎭33001044, 所以()h x 在3π0,4⎡⎤⎢⎥⎣⎦上的最大值为(0)0h =. 即()()1sin cos 0f x h x x x x '≤=--+≤在3π0,4⎡⎤⎢⎥⎣⎦上恒成立.所以a 的取值范围为[)1,+∞.4.(1)(21y x =-+(2)(ⅰ)22e ,-;(ⅱ)证明见解析【解析】 【分析】(1)由导数的几何意义即可求解;(2)(ⅰ)原问题等价于12,x xa =-的两根,且1201x x ,从而构造函数())0g x x =>,将问题转化为直线y a =-与函数()g x 的图象有两个交点,且交点的横坐标大于0小于1即可求解;(ⅱ)由1e x x +≤,利用放缩法可得()()1112210x ax f x '++-=,即1x 2114x <<,从而可证21x x -<()21e 011x x x x +<<<-,然后利用放缩法可得()()1201,21i i i ix ax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,最后构造二次函数()(222m x ax a x =-++++21x x ->而得证原不等式. (1)解:因为()22e x f x ax '=+所以()02f '=()01f =,所以曲线()y f x =在0x =处的切线方程为(21y x =-+; (2)解:(ⅰ)因为函数()f x 有两个极值点12,x x ,所以12,x x 是关于x 的方程()22e 0x f x ax =+'的两根,也是关于x的方程a =-的两正根, 设())0g x x =>,则()g x '=, 令())224e 2e 0x x h x x x =->,则()28e xh x x '=,当0x >时,()0h x '>,所以()h x 在()0,∞+上单调递增,又104h ⎛⎫= ⎪⎝⎭,所以,当104x <<时,()0h x <,()0g x '<;当14x >时,()0h x >,()0g x '>,所以函数()g x 在10,4⎛⎫⎪⎝⎭上单调递减,在1,4⎛⎫+∞ ⎪⎝⎭上单调递增,又因为1201x x ,所以()114g a g ⎛⎫<-<⎪⎝⎭,即22e a <-<- 所以a的取值范围是22e ,-;22e 9a <<-, 因为1e x x +≤,所以()()1112210x ax f x '++-=,所以()142a x +-,所以1x 2114x <<,所以211x x -<= 下面先证明不等式()21e 011x xx x+<<<-, 设()()2101e 1xx r x x x -=⋅<<+,则()()2222e 1x x r x x '=-+, 所以,当01x <<时,()0r x '<,()r x '在()0,1上单调递减, 所以,()()01r x r <=,所以不等式()21e 011x xx x+<<<-成立, 因为12,x x ,()1201x x <<<是()22e 0x f x ax '=+=的两个根,所以()()01,2i f x i '==,又()21e 011x xx x+<<<-,所以()()1201,21ii i ixax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,设函数()(222m x ax a x =-++++x t ==因为((()2224261620a a a ∆=+++-=+-+->,且()00m >,()10m >,102t <<, 所以函数()m x 有两个不同的零点,记为α,()βαβ<,且01t αβ<<<<,因为()22616212e 201ta tf t at at t+++'=+-⋅+-=<-,且()00f '>,()10f '>,所以1201x x ,因为()m x 在()0,t 上单调递减,且()()10m x m α>=,所以10x t α<<<; 因为()m x 在(),1t 上单调递增,且()()20m x m β>=,所以21t x β<<<; 所以1201x x αβ<<<<<,所以21x x βα->-,因为βα-=又()109a-<<<-,所以βα-> 所以21x x->综上,21x x <-< 【点睛】关键点点睛:本题(2)问(ii)小题证明的关键是,利用1e x x +≤,进行放缩可得1x 21x x -<;再利用()21e 011x xx x +<<<-,进行放缩可得()()1201,21ii i ixax f x i x +'⋅+->==-,从而构造二次函数()(222m x ax ax =-++++21x x ->5.(1)'y ()31sin 2cos x x xx --=;(2)'y ()e 1cos sin 2ln 2x xx x =+--;(3)'y ()551ln 3x =-⋅.