示波器那些事儿--之采样率
示波器的采样率和存储深度

示波器的采样率和存储深度带宽、采样率和存储深度是数字示波器的三大关键指标。
相对于工程师们对示波器带宽的熟悉和重视,采样率和存储深度往往在示波器的选型、评估和测试中为大家所忽视。
这篇文章的目的是通过简单介绍采样率和存储深度的相关理论结合常见的应用帮助工程师更好的理解采样率和存储深度这两个指针的重要特征及对实际测试的影响,同时有助于我们掌握选择示波器的权衡方法,树立正确的使用示波器的观念。
在开始了解采样和存储的相关概念前,我们先回顾一下数字存储示波器的工作原理。
图1 数字存储示波器的原理组成框图输入的电压信号经耦合电路后送至前端放大器,前端放大器将信号放大,以提高示波器的灵敏度和动态范围。
放大器输出的信号由取样/保持电路进行取样,并由A/D转换器数字化,经过A/D转换后,信号变成了数字形式存入内存中,微处理器对内存中的数字化信号波形进行相应的处理,并显示在显示屏上。
这就是数字存储示波器的工作过程。
采样、采样速率我们知道,计算机只能处理离散的数字信号。
在模拟电压信号进入示波器后面临的首要问题就是连续信号的数字化(模/数转化)问题。
一般把从连续信号到离散信号的过程叫采样(sampli ng)。
连续信号必须经过采样和量化才能被计算机处理,因此,采样是数字示波器作波形运算和分析的基础。
通过测量等时间间隔波形的电压幅值,并把该电压转化为用八位二进制代码表示的数字信息,这就是数字存储示波器的采样。
采样电压之间的时间间隔越小,那么重建出来的波形就越接近原始信号。
采样率(sampli ng rate)就是采样时间间隔。
比如,如果示波器的采样率是每秒10G次(10GSa/s),则意味着每100ps进行一次采样。
关于示波器的采样率

关于示波器的采样率
很多年前,我刚学习示波器时,看到了一句英文,叫”Keep an eye on the Sampling Rate”。
我将之翻译成时刻警惕采样率”。
这成为我一直在强调的高保
真捕获的6 大原则之一。
采样率这个概念是如此的简单,以致人们觉得专门辟文谈它都不是很必要。
我想将我的关于系列写成经典,硬着头皮将这个基本概念作为我来鼎阳后的”第三碗剩饭”炒将起来。
如果您是刚开始学习示波器,我的这篇文章和我的其它文章一样,可以成为最好的教材,没有之一。
因为我有热情、有耐心将这些基本概念写出来,写清楚,写透彻,写到位。
有些水平一般的,写不透彻;水平高的,不屑于写,怕是被人误认为水平太差。
这就给我留下了坚持炒剩饭的意义感。
也是因为我坚持不装X,强调自己写的东西是浅浅的东西,是”炒剩饭”,所以压力也没有那么大。
为了满足快阅读的需要,列出这篇文章的6 个小标题如下:
1,采样过程反应了数字示波器的本质:将模拟信号离散为一个一个的采样
点
2,最高采样率VS 当前采样率
3,实时采样率VS 等效采样率(随机采样模式,插值算法)
4,欠采样的影响
5,时刻警惕采样率
6,采样率和模拟带宽及数字带宽之间的关联
采样率(Sampling Rate),顾名思义就是采样的速率,就是单位时间内将模拟
电平转换成离散的采样点的速率,譬如采样率为4GSa/s 就表示每秒采样4G 个点。
Sa 是Samples 的缩写。
有些示波器厂商写作4GS/s。
当然,采用不同量纲。
示波器带宽和采样率选择

1 电源测量中带宽的选择示波器带宽有四个相关名词:模拟带宽、数字带宽,系统带宽和触发带宽。
数字带宽等于采样率的一半,实用意义不大。
触发带宽是示波器厂商“硬”造出来的一个概念,是指示波器触发电路可以正常工作的最大输入正弦信号的频率。
对于高端示波器,触发电路在输入信号频率超过一定大小就不能工作了! 系统带宽是指示波器前端放大器和探头、测试夹具等组成的测量系统的带宽。
一般不特别说明,带宽即是指示波器的模拟带宽,也就是示波器前端放大器的幅频特性曲线的截止频率点。
示波器的放大器是低通滤波器,其幅频特性曲线如图1所示,带宽就是输入电压幅值降低到输入 -3dB(70.7%)时的截止频率点。
带宽选择的理论依据,用一句话来概括就是带要能覆盖被测信号能量的99%以上。
我们知道,任何信号都可以分解为无数次谐波的叠加,但是被测信号分解到多少次谐波之后能量会衰减到只剩下1%呢?这个答案不直观,因此带宽的选择是示波器行业的销售人员几乎每天都会遇到的问题。
这个问题有时侯很严肃,有时侯很滑稽。
其实,带宽的选择是一个相对的结果,它取决于被测信号的类型和测量的准确度。
最关键的因素是上升时间。
上升时间越小,上升沿越陡,被测信号的高次谐波含量越丰富,需要的带宽越大。
这里面就需要一些数学上的推导来确定具体上升时间和信号能量之间的量化关系。
业内比较认可的两个带宽选择的原则是:•当被测信号是串行数据时,串行数据的上升时间如果大于20% UI(一个比特位的时间长度),那么示波器带宽只要达到被测信号比特率的1.8倍就能覆盖信号能量的99.9%。
如果上升时间大于30% UI,只要1.2倍信号的比特率就足够了。
现实电路中,串行数据的上升时间绝大多数在接收端时都大于30%了。
因此,对于3Gbps的SATA信号,在经过夹具之后用4GHz示波器就可以。
大家可以用4GHz、6GHz、13GHz测试后比较一下看看。
•电源不是串行信号,上面的规则并不适用。
在很久很久以前,业内一就直流传的带宽选择依据是“3到5倍”法则,即带宽是被测信号频率的“3到5倍”。
关于示波器的采样率-汪进进

关于示波器的采样率汪进进关于示波器的采样率采样率(Sampling Rate),顾名思义就是“采样的速率”,就是单位时间内将模拟电平转换成离散的采样点的速率,譬如采样率为4GSa/s就表示每秒采样4G个点。
Sa是Samples的缩写。
有些示波器厂商写作4GS/s。
当然,采用不同量纲的单位就是MSa/s、MS/s,KSa/s、KS/s,Sa/s,S/s。
1,采样过程反应了数字示波器的本质:将模拟信号离散为一个一个的采样点数字示波器区别于模拟示波器的一个最大不同是将模拟信号进行离散化。
我们常说的话是,“在数字世界里,永远只有0和1”。
如何将那些各种不同形状的模拟信号转换成为0和1呢? 图1和图2表示了示波器将模拟信号离散化的过程。
采样-保持电路根据采样时钟将连续的模拟信号“等时间间隔地”、“实时地”转换为离散的电平,离散的电平再经过模数转换器(ADC)转换为一系列的0和1。
对于8位ADC来说,8个连续的0和1组成一个采样点,代表了一个电平值。
示波器将这些离散的采样点直接显示或将点和点通过某种方式相连显示为示波器屏幕上的波形。
示波器保存的离散的采样点的个数就是“存储深度(memory)”。
INPUTWA VEFORMSA MPLEDWA VEFORMSA MPLING CLOCK图1 采样-保持电路将模拟信号转换成一个一个离散的电平汪进进深圳市鼎阳科技有限公司图2 ADC将模拟信号离散化为0和1组成的采样点将图1和图2的离散化过程换个示意图来表达,如图3所示,离散的采样点之间的间隔就是采样周期,采样周期的倒数就是采样率。
采样率4GSa/s就表示两个采样点之间的间隔为500ps。
在“点显示”方式和“线性插值”模式下,将示波器屏幕上的波形展开,有些示波器能看出屏幕上等时间间隔的采样点,打开示波器光标可以测量出两个点之间的间隔即为采样周期。
图3 采样周期表示相邻两个采样点之间的间隔2,最高采样率 VS当前采样率在示波器的前面板上通常都会标识采样率,如图4所示是中国首款智能示波器SDS3000系列中的一款SDS3054,她的面板上标识了采样率为 4GS/s,该采样率就是指这台示波器可以工作到的最高采样率。
示波器基本概念之带宽、采样率,与奈奎斯特定理