【解析】 【分析】根据导数的运算法则,对(1)(2)(3)逐个求导,即可求得结果. (1)因为2cos x x y x -=,故'y ()()()243sin 12cos 1sin 2cos x x x x x x x x x x------==. (2)因为()e 1cos 2x x y x =+-,故'y ()e 1cos sin 2ln 2x xx x =+--.(3)因为()3log 51y x =-,故'y ()()155?51ln 351ln 3x x =⨯=--⋅. 6.(1)()3232f x x x =+-(2)()2,2- 【解析】 【分析】(1)由已知可得()()2013f f ⎧-=⎪⎨-=-''⎪⎩,可得出关于实数a 、b 的方程组,解出这两个未知数的值,即可得出函数()f x 的解析式;(2)分析可知,直线y λ=与函数()f x 的图象有3个交点,利用导数分析函数()f x 的单调性与极值,数形结合可得出实数λ的取值范围.(1)解:因为()322f x x ax bx =++-,则()232f x x ax b '=++,由题意可得()()212401323f a b f a b ⎧-=-+=⎪⎨-=-+=-''⎪⎩,解得30a b =⎧⎨=⎩,所以,()3232f x x x =+-.当3a =,0b =时,()236f x x x '=+,经检验可知,函数()f x 在2x =-处取得极值. 因此,()3232f x x x =+-.(2)解:问题等价于()f x λ=有三个不等的实数根,求λ的范围.由()2360f x x x '=+>,得2x <-或0x >,由()2360f x x x '=+<,得20x -<<,所以()f x 在(),2-∞-、()0,∞+上单调递增,在()2,0-上单调递减, 则函数()f x 的极大值为()22f -=,极小值为()02f =-,如下图所示:由图可知,当22λ-<<时,直线y λ=与函数()f x 的图象有3个交点, 因此,实数λ的取值范围是()2,2-. 7.(1)最大值为15,最小值为9- (2)3a ≤ 【解析】 【分析】(1)由()30f '=可求得实数a 的值,再利用函数的最值与导数的关系可求得函数()f x 在[]1,a 上的最大值和最小值;(2)分析可知()23230f x x ax '=-+≥对任意的1≥x 恒成立,利用参变量分离法结合基本不等式可求得实数a 的取值范围. (1)解:因为()323f x x ax x =-+,则()2323f x x ax =-+',则()33060f a '=-=,解得5a =,所以,()3253f x x x x =-+,则()()()23103313f x x x x x '=-+=--,列表如下:所以,min 39f x f ==-,因为11f =-,515f =,则max 515f x f ==. (2)解:由题意可得()23230f x x ax '=-+≥对任意的1≥x 恒成立,即312a x x⎛⎫≤+ ⎪⎝⎭,由基本不等式可得313322x x ⎛⎫+≥⨯ ⎪⎝⎭,当且仅当1x =时,等号成立,故3a ≤.8.(1)列联表见解析,没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关; (2)①0310p =;②()73a b + 【解析】 【分析】(1)对满足条件的数据统计加和即可,然后根据给定的2K 计算公式,将计算结果与195%0.05-=所对应的k 值比较大小即可;(2)①利用独立重复试验与二项分布的特点,写出10人中恰有3人不了解“碳中和”的概率为()f p ,再利用导数求出最值点; ②利用独立重复试验的期望公式代入可求出答案. (1)由题中表格数据完成22⨯列联表如下:()22800125250150275800 3.463 3.841275525400400231K ⨯⨯-⨯==≈<⨯⨯⨯.故没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关. (2)①由题得,()()733101f p C p p =-,()0,1p ∈, ∴()()()()()763236321010C 3171C 1310f p p p p p p p p ⎡⎤'=---=--⎣⎦. 令()0f p '=,得310p =,当30,10p ⎛⎫∈ ⎪⎝⎭时,()0f p '>; 当3,110p ⎛⎫∈⎪⎝⎭时,()0f p '<, ∴当30,10p ⎛⎫∈ ⎪⎝⎭时,()f p '单调选增;当3,110p ⎛⎫∈ ⎪⎝⎭时,()f p '单调递减, ∴()f p 的最大值点0310p =. ②本题求要准备的礼品大致为多少元,即求10个人礼品价值X 的数学期望. 由①知答错的概率为310, 则()33101731010E X a b a b ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦, 故要准备的礼品大致为73a b +元. 9.