示波器基本概念之带宽、采样率,与奈奎斯特定理1. 简介高速数字器/示波器的模拟前端有两项主要组件,就是模拟输入电路及模拟数字转换器(ADC)。
模拟输入电路将信号衰减、放大、过滤、及/或耦合,使ADC的数字化能达到最佳。
ADC将处理过的波型做取样,将模拟输入信号转换为代表经过处理之数字信号的数字值。
图 12. 带宽(Bandwidth)带宽 (Bandwidth) 描述的是模拟前端在振幅损失最少的前提下,将信号从外部世界传入ADC的能力。
采样率是ADC将模拟输入波型转换为数字数据的频率。
奈奎斯特定理 (Nyquist Theorem) 说明采样率和受测信号的频率之间的关系。
以下将更详细地讨论这三个名词。
带宽形容一个频率范围,在这个范围内,输入信号可以用振幅损失最少的方式,穿过模拟前端──从探测器的前端或测试设备到达 ADC 的输入端。
带宽指定为正弦曲线输入信号衰减至原振幅之 70.7% 时的频率,亦称为 -3 dB 点。
下图说明 100 MHz 高速数字器的典型输入反应。
图 2举例来说,如果将1 个 1 V、100 MHz 的正弦波,输入带宽为 100 MHZ 的高速数字器中,信号会被数字器的模拟输入途径衰减,而被取样的波型振幅约为 0.7 V。
图 3数字器的带宽最好比要测量的信号中的最高频率高3 ~ 5 倍,以期在最低的振幅误差下撷取信号(所需带宽= (3 至 5)*欲测频率)。
受测信号的理论振幅误错可以从数字器带宽与输入信号带宽(R)之间的比例计算得知。
图 4举例来说,在使用 100 MHz 高速数字器测量 50 MHz 正弦曲线信号时(其比例 R=2),误差大约为 10.5%。
另一个和带宽有关的重要主题是上升时间 (Rise time)。
输入信号的上升时间是指信号从最大信号振幅的 10% 转换到 90% 的时间,而且与带宽成反向相关,由以下公式呈现。
此公式采用单极模型,R-C 限制输入反应为基础。
示波器基础系列之二-示波器的采样率和存储深度(2)

存储、存储深度把经过A/D数字化后的八位二进制波形信息存储到示波器的高速CMOS存储器中,就是示波器的存储,这个过程是“写过程”。
存储器的容量(存储深度)是很重要的。
对于DSO,其最大存储深度是一定的,但是在实际测试中所使用的存储长度却是可变的。
在存储深度一定的情况下,存储速度越快,存储时间就越短,他们之间是一个反比关系。
存储速度等效于采样率,存储时间等效于采样时间,采样时间由示波器的显示窗口所代表的时间决定,所以:存储深度=采样率×采样时间(距离= 速度×时间)力科示波器的时基(Time Base)标签即直观的显示了这三者之间的关系,如图9所示由于DSO的水平刻度分为10格,每格的所代表的时间长度即为时基(time base),单位是t/div,所以采样时间=time base ×10.DSO的水平刻度分为10格,每格的所代表的时间长度即为时基(time base),单位是t/div,所以采样时间=time base ×10.由以上关系式我们知道,提高示波器的存储深度可以间接提高示波器的采样率:当要测量较长时间的波形时,由于存储深度是固定的,所以只能降低采样率来达到,但这样势必造成波形质量的下降;如果增大存储深度,则可以以更高的采样率来测量,以获取不失真的波形。
图10的曲线充分揭示了采样率、存储深度、采样时间三者的关系及存储深度对示波器实际采样率的影响。
比如,当时基选择10us/div档位时,整个示波器窗口的采样时间是10us/div * 10格=100us,在1Mpts的存储深度下,当前的实际采样率为:1M÷100us=10Gs/s,如果存储深度只有250K,那当前的实际采样率就只要2.5GS/s了!一句话,存储深度决定了DSO同时分析高频和低频现象的能力,包括低速信号的高频噪声和高速信号的低频调制。
DSO同时分析高频和低频现象的能力,包括低速信号的高频噪声和高速信号的低频调制。
数字示波器使用中注意的问题

数字示波器使用中注意的问题数字示波器使用中常见的一些简单的问题一、请问带宽和采样频率之间有什么固定关系?采样率理论上需要满足农效香采样定律,即被测信号的最高频率信号的每个周期理论上至少需要采2个点,否则会造成混叠。
但是在实际上还取决于很多其它的因素,比如波形的重构算法等,Siglent系列示波器采用先进的波形重构算法,同时配备有插值算法,精确重构波形。
一般来说采样率是带宽的4-5倍就可以比较准确地再现波形。
二、示波器指标中的带宽如何理解?带宽是示波器的基本指标,和放大器带宽的定义一样,是所谓的-3dB点,即,在示波器的输入加正弦波,幅度衰减为实际幅度的70.7%时的频率点称为带宽。
也就是说,使用100MHz带宽的示波器测量1V,100MHz的正弦波,得到的幅度只有0.707V。
这还只是正弦波的情形。
因此,我们在选择示波器的时候,为达到一定的测量精度,应该选择信号最高频率5倍的带宽。
Siglent的ADS1000CE 示波器提供300MHz带宽、2GSa/a的实时采样率,领先国内同行水平。
三、在带宽一定的条件下,采样频率太大是否也没有太大的意义?带宽是限制被测信号高频分量被捕获的基本条件。
由于Siglent示波器采用先进的波形重构算法,并配备有插值算法显示,同时提供最低500MS/s的实时采样率,保证对触发信号的完美捕获并真实量化,最终能对采集信号的精确重现。
四、影响示波器工作速度的因素有哪些?简单地来说示波器的原理都差不多,前端是数据采集系统,后端是计算机处理。
影响示波器速度主要有两方面,一是从前端数采到后端处理的数据传输,一般都是用总线传输,另一个是后端的处理方式。
Siglent示波器采用成熟的高速硬件架构,配合DSP数字处理能有效解决这些瓶颈,大大提升示波器的性能。
五、在使用示波器时如何消除毛刺?如果毛刺是信号本身固有的,而且想用边沿触发同步该信号(如正弦信号),可以用高频抑制触发方式,通常可同步该信号。
示波器测试测量中取样方式的选择

示波器测试测量中取样方式的选择
在测试测量中有很多种取样方法,今日电工学习网我将为大家介绍示波器不同的选择。
默认模式
保留每个采集间隔中的第一个取样点。
峰值检测模式
使用了两个连续捕获间隔中包含的全部取样的最高和最低点。
该模式仅可用于实时、非内插的取样,并且在捕获高频率的毛刺方面特别有用。
高辨别率模式
计算每个采集间隔全部取样值的平均值。
该模式也只能用于实时、非内插取样。
高辨别率模式供应了较高辨别率、较低带宽的波形。
包络模式
在全部采集中查找最高和最低记录点。
包络模式对每个单独的采集使用峰值检测。
平均模式
计算用户指定的采集数的每个记录点的平均值。
平均模式对每个单独的采集都使用取样模式。
使用平均模式可以削减随机噪声。
采样模式垂直辨别率
垂直标度是80 V/格。
10格为800 V满垂直刻度。
垂直分度对8位模数转换器是25个模数转换电平/格。
10格为250模数电平满垂直刻度。
1个模数电平是3.2 V辨别率。
标准8位示波器
1 MS/s采样率
14位= 16,384个电平
800 V满刻度/16,384个电平= 61 mV辨别率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
示波器那些事儿--之采样率
采样率(Sampling Rate)顾名思义就是采样的速率,就是单位时间内将模拟电平转换成离散的采样点的速率。
采样过程反映了数字示波器的本质:将模
拟信号离散为一个一个的采样点。
数字示波器区别于模拟示波器的一个最大不
同是将模拟信号进行离散化。
在数字世界里,永远只有0 和1。
如何将那些各
种不同形状的模拟信号转换成为0 和1 呢?采样保持电路根据采样时钟将连续
的模拟信号等时间间隔的、实时的转换为离散的电平,离散的电平再经过模数
转换器(ADC)转换为一系列的0 和1。
对于8 位ADC 来说,8 个连续的0
和1 组成一个采样点,代表了一个电平值,示波器将这些离散的采样点直接显
示或将点和点通过某种方式相连显示为示波器屏幕上的波形。
离散的采样点之
间的间隔就是采样周期,采样周期的倒数就是采样率,例如,采样率2GSa/s 就表示两个采样点之间的间隔为1ns。
在点显示方式和线性插值模式下,将示波
器屏幕上的波形展开,有些示波器能看出屏幕上等时间间隔的采样点,打开示
波器光标可以测量出两个点之间的间隔即为采样周期。
某些示波器可以选择采
样方法:实时采样(real-time sampling)或等效时间采样(effective time sampling)。
实时采样特别适合频率范围不到示波器最大采样率(备注:在示波
器的面板上通常都会有标识采样率,该采样率就是指这台示波器可以工作到的
最高采样率。
但是,实际上示波器的当前采样率由于受到存储深度的限制,随
着示波器采集时间的增加,采样率会被强迫地自动下降,通常可能小于最高采
样率。
)一半的信号,这里示波器可以在波形一次扫描中,采集超过足够量的
点,构建准确的画面,实时采样是使用示波器捕获快速、单次、瞬态信号的唯
一方式。
等效时间采样基于这样一个事实,那就是大多数自然发生的事件和人
为事件都是重复的。
等效时间采样从每次重复中捕获少量信息,构建重复的信。