(1)3a =-;(2)增区间为()2e ,+∞,减区间为()20,e ,极小值22e -,无极大值.【解析】 【分析】(1)根据()1112f '⨯=-,代值计算即可求得参数值;(2)根据(1)中所求参数值,求得()f x ',利用导数的正负即可判断函数单调性和极值. (1)因为()ln 1f x x a '=++,在点()()1,1f 处的切线斜率为()11k f a '==+, 又()f x 在点()()1,1f 处的切线与直线220x y 相互垂直, 所以()1112f '⨯=-,解得3a =-. (2)由(1)得,()ln 2f x x '=-,()0,x ∈+∞,令()0f x '>,得2e x >,令()0f x '<,得20e x <<,即()f x 的增区间为()2e ,+∞,减区间为()20,e . 又()22222e e ln e 3e 22ef =-+=-,所以()f x 在2e x =处取得极小值22e -,无极大值. 【点睛】本题考查导数的几何意义,以及利用导数研究函数的单调性和极值,属综合中档题.10.(1)单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+⎥⎝⎦ (2)20,4e ⎛⎤ ⎥-⎝⎦【解析】 【分析】(1)先对函数求导,然后由导数的正负可求出函数的单调区间, (2)由函数()f x 在[]1,2上为增函数,求出函数的最值,则()()max min 24e 2()()e m g m f x f x -+=-=,然后将问题转化为()224e 24e e m -+≥,从而可求出实数m 的取值范围. (1)()()()()221422(0)e e xxmx m x mx x f x m -+-+-+-=>'=令()0f x '=,解得2x m =-或2x =,且22m-< 当2,x m ∞⎛⎤∈-- ⎥⎝⎦时,()0f x '≤,当2,2x m ⎛⎫∈- ⎪⎝⎭时,()0f x '>,当[)2,x ∞∈+时,()0f x '≤即()f x 的单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+⎥⎝⎦(2)由(1)知,当[]0,1,2m x >∈时,()0f x '>恒成立 所以()f x 在[]1,2上为增函数, 即()()max min242()2,()1e em mf x f f x f +====. ()()12f x f x -的最大值为()()max min 24e 2()()e m g m f x f x -+=-=()()1224e f x f x ⎡⎤≥-⎣⎦恒成立()224e 24e e m -+∴≥ 即24em ≤-, 又0m > 20,4e m ⎛⎤∴∈ ⎥-⎝⎦ 故m 的取值范围20,4e ⎛⎤ ⎥-⎝⎦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.设函数22()21(0)f x tx t x t x t =++-∈>R ,.
(Ⅰ)求()f x 的最小值()h t ;
(Ⅱ)若()2h t t m <-+对(02)t ∈,
恒成立,求实数m 的取值范围. 2.设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与 直线670x y --=垂直,导函数'()f x 的最小值为12-.
(Ⅰ)求a ,b ,c 的值;
(Ⅱ)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值.
3.已知函数321()(2)13
f x ax bx b x =-+-+. 在1x x =处取得极大值,在2x x =处取得极小值,且12012x x <<<<.
(1)证明0a >;
(2)若z =a +2b ,求z 的取值范围.
4.已知函数d cx bx x x f 25)(23----=在]0,(-∞上单调递减,在[]6,0上单调递增, 1=x 是方程0)(=x f 的一个实根.
(Ⅰ)当4=d 时,求)(x f 的解析式;
(Ⅱ)求)4(f 的取值范围.
5.已知cx bx ax x f ++=23)(在区间[0,1]上是增函数,在区间),1(),0,(+∞-∞上是减函数,又1
3()22
f '=. (Ⅰ)求)(x f 的解析式;
(Ⅱ)若在区间],0[m (m >0)上恒有)(x f ≤x 成立,求m 的取值范围.
6.已知a R ∈, 32()44f x x ax x a =--+.
(Ⅰ)若(1)0f '-=,求函数()f x 在区间[2,2]-的最大值与最小值;
(Ⅱ)若函数()f x 在区间(,2]-∞-和[2,)+∞上都是增函数,求实数a 的取值范围.。